1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339 |
- """
- This module defines the mpf, mpc classes, and standard functions for
- operating with them.
- """
- __docformat__ = 'plaintext'
- import functools
- import re
- from .ctx_base import StandardBaseContext
- from .libmp.backend import basestring, BACKEND
- from . import libmp
- from .libmp import (MPZ, MPZ_ZERO, MPZ_ONE, int_types, repr_dps,
- round_floor, round_ceiling, dps_to_prec, round_nearest, prec_to_dps,
- ComplexResult, to_pickable, from_pickable, normalize,
- from_int, from_float, from_str, to_int, to_float, to_str,
- from_rational, from_man_exp,
- fone, fzero, finf, fninf, fnan,
- mpf_abs, mpf_pos, mpf_neg, mpf_add, mpf_sub, mpf_mul, mpf_mul_int,
- mpf_div, mpf_rdiv_int, mpf_pow_int, mpf_mod,
- mpf_eq, mpf_cmp, mpf_lt, mpf_gt, mpf_le, mpf_ge,
- mpf_hash, mpf_rand,
- mpf_sum,
- bitcount, to_fixed,
- mpc_to_str,
- mpc_to_complex, mpc_hash, mpc_pos, mpc_is_nonzero, mpc_neg, mpc_conjugate,
- mpc_abs, mpc_add, mpc_add_mpf, mpc_sub, mpc_sub_mpf, mpc_mul, mpc_mul_mpf,
- mpc_mul_int, mpc_div, mpc_div_mpf, mpc_pow, mpc_pow_mpf, mpc_pow_int,
- mpc_mpf_div,
- mpf_pow,
- mpf_pi, mpf_degree, mpf_e, mpf_phi, mpf_ln2, mpf_ln10,
- mpf_euler, mpf_catalan, mpf_apery, mpf_khinchin,
- mpf_glaisher, mpf_twinprime, mpf_mertens,
- int_types)
- from . import function_docs
- from . import rational
- new = object.__new__
- get_complex = re.compile(r'^\(?(?P<re>[\+\-]?\d*\.?\d*(e[\+\-]?\d+)?)??'
- r'(?P<im>[\+\-]?\d*\.?\d*(e[\+\-]?\d+)?j)?\)?$')
- if BACKEND == 'sage':
- from sage.libs.mpmath.ext_main import Context as BaseMPContext
- # pickle hack
- import sage.libs.mpmath.ext_main as _mpf_module
- else:
- from .ctx_mp_python import PythonMPContext as BaseMPContext
- from . import ctx_mp_python as _mpf_module
- from .ctx_mp_python import _mpf, _mpc, mpnumeric
- class MPContext(BaseMPContext, StandardBaseContext):
- """
- Context for multiprecision arithmetic with a global precision.
- """
- def __init__(ctx):
- BaseMPContext.__init__(ctx)
- ctx.trap_complex = False
- ctx.pretty = False
- ctx.types = [ctx.mpf, ctx.mpc, ctx.constant]
- ctx._mpq = rational.mpq
- ctx.default()
- StandardBaseContext.__init__(ctx)
- ctx.mpq = rational.mpq
- ctx.init_builtins()
- ctx.hyp_summators = {}
- ctx._init_aliases()
- # XXX: automate
- try:
- ctx.bernoulli.im_func.func_doc = function_docs.bernoulli
- ctx.primepi.im_func.func_doc = function_docs.primepi
- ctx.psi.im_func.func_doc = function_docs.psi
- ctx.atan2.im_func.func_doc = function_docs.atan2
- except AttributeError:
- # python 3
- ctx.bernoulli.__func__.func_doc = function_docs.bernoulli
- ctx.primepi.__func__.func_doc = function_docs.primepi
- ctx.psi.__func__.func_doc = function_docs.psi
- ctx.atan2.__func__.func_doc = function_docs.atan2
- ctx.digamma.func_doc = function_docs.digamma
- ctx.cospi.func_doc = function_docs.cospi
- ctx.sinpi.func_doc = function_docs.sinpi
- def init_builtins(ctx):
- mpf = ctx.mpf
- mpc = ctx.mpc
- # Exact constants
- ctx.one = ctx.make_mpf(fone)
- ctx.zero = ctx.make_mpf(fzero)
- ctx.j = ctx.make_mpc((fzero,fone))
- ctx.inf = ctx.make_mpf(finf)
- ctx.ninf = ctx.make_mpf(fninf)
- ctx.nan = ctx.make_mpf(fnan)
- eps = ctx.constant(lambda prec, rnd: (0, MPZ_ONE, 1-prec, 1),
- "epsilon of working precision", "eps")
- ctx.eps = eps
- # Approximate constants
- ctx.pi = ctx.constant(mpf_pi, "pi", "pi")
- ctx.ln2 = ctx.constant(mpf_ln2, "ln(2)", "ln2")
- ctx.ln10 = ctx.constant(mpf_ln10, "ln(10)", "ln10")
- ctx.phi = ctx.constant(mpf_phi, "Golden ratio phi", "phi")
- ctx.e = ctx.constant(mpf_e, "e = exp(1)", "e")
- ctx.euler = ctx.constant(mpf_euler, "Euler's constant", "euler")
- ctx.catalan = ctx.constant(mpf_catalan, "Catalan's constant", "catalan")
- ctx.khinchin = ctx.constant(mpf_khinchin, "Khinchin's constant", "khinchin")
- ctx.glaisher = ctx.constant(mpf_glaisher, "Glaisher's constant", "glaisher")
