123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647 |
- from ..libmp.backend import xrange
- from .calculus import defun
- try:
- iteritems = dict.iteritems
- except AttributeError:
- iteritems = dict.items
- #----------------------------------------------------------------------------#
- # Differentiation #
- #----------------------------------------------------------------------------#
- @defun
- def difference(ctx, s, n):
- r"""
- Given a sequence `(s_k)` containing at least `n+1` items, returns the
- `n`-th forward difference,
- .. math ::
- \Delta^n = \sum_{k=0}^{\infty} (-1)^{k+n} {n \choose k} s_k.
- """
- n = int(n)
- d = ctx.zero
- b = (-1) ** (n & 1)
- for k in xrange(n+1):
- d += b * s[k]
- b = (b * (k-n)) // (k+1)
- return d
- def hsteps(ctx, f, x, n, prec, **options):
- singular = options.get('singular')
- addprec = options.get('addprec', 10)
- direction = options.get('direction', 0)
- workprec = (prec+2*addprec) * (n+1)
- orig = ctx.prec
- try:
- ctx.prec = workprec
- h = options.get('h')
- if h is None:
- if options.get('relative'):
- hextramag = int(ctx.mag(x))
- else:
- hextramag = 0
- h = ctx.ldexp(1, -prec-addprec-hextramag)
- else:
- h = ctx.convert(h)
- # Directed: steps x, x+h, ... x+n*h
- direction = options.get('direction', 0)
- if direction:
- h *= ctx.sign(direction)
- steps = xrange(n+1)
- norm = h
- # Central: steps x-n*h, x-(n-2)*h ..., x, ..., x+(n-2)*h, x+n*h
- else:
- steps = xrange(-n, n+1, 2)
- norm = (2*h)
- # Perturb
- if singular:
- x += 0.5*h
- values = [f(x+k*h) for k in steps]
- return values, norm, workprec
- finally:
- ctx.prec = orig
- @defun
- def diff(ctx, f, x, n=1, **options):
- r"""
- Numerically computes the derivative of `f`, `f'(x)`, or generally for
- an integer `n \ge 0`, the `n`-th derivative `f^{(n)}(x)`.
- A few basic examples are::
- >>> from mpmath import *
- >>> mp.dps = 15; mp.pretty = True
- >>> diff(lambda x: x**2 + x, 1.0)
- 3.0
- >>> diff(lambda x: x**2 + x, 1.0, 2)
- 2.0
- >>> diff(lambda x: x**2 + x, 1.0, 3)
- 0.0
- >>> nprint([diff(exp, 3, n) for n in range(5)]) # exp'(x) = exp(x)
- [20.0855, 20.0855, 20.0855, 20.0855, 20.0855]
- Even more generally, given a tuple of arguments `(x_1, \ldots, x_k)`
- and order `(n_1, \ldots, n_k)`, the partial derivative
- `f^{(n_1,\ldots,n_k)}(x_1,\ldots,x_k)` is evaluated. For example::
- >>> diff(lambda x,y: 3*x*y + 2*y - x, (0.25, 0.5), (0,1))
- 2.75
- >>> diff(lambda x,y: 3*x*y + 2*y - x, (0.25, 0.5), (1,1))
- 3.0
- **Options**
- The following optional keyword arguments are recognized:
- ``method``
- Supported methods are ``'step'`` or ``'quad'``: derivatives may be
- computed using either a finite difference with a small step
- size `h` (default), or numerical quadrature.
- ``direction``
- Direction of finite difference: can be -1 for a left
- difference, 0 for a central difference (default), or +1
- for a right difference; more generally can be any complex number.
- ``addprec``
- Extra precision for `h` used to account for the function's
- sensitivity to perturbations (default = 10).
- ``relative``
- Choose `h` relative to the magnitude of `x`, rather than an
- absolute value; useful for large or tiny `x` (default = False).
- ``h``
- As an alternative to ``addprec`` and ``relative``, manually
- select the step size `h`.
- ``singular``
- If True, evaluation exactly at the point `x` is avoided; this is
- useful for differentiating functions with removable singularities.
- Default = False.
- ``radius``
- Radius of integration contour (with ``method = 'quad'``).
- Default = 0.25. A larger radius typically is faster and more
- accurate, but it must be chosen so that `f` has no
- singularities within the radius from the evaluation point.