- ctx.apery = ctx.constant(mpf_apery, "Apery's constant", "apery")
- ctx.degree = ctx.constant(mpf_degree, "1 deg = pi / 180", "degree")
- ctx.twinprime = ctx.constant(mpf_twinprime, "Twin prime constant", "twinprime")
- ctx.mertens = ctx.constant(mpf_mertens, "Mertens' constant", "mertens")
- # Standard functions
- ctx.sqrt = ctx._wrap_libmp_function(libmp.mpf_sqrt, libmp.mpc_sqrt)
- ctx.cbrt = ctx._wrap_libmp_function(libmp.mpf_cbrt, libmp.mpc_cbrt)
- ctx.ln = ctx._wrap_libmp_function(libmp.mpf_log, libmp.mpc_log)
- ctx.atan = ctx._wrap_libmp_function(libmp.mpf_atan, libmp.mpc_atan)
- ctx.exp = ctx._wrap_libmp_function(libmp.mpf_exp, libmp.mpc_exp)
- ctx.expj = ctx._wrap_libmp_function(libmp.mpf_expj, libmp.mpc_expj)
- ctx.expjpi = ctx._wrap_libmp_function(libmp.mpf_expjpi, libmp.mpc_expjpi)
- ctx.sin = ctx._wrap_libmp_function(libmp.mpf_sin, libmp.mpc_sin)
- ctx.cos = ctx._wrap_libmp_function(libmp.mpf_cos, libmp.mpc_cos)
- ctx.tan = ctx._wrap_libmp_function(libmp.mpf_tan, libmp.mpc_tan)
- ctx.sinh = ctx._wrap_libmp_function(libmp.mpf_sinh, libmp.mpc_sinh)
- ctx.cosh = ctx._wrap_libmp_function(libmp.mpf_cosh, libmp.mpc_cosh)
- ctx.tanh = ctx._wrap_libmp_function(libmp.mpf_tanh, libmp.mpc_tanh)
- ctx.asin = ctx._wrap_libmp_function(libmp.mpf_asin, libmp.mpc_asin)
- ctx.acos = ctx._wrap_libmp_function(libmp.mpf_acos, libmp.mpc_acos)
- ctx.atan = ctx._wrap_libmp_function(libmp.mpf_atan, libmp.mpc_atan)
- ctx.asinh = ctx._wrap_libmp_function(libmp.mpf_asinh, libmp.mpc_asinh)
- ctx.acosh = ctx._wrap_libmp_function(libmp.mpf_acosh, libmp.mpc_acosh)
- ctx.atanh = ctx._wrap_libmp_function(libmp.mpf_atanh, libmp.mpc_atanh)
- ctx.sinpi = ctx._wrap_libmp_function(libmp.mpf_sin_pi, libmp.mpc_sin_pi)
- ctx.cospi = ctx._wrap_libmp_function(libmp.mpf_cos_pi, libmp.mpc_cos_pi)
- ctx.floor = ctx._wrap_libmp_function(libmp.mpf_floor, libmp.mpc_floor)
- ctx.ceil = ctx._wrap_libmp_function(libmp.mpf_ceil, libmp.mpc_ceil)
- ctx.nint = ctx._wrap_libmp_function(libmp.mpf_nint, libmp.mpc_nint)
- ctx.frac = ctx._wrap_libmp_function(libmp.mpf_frac, libmp.mpc_frac)
- ctx.fib = ctx.fibonacci = ctx._wrap_libmp_function(libmp.mpf_fibonacci, libmp.mpc_fibonacci)
- ctx.gamma = ctx._wrap_libmp_function(libmp.mpf_gamma, libmp.mpc_gamma)
- ctx.rgamma = ctx._wrap_libmp_function(libmp.mpf_rgamma, libmp.mpc_rgamma)
- ctx.loggamma = ctx._wrap_libmp_function(libmp.mpf_loggamma, libmp.mpc_loggamma)
- ctx.fac = ctx.factorial = ctx._wrap_libmp_function(libmp.mpf_factorial, libmp.mpc_factorial)
- ctx.digamma = ctx._wrap_libmp_function(libmp.mpf_psi0, libmp.mpc_psi0)
- ctx.harmonic = ctx._wrap_libmp_function(libmp.mpf_harmonic, libmp.mpc_harmonic)
- ctx.ei = ctx._wrap_libmp_function(libmp.mpf_ei, libmp.mpc_ei)
- ctx.e1 = ctx._wrap_libmp_function(libmp.mpf_e1, libmp.mpc_e1)
- ctx._ci = ctx._wrap_libmp_function(libmp.mpf_ci, libmp.mpc_ci)
- ctx._si = ctx._wrap_libmp_function(libmp.mpf_si, libmp.mpc_si)
- ctx.ellipk = ctx._wrap_libmp_function(libmp.mpf_ellipk, libmp.mpc_ellipk)
- ctx._ellipe = ctx._wrap_libmp_function(libmp.mpf_ellipe, libmp.mpc_ellipe)
- ctx.agm1 = ctx._wrap_libmp_function(libmp.mpf_agm1, libmp.mpc_agm1)
- ctx._erf = ctx._wrap_libmp_function(libmp.mpf_erf, None)
- ctx._erfc = ctx._wrap_libmp_function(libmp.mpf_erfc, None)
- ctx._zeta = ctx._wrap_libmp_function(libmp.mpf_zeta, libmp.mpc_zeta)
- ctx._altzeta = ctx._wrap_libmp_function(libmp.mpf_altzeta, libmp.mpc_altzeta)
- # Faster versions
- ctx.sqrt = getattr(ctx, "_sage_sqrt", ctx.sqrt)
- ctx.exp = getattr(ctx, "_sage_exp", ctx.exp)
- ctx.ln = getattr(ctx, "_sage_ln", ctx.ln)
- ctx.cos = getattr(ctx, "_sage_cos", ctx.cos)
- ctx.sin = getattr(ctx, "_sage_sin", ctx.sin)
- def to_fixed(ctx, x, prec):
- return x.to_fixed(prec)
- def hypot(ctx, x, y):
- r"""
- Computes the Euclidean norm of the vector `(x, y)`, equal
- to `\sqrt{x^2 + y^2}`. Both `x` and `y` must be real."""
- x = ctx.convert(x)
- y = ctx.convert(y)
- return ctx.make_mpf(libmp.mpf_hypot(x._mpf_, y._mpf_, *ctx._prec_rounding))
- def _gamma_upper_int(ctx, n, z):
- n = int(ctx._re(n))
- if n == 0:
- return ctx.e1(z)
- if not hasattr(z, '_mpf_'):
- raise NotImplementedError
- prec, rounding = ctx._prec_rounding
- real, imag = libmp.mpf_expint(n, z._mpf_, prec, rounding, gamma=True)
- if imag is None:
- return ctx.make_mpf(real)
- else:
- return ctx.make_mpc((real, imag))
- def _expint_int(ctx, n, z):
- n = int(n)
- if n == 1:
- return ctx.e1(z)
- if not hasattr(z, '_mpf_'):
- raise NotImplementedError
- prec, rounding = ctx._prec_rounding
- real, imag = libmp.mpf_expint(n, z._mpf_, prec, rounding)
- if imag is None:
- return ctx.make_mpf(real)
- else:
- return ctx.make_mpc((real, imag))
- def _nthroot(ctx, x, n):
- if hasattr(x, '_mpf_'):
- try:
- return ctx.make_mpf(libmp.mpf_nthroot(x._mpf_, n, *ctx._prec_rounding))
- except ComplexResult:
- if ctx.trap_complex:
- raise
- x = (x._mpf_, libmp.fzero)
- else:
- x = x._mpc_
- return ctx.make_mpc(libmp.mpc_nthroot(x, n, *ctx._prec_rounding))
- def _besselj(ctx, n, z):
- prec, rounding = ctx._prec_rounding
- if hasattr(z, '_mpf_'):
- return ctx.make_mpf(libmp.mpf_besseljn(n, z._mpf_, prec, rounding))
- elif hasattr(z, '_mpc_'):
- return ctx.make_mpc(libmp.mpc_besseljn(n, z._mpc_, prec, rounding))
- def _agm(ctx, a, b=1):
- prec, rounding = ctx._prec_rounding
- if hasattr(a, '_mpf_') and hasattr(b, '_mpf_'):
- try:
- v = libmp.mpf_agm(a._mpf_, b._mpf_, prec, rounding)
- return ctx.make_mpf(v)
- except ComplexResult:
- pass
- if hasattr(a, '_mpf_'): a = (a._mpf_, libmp.fzero)
- else: a = a._mpc_
- if hasattr(b, '_mpf_'): b = (b._mpf_, libmp.fzero)
- else: b = b._mpc_
- return ctx.make_mpc(libmp.mpc_agm(a, b, prec, rounding))
- def bernoulli(ctx, n):
- return ctx.make_mpf(libmp.mpf_bernoulli(int(n), *ctx._prec_rounding))
- def _zeta_int(ctx, n):
- return ctx.make_mpf(libmp.mpf_zeta_int(int(n), *ctx._prec_rounding))
- def atan2(ctx, y, x):
- x = ctx.convert(x)
- y = ctx.convert(y)
- return ctx.make_mpf(libmp.mpf_atan2(y._mpf_, x._mpf_, *ctx._prec_rounding))
- def psi(ctx, m, z):
- z = ctx.convert(z)
- m = int(m)
- if ctx._is_real_type(z):
- return ctx.make_mpf(libmp.mpf_psi(m, z._mpf_, *ctx._prec_rounding))
- else:
- return ctx.make_mpc(libmp.mpc_psi(m, z._mpc_, *ctx._prec_rounding))
- def cos_sin(ctx, x, **kwargs):
- if type(x) not in ctx.types:
- x = ctx.convert(x)
- prec, rounding = ctx._parse_prec(kwargs)
- if hasattr(x, '_mpf_'):
- c, s = libmp.mpf_cos_sin(x._mpf_, prec, rounding)
- return ctx.make_mpf(c), ctx.make_mpf(s)
- elif hasattr(x, '_mpc_'):
- c, s = libmp.mpc_cos_sin(x._mpc_, prec, rounding)
- return ctx.make_mpc(c), ctx.make_mpc(s)
- else:
- return ctx.cos(x, **kwargs), ctx.sin(x, **kwargs)
- def cospi_sinpi(ctx, x, **kwargs):
- if type(x) not in ctx.types:
- x = ctx.convert(x)
- prec, rounding = ctx._parse_prec(kwargs)
- if hasattr(x, '_mpf_'):
- c, s = libmp.mpf_cos_sin_pi(x._mpf_, prec, rounding)
- return ctx.make_mpf(c), ctx.make_mpf(s)
- elif hasattr(x, '_mpc_'):
- c, s = libmp.mpc_cos_sin_pi(x._mpc_, prec, rounding)
- return ctx.make_mpc(c), ctx.make_mpc(s)
- else:
- return ctx.cos(x, **kwargs), ctx.sin(x, **kwargs)
- def clone(ctx):
- """
- Create a copy of the context, with the same working precision.