- A finite difference requires `n+1` function evaluations and must be
- performed at `(n+1)` times the target precision. Accordingly, `f` must
- support fast evaluation at high precision.
- With integration, a larger number of function evaluations is
- required, but not much extra precision is required. For high order
- derivatives, this method may thus be faster if f is very expensive to
- evaluate at high precision.
- **Further examples**
- The direction option is useful for computing left- or right-sided
- derivatives of nonsmooth functions::
- >>> diff(abs, 0, direction=0)
- 0.0
- >>> diff(abs, 0, direction=1)
- 1.0
- >>> diff(abs, 0, direction=-1)
- -1.0
- More generally, if the direction is nonzero, a right difference
- is computed where the step size is multiplied by sign(direction).
- For example, with direction=+j, the derivative from the positive
- imaginary direction will be computed::
- >>> diff(abs, 0, direction=j)
- (0.0 - 1.0j)
- With integration, the result may have a small imaginary part
- even even if the result is purely real::
- >>> diff(sqrt, 1, method='quad') # doctest:+ELLIPSIS
- (0.5 - 4.59...e-26j)
- >>> chop(_)
- 0.5
- Adding precision to obtain an accurate value::
- >>> diff(cos, 1e-30)
- 0.0
- >>> diff(cos, 1e-30, h=0.0001)
- -9.99999998328279e-31
- >>> diff(cos, 1e-30, addprec=100)
- -1.0e-30
- """
- partial = False
- try:
- orders = list(n)
- x = list(x)
- partial = True
- except TypeError:
- pass
- if partial:
- x = [ctx.convert(_) for _ in x]
- return _partial_diff(ctx, f, x, orders, options)
- method = options.get('method', 'step')
- if n == 0 and method != 'quad' and not options.get('singular'):
- return f(ctx.convert(x))
- prec = ctx.prec
- try:
- if method == 'step':
- values, norm, workprec = hsteps(ctx, f, x, n, prec, **options)
- ctx.prec = workprec
- v = ctx.difference(values, n) / norm**n
- elif method == 'quad':
- ctx.prec += 10
- radius = ctx.convert(options.get('radius', 0.25))
- def g(t):
- rei = radius*ctx.expj(t)
- z = x + rei
- return f(z) / rei**n
- d = ctx.quadts(g, [0, 2*ctx.pi])
- v = d * ctx.factorial(n) / (2*ctx.pi)
- else:
- raise ValueError("unknown method: %r" % method)
- finally:
- ctx.prec = prec
- return +v
- def _partial_diff(ctx, f, xs, orders, options):
- if not orders:
- return f()
- if not sum(orders):
- return f(*xs)
- i = 0
- for i in range(len(orders)):
- if orders[i]:
- break
- order = orders[i]
- def fdiff_inner(*f_args):
- def inner(t):
- return f(*(f_args[:i] + (t,) + f_args[i+1:]))
- return ctx.diff(inner, f_args[i], order, **options)
- orders[i] = 0
- return _partial_diff(ctx, fdiff_inner, xs, orders, options)
- @defun
- def diffs(ctx, f, x, n=None, **options):
- r"""
- Returns a generator that yields the sequence of derivatives
- .. math ::
- f(x), f'(x), f''(x), \ldots, f^{(k)}(x), \ldots
- With ``method='step'``, :func:`~mpmath.diffs` uses only `O(k)`
- function evaluations to generate the first `k` derivatives,
- rather than the roughly `O(k^2)` evaluations
- required if one calls :func:`~mpmath.diff` `k` separate times.
- With `n < \infty`, the generator stops as soon as the
- `n`-th derivative has been generated. If the exact number of
- needed derivatives is known in advance, this is further
- slightly more efficient.
- Options are the same as for :func:`~mpmath.diff`.
- **Examples**
- >>> from mpmath import *
- >>> mp.dps = 15
- >>> nprint(list(diffs(cos, 1, 5)))
- [0.540302, -0.841471, -0.540302, 0.841471, 0.540302, -0.841471]
- >>> for i, d in zip(range(6), diffs(cos, 1)):
- ... print("%s %s" % (i, d))
- ...