- """
- a = ctx.__class__()
- a.prec = ctx.prec
- return a
- # Several helper methods
- # TODO: add more of these, make consistent, write docstrings, ...
- def _is_real_type(ctx, x):
- if hasattr(x, '_mpc_') or type(x) is complex:
- return False
- return True
- def _is_complex_type(ctx, x):
- if hasattr(x, '_mpc_') or type(x) is complex:
- return True
- return False
- def isnan(ctx, x):
- """
- Return *True* if *x* is a NaN (not-a-number), or for a complex
- number, whether either the real or complex part is NaN;
- otherwise return *False*::
- >>> from mpmath import *
- >>> isnan(3.14)
- False
- >>> isnan(nan)
- True
- >>> isnan(mpc(3.14,2.72))
- False
- >>> isnan(mpc(3.14,nan))
- True
- """
- if hasattr(x, "_mpf_"):
- return x._mpf_ == fnan
- if hasattr(x, "_mpc_"):
- return fnan in x._mpc_
- if isinstance(x, int_types) or isinstance(x, rational.mpq):
- return False
- x = ctx.convert(x)
- if hasattr(x, '_mpf_') or hasattr(x, '_mpc_'):
- return ctx.isnan(x)
- raise TypeError("isnan() needs a number as input")
- def isfinite(ctx, x):
- """
- Return *True* if *x* is a finite number, i.e. neither
- an infinity or a NaN.
- >>> from mpmath import *
- >>> isfinite(inf)
- False
- >>> isfinite(-inf)
- False
- >>> isfinite(3)
- True
- >>> isfinite(nan)
- False
- >>> isfinite(3+4j)
- True
- >>> isfinite(mpc(3,inf))
- False
- >>> isfinite(mpc(nan,3))
- False
- """
- if ctx.isinf(x) or ctx.isnan(x):
- return False
- return True
- def isnpint(ctx, x):
- """
- Determine if *x* is a nonpositive integer.
- """
- if not x:
- return True
- if hasattr(x, '_mpf_'):
- sign, man, exp, bc = x._mpf_
- return sign and exp >= 0
- if hasattr(x, '_mpc_'):
- return not x.imag and ctx.isnpint(x.real)
- if type(x) in int_types:
- return x <= 0
- if isinstance(x, ctx.mpq):
- p, q = x._mpq_
- if not p:
- return True
- return q == 1 and p <= 0
- return ctx.isnpint(ctx.convert(x))
- def __str__(ctx):
- lines = ["Mpmath settings:",
- (" mp.prec = %s" % ctx.prec).ljust(30) + "[default: 53]",
- (" mp.dps = %s" % ctx.dps).ljust(30) + "[default: 15]",
- (" mp.trap_complex = %s" % ctx.trap_complex).ljust(30) + "[default: False]",
- ]
- return "\n".join(lines)
- @property
- def _repr_digits(ctx):
- return repr_dps(ctx._prec)
- @property
- def _str_digits(ctx):
- return ctx._dps
- def extraprec(ctx, n, normalize_output=False):
- """
- The block
- with extraprec(n):
- <code>
- increases the precision n bits, executes <code>, and then
- restores the precision.
- extraprec(n)(f) returns a decorated version of the function f
- that increases the working precision by n bits before execution,
- and restores the parent precision afterwards. With
- normalize_output=True, it rounds the return value to the parent
- precision.
- """
- return PrecisionManager(ctx, lambda p: p + n, None, normalize_output)
- def extradps(ctx, n, normalize_output=False):
- """
- This function is analogous to extraprec (see documentation)
- but changes the decimal precision instead of the number of bits.
- """
- return PrecisionManager(ctx, None, lambda d: d + n, normalize_output)
- def workprec(ctx, n, normalize_output=False):
- """
- The block
- with workprec(n):
- <code>
- sets the precision to n bits, executes <code>, and then restores
- the precision.
- workprec(n)(f) returns a decorated version of the function f
- that sets the precision to n bits before execution,
- and restores the precision afterwards. With normalize_output=True,
- it rounds the return value to the parent precision.
- """
- return PrecisionManager(ctx, lambda p: n, None, normalize_output)
- def workdps(ctx, n, normalize_output=False):
- """
- This function is analogous to workprec (see documentation)
- but changes the decimal precision instead of the number of bits.
- """
- return PrecisionManager(ctx, None, lambda d: n, normalize_output)
- def autoprec(ctx, f, maxprec=None, catch=(), verbose=False):
- r"""
- Return a wrapped copy of *f* that repeatedly evaluates *f*
- with increasing precision until the result converges to the
- full precision used at the point of the call.
- This heuristically protects against rounding errors, at the cost of
- roughly a 2x slowdown compared to manually setting the optimal
- precision. This method can, however, easily be fooled if the results
- from *f* depend "discontinuously" on the precision, for instance
- if catastrophic cancellation can occur. Therefore, :func:`~mpmath.autoprec`
- should be used judiciously.
- **Examples**
- Many functions are sensitive to perturbations of the input arguments.
- If the arguments are decimal numbers, they may have to be converted
- to binary at a much higher precision. If the amount of required
- extra precision is unknown, :func:`~mpmath.autoprec` is convenient::
- >>> from mpmath import *
- >>> mp.dps = 15
- >>> mp.pretty = True
- >>> besselj(5, 125 * 10**28) # Exact input
- -8.03284785591801e-17
- >>> besselj(5, '1.25e30') # Bad
- 7.12954868316652e-16
- >>> autoprec(besselj)(5, '1.25e30') # Good
- -8.03284785591801e-17
- The following fails to converge because `\sin(\pi) = 0` whereas all
- finite-precision approximations of `\pi` give nonzero values::
- >>> autoprec(sin)(pi) # doctest: +IGNORE_EXCEPTION_DETAIL
- Traceback (most recent call last):
- ...
- NoConvergence: autoprec: prec increased to 2910 without convergence
- As the following example shows, :func:`~mpmath.autoprec` can protect against
- cancellation, but is fooled by too severe cancellation::
- >>> x = 1e-10
- >>> exp(x)-1; expm1(x); autoprec(lambda t: exp(t)-1)(x)
- 1.00000008274037e-10
- 1.00000000005e-10
- 1.00000000005e-10
- >>> x = 1e-50
- >>> exp(x)-1; expm1(x); autoprec(lambda t: exp(t)-1)(x)
- 0.0
- 1.0e-50
- 0.0
- With *catch*, an exception or list of exceptions to intercept
- may be specified. The raised exception is interpreted
- as signaling insufficient precision. This permits, for example,
- evaluating a function where a too low precision results in a
- division by zero::
- >>> f = lambda x: 1/(exp(x)-1)
- >>> f(1e-30)
- Traceback (most recent call last):
- ...
- ZeroDivisionError
- >>> autoprec(f, catch=ZeroDivisionError)(1e-30)
- 1.0e+30
- """
- def f_autoprec_wrapped(*args, **kwargs):
- prec = ctx.prec
- if maxprec is None:
- maxprec2 = ctx._default_hyper_maxprec(prec)
- else:
- maxprec2 = maxprec
- try:
- ctx.prec = prec + 10
- try:
- v1 = f(*args, **kwargs)
- except catch:
- v1 = ctx.nan
- prec2 = prec + 20
- while 1:
- ctx.prec = prec2
- try:
- v2 = f(*args, **kwargs)
- except catch:
- v2 = ctx.nan
- if v1 == v2:
- break
- err = ctx.mag(v2-v1) - ctx.mag(v2)
- if err < (-prec):
- break
- if verbose:
- print("autoprec: target=%s, prec=%s, accuracy=%s" \
- % (prec, prec2, -err))
- v1 = v2
- if prec2 >= maxprec2:
- raise ctx.NoConvergence(\
- "autoprec: prec increased to %i without convergence"\
- % prec2)
- prec2 += int(prec2*2)
- prec2 = min(prec2, maxprec2)
- finally:
- ctx.prec = prec
- return +v2
- return f_autoprec_wrapped
- def nstr(ctx, x, n=6, **kwargs):
- """
- Convert an ``mpf`` or ``mpc`` to a decimal string literal with *n*
- significant digits. The small default value for *n* is chosen to
- make this function useful for printing collections of numbers
- (lists, matrices, etc).
- If *x* is a list or tuple, :func:`~mpmath.nstr` is applied recursively
- to each element. For unrecognized classes, :func:`~mpmath.nstr`
- simply returns ``str(x)``.
- The companion function :func:`~mpmath.nprint` prints the result
- instead of returning it.
- The keyword arguments *strip_zeros*, *min_fixed*, *max_fixed*
- and *show_zero_exponent* are forwarded to :func:`~mpmath.libmp.to_str`.
- The number will be printed in fixed-point format if the position
- of the leading digit is strictly between min_fixed
- (default = min(-dps/3,-5)) and max_fixed (default = dps).
- To force fixed-point format always, set min_fixed = -inf,
- max_fixed = +inf. To force floating-point format, set
- min_fixed >= max_fixed.