- 0 0.54030230586814
- 1 -0.841470984807897
- 2 -0.54030230586814
- 3 0.841470984807897
- 4 0.54030230586814
- 5 -0.841470984807897
- """
- if n is None:
- n = ctx.inf
- else:
- n = int(n)
- if options.get('method', 'step') != 'step':
- k = 0
- while k < n + 1:
- yield ctx.diff(f, x, k, **options)
- k += 1
- return
- singular = options.get('singular')
- if singular:
- yield ctx.diff(f, x, 0, singular=True)
- else:
- yield f(ctx.convert(x))
- if n < 1:
- return
- if n == ctx.inf:
- A, B = 1, 2
- else:
- A, B = 1, n+1
- while 1:
- callprec = ctx.prec
- y, norm, workprec = hsteps(ctx, f, x, B, callprec, **options)
- for k in xrange(A, B):
- try:
- ctx.prec = workprec
- d = ctx.difference(y, k) / norm**k
- finally:
- ctx.prec = callprec
- yield +d
- if k >= n:
- return
- A, B = B, int(A*1.4+1)
- B = min(B, n)
- def iterable_to_function(gen):
- gen = iter(gen)
- data = []
- def f(k):
- for i in xrange(len(data), k+1):
- data.append(next(gen))
- return data[k]
- return f
- @defun
- def diffs_prod(ctx, factors):
- r"""
- Given a list of `N` iterables or generators yielding
- `f_k(x), f'_k(x), f''_k(x), \ldots` for `k = 1, \ldots, N`,
- generate `g(x), g'(x), g''(x), \ldots` where
- `g(x) = f_1(x) f_2(x) \cdots f_N(x)`.
- At high precision and for large orders, this is typically more efficient
- than numerical differentiation if the derivatives of each `f_k(x)`
- admit direct computation.
- Note: This function does not increase the working precision internally,
- so guard digits may have to be added externally for full accuracy.
- **Examples**
- >>> from mpmath import *
- >>> mp.dps = 15; mp.pretty = True
- >>> f = lambda x: exp(x)*cos(x)*sin(x)
- >>> u = diffs(f, 1)
- >>> v = mp.diffs_prod([diffs(exp,1), diffs(cos,1), diffs(sin,1)])
- >>> next(u); next(v)
- 1.23586333600241
- 1.23586333600241
- >>> next(u); next(v)
- 0.104658952245596
- 0.104658952245596
- >>> next(u); next(v)
- -5.96999877552086
- -5.96999877552086
- >>> next(u); next(v)
- -12.4632923122697
- -12.4632923122697
- """
- N = len(factors)
- if N == 1:
- for c in factors[0]:
- yield c
- else:
- u = iterable_to_function(ctx.diffs_prod(factors[:N//2]))
- v = iterable_to_function(ctx.diffs_prod(factors[N//2:]))
- n = 0
- while 1:
- #yield sum(binomial(n,k)*u(n-k)*v(k) for k in xrange(n+1))
- s = u(n) * v(0)
- a = 1
- for k in xrange(1,n+1):
- a = a * (n-k+1) // k
- s += a * u(n-k) * v(k)
- yield s
- n += 1
- def dpoly(n, _cache={}):
- """
- nth differentiation polynomial for exp (Faa di Bruno's formula).
- TODO: most exponents are zero, so maybe a sparse representation
- would be better.
- """
- if n in _cache:
- return _cache[n]
- if not _cache:
- _cache[0] = {(0,):1}
- R = dpoly(n-1)
- R = dict((c+(0,),v) for (c,v) in iteritems(R))
- Ra = {}
- for powers, count in iteritems(R):
- powers1 = (powers[0]+1,) + powers[1:]
- if powers1 in Ra:
- Ra[powers1] += count
- else:
- Ra[powers1] = count
- for powers, count in iteritems(R):
- if not sum(powers):
- continue
- for k,p in enumerate(powers):
- if p:
- powers2 = powers[:k] + (p-1,powers[k+1]+1) + powers[k+2:]
- if powers2 in Ra:
- Ra[powers2] += p*count
- else:
- Ra[powers2] = p*count
- _cache[n] = Ra
- return _cache[n]
- @defun
- def diffs_exp(ctx, fdiffs):
- r"""
- Given an iterable or generator yielding `f(x), f'(x), f''(x), \ldots`
- generate `g(x), g'(x), g''(x), \ldots` where `g(x) = \exp(f(x))`.
- At high precision and for large orders, this is typically more efficient
- than numerical differentiation if the derivatives of `f(x)`
- admit direct computation.