- >>> from mpmath import *
- >>> nstr([+pi, ldexp(1,-500)])
- '[3.14159, 3.05494e-151]'
- >>> nprint([+pi, ldexp(1,-500)])
- [3.14159, 3.05494e-151]
- >>> nstr(mpf("5e-10"), 5)
- '5.0e-10'
- >>> nstr(mpf("5e-10"), 5, strip_zeros=False)
- '5.0000e-10'
- >>> nstr(mpf("5e-10"), 5, strip_zeros=False, min_fixed=-11)
- '0.00000000050000'
- >>> nstr(mpf(0), 5, show_zero_exponent=True)
- '0.0e+0'
- """
- if isinstance(x, list):
- return "[%s]" % (", ".join(ctx.nstr(c, n, **kwargs) for c in x))
- if isinstance(x, tuple):
- return "(%s)" % (", ".join(ctx.nstr(c, n, **kwargs) for c in x))
- if hasattr(x, '_mpf_'):
- return to_str(x._mpf_, n, **kwargs)
- if hasattr(x, '_mpc_'):
- return "(" + mpc_to_str(x._mpc_, n, **kwargs) + ")"
- if isinstance(x, basestring):
- return repr(x)
- if isinstance(x, ctx.matrix):
- return x.__nstr__(n, **kwargs)
- return str(x)
- def _convert_fallback(ctx, x, strings):
- if strings and isinstance(x, basestring):
- if 'j' in x.lower():
- x = x.lower().replace(' ', '')
- match = get_complex.match(x)
- re = match.group('re')
- if not re:
- re = 0
- im = match.group('im').rstrip('j')
- return ctx.mpc(ctx.convert(re), ctx.convert(im))
- if hasattr(x, "_mpi_"):
- a, b = x._mpi_
- if a == b:
- return ctx.make_mpf(a)
- else:
- raise ValueError("can only create mpf from zero-width interval")
- raise TypeError("cannot create mpf from " + repr(x))
- def mpmathify(ctx, *args, **kwargs):
- return ctx.convert(*args, **kwargs)
- def _parse_prec(ctx, kwargs):
- if kwargs:
- if kwargs.get('exact'):
- return 0, 'f'
- prec, rounding = ctx._prec_rounding
- if 'rounding' in kwargs:
- rounding = kwargs['rounding']
- if 'prec' in kwargs:
- prec = kwargs['prec']
- if prec == ctx.inf:
- return 0, 'f'
- else:
- prec = int(prec)
- elif 'dps' in kwargs:
- dps = kwargs['dps']
- if dps == ctx.inf:
- return 0, 'f'
- prec = dps_to_prec(dps)
- return prec, rounding
- return ctx._prec_rounding
- _exact_overflow_msg = "the exact result does not fit in memory"
- _hypsum_msg = """hypsum() failed to converge to the requested %i bits of accuracy
- using a working precision of %i bits. Try with a higher maxprec,
- maxterms, or set zeroprec."""
- def hypsum(ctx, p, q, flags, coeffs, z, accurate_small=True, **kwargs):
- if hasattr(z, "_mpf_"):
- key = p, q, flags, 'R'
- v = z._mpf_
- elif hasattr(z, "_mpc_"):
- key = p, q, flags, 'C'
- v = z._mpc_
- if key not in ctx.hyp_summators:
- ctx.hyp_summators[key] = libmp.make_hyp_summator(key)[1]
- summator = ctx.hyp_summators[key]
- prec = ctx.prec
- maxprec = kwargs.get('maxprec', ctx._default_hyper_maxprec(prec))
- extraprec = 50
- epsshift = 25
- # Jumps in magnitude occur when parameters are close to negative
- # integers. We must ensure that these terms are included in
- # the sum and added accurately
- magnitude_check = {}
- max_total_jump = 0
- for i, c in enumerate(coeffs):
- if flags[i] == 'Z':
- if i >= p and c <= 0:
- ok = False
- for ii, cc in enumerate(coeffs[:p]):
- # Note: c <= cc or c < cc, depending on convention
- if flags[ii] == 'Z' and cc <= 0 and c <= cc:
- ok = True
- if not ok:
- raise ZeroDivisionError("pole in hypergeometric series")
- continue
- n, d = ctx.nint_distance(c)
- n = -int(n)
- d = -d
- if i >= p and n >= 0 and d > 4:
- if n in magnitude_check:
- magnitude_check[n] += d
- else:
- magnitude_check[n] = d
- extraprec = max(extraprec, d - prec + 60)
- max_total_jump += abs(d)
- while 1:
- if extraprec > maxprec:
- raise ValueError(ctx._hypsum_msg % (prec, prec+extraprec))
- wp = prec + extraprec
- if magnitude_check:
- mag_dict = dict((n,None) for n in magnitude_check)
- else:
- mag_dict = {}
- zv, have_complex, magnitude = summator(coeffs, v, prec, wp, \
- epsshift, mag_dict, **kwargs)
- cancel = -magnitude
- jumps_resolved = True
- if extraprec < max_total_jump:
- for n in mag_dict.values():
- if (n is None) or (n < prec):
- jumps_resolved = False
- break
- accurate = (cancel < extraprec-25-5 or not accurate_small)
- if jumps_resolved:
- if accurate:
- break
- # zero?
- zeroprec = kwargs.get('zeroprec')
- if zeroprec is not None:
- if cancel > zeroprec:
- if have_complex:
- return ctx.mpc(0)
- else:
- return ctx.zero
- # Some near-singularities were not included, so increase
- # precision and repeat until they are
- extraprec *= 2
- # Possible workaround for bad roundoff in fixed-point arithmetic
- epsshift += 5
- extraprec += 5
- if type(zv) is tuple:
- if have_complex:
- return ctx.make_mpc(zv)
- else:
- return ctx.make_mpf(zv)
- else:
- return zv
- def ldexp(ctx, x, n):
- r"""
- Computes `x 2^n` efficiently. No rounding is performed.
- The argument `x` must be a real floating-point number (or
- possible to convert into one) and `n` must be a Python ``int``.
- >>> from mpmath import *
- >>> mp.dps = 15; mp.pretty = False
- >>> ldexp(1, 10)
- mpf('1024.0')
- >>> ldexp(1, -3)
- mpf('0.125')
- """
- x = ctx.convert(x)
- return ctx.make_mpf(libmp.mpf_shift(x._mpf_, n))
- def frexp(ctx, x):
- r"""
- Given a real number `x`, returns `(y, n)` with `y \in [0.5, 1)`,
- `n` a Python integer, and such that `x = y 2^n`. No rounding is
- performed.
- >>> from mpmath import *
- >>> mp.dps = 15; mp.pretty = False
- >>> frexp(7.5)
- (mpf('0.9375'), 3)
- """
- x = ctx.convert(x)
- y, n = libmp.mpf_frexp(x._mpf_)
- return ctx.make_mpf(y), n
- def fneg(ctx, x, **kwargs):
- """
- Negates the number *x*, giving a floating-point result, optionally
- using a custom precision and rounding mode.
- See the documentation of :func:`~mpmath.fadd` for a detailed description
- of how to specify precision and rounding.
- **Examples**
- An mpmath number is returned::
- >>> from mpmath import *
- >>> mp.dps = 15; mp.pretty = False
- >>> fneg(2.5)
- mpf('-2.5')
- >>> fneg(-5+2j)
- mpc(real='5.0', imag='-2.0')
- Precise control over rounding is possible::
- >>> x = fadd(2, 1e-100, exact=True)
- >>> fneg(x)
- mpf('-2.0')
- >>> fneg(x, rounding='f')
- mpf('-2.0000000000000004')
- Negating with and without roundoff::
- >>> n = 200000000000000000000001
- >>> print(int(-mpf(n)))
- -200000000000000016777216
- >>> print(int(fneg(n)))
- -200000000000000016777216
- >>> print(int(fneg(n, prec=log(n,2)+1)))
- -200000000000000000000001
- >>> print(int(fneg(n, dps=log(n,10)+1)))
- -200000000000000000000001
- >>> print(int(fneg(n, prec=inf)))
- -200000000000000000000001
- >>> print(int(fneg(n, dps=inf)))
- -200000000000000000000001
- >>> print(int(fneg(n, exact=True)))
- -200000000000000000000001
- """
- prec, rounding = ctx._parse_prec(kwargs)
- x = ctx.convert(x)
- if hasattr(x, '_mpf_'):
- return ctx.make_mpf(mpf_neg(x._mpf_, prec, rounding))
- if hasattr(x, '_mpc_'):
- return ctx.make_mpc(mpc_neg(x._mpc_, prec, rounding))
- raise ValueError("Arguments need to be mpf or mpc compatible numbers")
- def fadd(ctx, x, y, **kwargs):
- """
- Adds the numbers *x* and *y*, giving a floating-point result,
- optionally using a custom precision and rounding mode.
- The default precision is the working precision of the context.
- You can specify a custom precision in bits by passing the *prec* keyword
- argument, or by providing an equivalent decimal precision with the *dps*
- keyword argument. If the precision is set to ``+inf``, or if the flag
- *exact=True* is passed, an exact addition with no rounding is performed.
- When the precision is finite, the optional *rounding* keyword argument
- specifies the direction of rounding. Valid options are ``'n'`` for
- nearest (default), ``'f'`` for floor, ``'c'`` for ceiling, ``'d'``
- for down, ``'u'`` for up.
- **Examples**
- Using :func:`~mpmath.fadd` with precision and rounding control::
- >>> from mpmath import *
- >>> mp.dps = 15; mp.pretty = False
- >>> fadd(2, 1e-20)
- mpf('2.0')
- >>> fadd(2, 1e-20, rounding='u')
- mpf('2.0000000000000004')
- >>> nprint(fadd(2, 1e-20, prec=100), 25)
- 2.00000000000000000001
- >>> nprint(fadd(2, 1e-20, dps=15), 25)
- 2.0
- >>> nprint(fadd(2, 1e-20, dps=25), 25)
- 2.00000000000000000001
- >>> nprint(fadd(2, 1e-20, exact=True), 25)
- 2.00000000000000000001
- Exact addition avoids cancellation errors, enforcing familiar laws
- of numbers such as `x+y-x = y`, which don't hold in floating-point
- arithmetic with finite precision::
- >>> x, y = mpf(2), mpf('1e-1000')
- >>> print(x + y - x)
- 0.0
- >>> print(fadd(x, y, prec=inf) - x)
- 1.0e-1000
- >>> print(fadd(x, y, exact=True) - x)
- 1.0e-1000
- Exact addition can be inefficient and may be impossible to perform
- with large magnitude differences::
- >>> fadd(1, '1e-100000000000000000000', prec=inf)
- Traceback (most recent call last):
- ...