- Note: This function does not increase the working precision internally,
- so guard digits may have to be added externally for full accuracy.
- **Examples**
- The derivatives of the gamma function can be computed using
- logarithmic differentiation::
- >>> from mpmath import *
- >>> mp.dps = 15; mp.pretty = True
- >>>
- >>> def diffs_loggamma(x):
- ... yield loggamma(x)
- ... i = 0
- ... while 1:
- ... yield psi(i,x)
- ... i += 1
- ...
- >>> u = diffs_exp(diffs_loggamma(3))
- >>> v = diffs(gamma, 3)
- >>> next(u); next(v)
- 2.0
- 2.0
- >>> next(u); next(v)
- 1.84556867019693
- 1.84556867019693
- >>> next(u); next(v)
- 2.49292999190269
- 2.49292999190269
- >>> next(u); next(v)
- 3.44996501352367
- 3.44996501352367
- """
- fn = iterable_to_function(fdiffs)
- f0 = ctx.exp(fn(0))
- yield f0
- i = 1
- while 1:
- s = ctx.mpf(0)
- for powers, c in iteritems(dpoly(i)):
- s += c*ctx.fprod(fn(k+1)**p for (k,p) in enumerate(powers) if p)
- yield s * f0
- i += 1
- @defun
- def differint(ctx, f, x, n=1, x0=0):
- r"""
- Calculates the Riemann-Liouville differintegral, or fractional
- derivative, defined by
- .. math ::
- \,_{x_0}{\mathbb{D}}^n_xf(x) = \frac{1}{\Gamma(m-n)} \frac{d^m}{dx^m}
- \int_{x_0}^{x}(x-t)^{m-n-1}f(t)dt
- where `f` is a given (presumably well-behaved) function,
- `x` is the evaluation point, `n` is the order, and `x_0` is
- the reference point of integration (`m` is an arbitrary
- parameter selected automatically).
- With `n = 1`, this is just the standard derivative `f'(x)`; with `n = 2`,
- the second derivative `f''(x)`, etc. With `n = -1`, it gives
- `\int_{x_0}^x f(t) dt`, with `n = -2`
- it gives `\int_{x_0}^x \left( \int_{x_0}^t f(u) du \right) dt`, etc.
- As `n` is permitted to be any number, this operator generalizes
- iterated differentiation and iterated integration to a single
- operator with a continuous order parameter.
- **Examples**
- There is an exact formula for the fractional derivative of a
- monomial `x^p`, which may be used as a reference. For example,
- the following gives a half-derivative (order 0.5)::
- >>> from mpmath import *
- >>> mp.dps = 15; mp.pretty = True
- >>> x = mpf(3); p = 2; n = 0.5
- >>> differint(lambda t: t**p, x, n)
- 7.81764019044672
- >>> gamma(p+1)/gamma(p-n+1) * x**(p-n)
- 7.81764019044672
- Another useful test function is the exponential function, whose
- integration / differentiation formula easy generalizes
- to arbitrary order. Here we first compute a third derivative,
- and then a triply nested integral. (The reference point `x_0`
- is set to `-\infty` to avoid nonzero endpoint terms.)::
- >>> differint(lambda x: exp(pi*x), -1.5, 3)
- 0.278538406900792
- >>> exp(pi*-1.5) * pi**3
- 0.278538406900792
- >>> differint(lambda x: exp(pi*x), 3.5, -3, -inf)
- 1922.50563031149
- >>> exp(pi*3.5) / pi**3
- 1922.50563031149
- However, for noninteger `n`, the differentiation formula for the
- exponential function must be modified to give the same result as the
- Riemann-Liouville differintegral::
- >>> x = mpf(3.5)
- >>> c = pi
- >>> n = 1+2*j
- >>> differint(lambda x: exp(c*x), x, n)
- (-123295.005390743 + 140955.117867654j)
- >>> x**(-n) * exp(c)**x * (x*c)**n * gammainc(-n, 0, x*c) / gamma(-n)
- (-123295.005390743 + 140955.117867654j)
- """
- m = max(int(ctx.ceil(ctx.re(n)))+1, 1)
- r = m-n-1
- g = lambda x: ctx.quad(lambda t: (x-t)**r * f(t), [x0, x])
- return ctx.diff(g, x, m) / ctx.gamma(m-n)
- @defun
- def diffun(ctx, f, n=1, **options):
- r"""
- Given a function `f`, returns a function `g(x)` that evaluates the nth
- derivative `f^{(n)}(x)`::
- >>> from mpmath import *
- >>> mp.dps = 15; mp.pretty = True
- >>> cos2 = diffun(sin)
- >>> sin2 = diffun(sin, 4)
- >>> cos(1.3), cos2(1.3)
- (0.267498828624587, 0.267498828624587)
- >>> sin(1.3), sin2(1.3)
- (0.963558185417193, 0.963558185417193)
- The function `f` must support arbitrary precision evaluation.
- See :func:`~mpmath.diff` for additional details and supported
- keyword options.
- """
- if n == 0:
- return f
- def g(x):
- return ctx.diff(f, x, n, **options)
- return g
- @defun
- def taylor(ctx, f, x, n, **options):
- r"""
- Produces a degree-`n` Taylor polynomial around the point `x` of the
- given function `f`. The coefficients are returned as a list.
- >>> from mpmath import *
- >>> mp.dps = 15; mp.pretty = True
- >>> nprint(chop(taylor(sin, 0, 5)))
- [0.0, 1.0, 0.0, -0.166667, 0.0, 0.00833333]
- The coefficients are computed using high-order numerical
- differentiation. The function must be possible to evaluate
- to arbitrary precision. See :func:`~mpmath.diff` for additional details
- and supported keyword options.
- Note that to evaluate the Taylor polynomial as an approximation
- of `f`, e.g. with :func:`~mpmath.polyval`, the coefficients must be reversed,
- and the point of the Taylor expansion must be subtracted from
- the argument:
- >>> p = taylor(exp, 2.0, 10)
- >>> polyval(p[::-1], 2.5 - 2.0)
- 12.1824939606092
- >>> exp(2.5)
- 12.1824939607035
- """
- gen = enumerate(ctx.diffs(f, x, n, **options))
- if options.get("chop", True):
- return [ctx.chop(d)/ctx.factorial(i) for i, d in gen]
- else:
- return [d/ctx.factorial(i) for i, d in gen]
- @defun
- def pade(ctx, a, L, M):
- r"""
- Computes a Pade approximation of degree `(L, M)` to a function.
- Given at least `L+M+1` Taylor coefficients `a` approximating
- a function `A(x)`, :func:`~mpmath.pade` returns coefficients of
- polynomials `P, Q` satisfying
- .. math ::
- P = \sum_{k=0}^L p_k x^k
- Q = \sum_{k=0}^M q_k x^k
- Q_0 = 1
- A(x) Q(x) = P(x) + O(x^{L+M+1})
- `P(x)/Q(x)` can provide a good approximation to an analytic function
- beyond the radius of convergence of its Taylor series (example
- from G.A. Baker 'Essentials of Pade Approximants' Academic Press,
- Ch.1A)::
- >>> from mpmath import *
- >>> mp.dps = 15; mp.pretty = True
- >>> one = mpf(1)
- >>> def f(x):
- ... return sqrt((one + 2*x)/(one + x))
- ...
- >>> a = taylor(f, 0, 6)
- >>> p, q = pade(a, 3, 3)
- >>> x = 10
- >>> polyval(p[::-1], x)/polyval(q[::-1], x)
- 1.38169105566806
- >>> f(x)
- 1.38169855941551
- """
- # To determine L+1 coefficients of P and M coefficients of Q
- # L+M+1 coefficients of A must be provided
- if len(a) < L+M+1:
- raise ValueError("L+M+1 Coefficients should be provided")
- if M == 0:
- if L == 0:
- return [ctx.one], [ctx.one]
- else:
- return a[:L+1], [ctx.one]
- # Solve first
- # a[L]*q[1] + ... + a[L-M+1]*q[M] = -a[L+1]
- # ...
- # a[L+M-1]*q[1] + ... + a[L]*q[M] = -a[L+M]
- A = ctx.matrix(M)
- for j in range(M):
- for i in range(min(M, L+j+1)):
- A[j, i] = a[L+j-i]
- v = -ctx.matrix(a[(L+1):(L+M+1)])
- x = ctx.lu_solve(A, v)
- q = [ctx.one] + list(x)
- # compute p
- p = [0]*(L+1)
- for i in range(L+1):
- s = a[i]
- for j in range(1, min(M,i) + 1):
- s += q[j]*a[i-j]
- p[i] = s
- return p, q
|