- OverflowError: the exact result does not fit in memory
- """
- prec, rounding = ctx._parse_prec(kwargs)
- x = ctx.convert(x)
- y = ctx.convert(y)
- try:
- if hasattr(x, '_mpf_'):
- if hasattr(y, '_mpf_'):
- return ctx.make_mpf(mpf_add(x._mpf_, y._mpf_, prec, rounding))
- if hasattr(y, '_mpc_'):
- return ctx.make_mpc(mpc_add_mpf(y._mpc_, x._mpf_, prec, rounding))
- if hasattr(x, '_mpc_'):
- if hasattr(y, '_mpf_'):
- return ctx.make_mpc(mpc_add_mpf(x._mpc_, y._mpf_, prec, rounding))
- if hasattr(y, '_mpc_'):
- return ctx.make_mpc(mpc_add(x._mpc_, y._mpc_, prec, rounding))
- except (ValueError, OverflowError):
- raise OverflowError(ctx._exact_overflow_msg)
- raise ValueError("Arguments need to be mpf or mpc compatible numbers")
- def fsub(ctx, x, y, **kwargs):
- """
- Subtracts the numbers *x* and *y*, giving a floating-point result,
- optionally using a custom precision and rounding mode.
- See the documentation of :func:`~mpmath.fadd` for a detailed description
- of how to specify precision and rounding.
- **Examples**
- Using :func:`~mpmath.fsub` with precision and rounding control::
- >>> from mpmath import *
- >>> mp.dps = 15; mp.pretty = False
- >>> fsub(2, 1e-20)
- mpf('2.0')
- >>> fsub(2, 1e-20, rounding='d')
- mpf('1.9999999999999998')
- >>> nprint(fsub(2, 1e-20, prec=100), 25)
- 1.99999999999999999999
- >>> nprint(fsub(2, 1e-20, dps=15), 25)
- 2.0
- >>> nprint(fsub(2, 1e-20, dps=25), 25)
- 1.99999999999999999999
- >>> nprint(fsub(2, 1e-20, exact=True), 25)
- 1.99999999999999999999
- Exact subtraction avoids cancellation errors, enforcing familiar laws
- of numbers such as `x-y+y = x`, which don't hold in floating-point
- arithmetic with finite precision::
- >>> x, y = mpf(2), mpf('1e1000')
- >>> print(x - y + y)
- 0.0
- >>> print(fsub(x, y, prec=inf) + y)
- 2.0
- >>> print(fsub(x, y, exact=True) + y)
- 2.0
- Exact addition can be inefficient and may be impossible to perform
- with large magnitude differences::
- >>> fsub(1, '1e-100000000000000000000', prec=inf)
- Traceback (most recent call last):
- ...
- OverflowError: the exact result does not fit in memory
- """
- prec, rounding = ctx._parse_prec(kwargs)
- x = ctx.convert(x)
- y = ctx.convert(y)
- try:
- if hasattr(x, '_mpf_'):
- if hasattr(y, '_mpf_'):
- return ctx.make_mpf(mpf_sub(x._mpf_, y._mpf_, prec, rounding))
- if hasattr(y, '_mpc_'):
- return ctx.make_mpc(mpc_sub((x._mpf_, fzero), y._mpc_, prec, rounding))
- if hasattr(x, '_mpc_'):
- if hasattr(y, '_mpf_'):
- return ctx.make_mpc(mpc_sub_mpf(x._mpc_, y._mpf_, prec, rounding))
- if hasattr(y, '_mpc_'):
- return ctx.make_mpc(mpc_sub(x._mpc_, y._mpc_, prec, rounding))
- except (ValueError, OverflowError):
- raise OverflowError(ctx._exact_overflow_msg)
- raise ValueError("Arguments need to be mpf or mpc compatible numbers")
- def fmul(ctx, x, y, **kwargs):
- """
- Multiplies the numbers *x* and *y*, giving a floating-point result,
- optionally using a custom precision and rounding mode.
- See the documentation of :func:`~mpmath.fadd` for a detailed description
- of how to specify precision and rounding.
- **Examples**
- The result is an mpmath number::
- >>> from mpmath import *
- >>> mp.dps = 15; mp.pretty = False
- >>> fmul(2, 5.0)
- mpf('10.0')
- >>> fmul(0.5j, 0.5)
- mpc(real='0.0', imag='0.25')
- Avoiding roundoff::
- >>> x, y = 10**10+1, 10**15+1
- >>> print(x*y)
- 10000000001000010000000001
- >>> print(mpf(x) * mpf(y))
- 1.0000000001e+25
- >>> print(int(mpf(x) * mpf(y)))
- 10000000001000011026399232
- >>> print(int(fmul(x, y)))
- 10000000001000011026399232
- >>> print(int(fmul(x, y, dps=25)))
- 10000000001000010000000001
- >>> print(int(fmul(x, y, exact=True)))
- 10000000001000010000000001
- Exact multiplication with complex numbers can be inefficient and may
- be impossible to perform with large magnitude differences between
- real and imaginary parts::
- >>> x = 1+2j
- >>> y = mpc(2, '1e-100000000000000000000')
- >>> fmul(x, y)
- mpc(real='2.0', imag='4.0')
- >>> fmul(x, y, rounding='u')
- mpc(real='2.0', imag='4.0000000000000009')
- >>> fmul(x, y, exact=True)
- Traceback (most recent call last):
- ...
- OverflowError: the exact result does not fit in memory
- """
- prec, rounding = ctx._parse_prec(kwargs)
- x = ctx.convert(x)
- y = ctx.convert(y)
- try:
- if hasattr(x, '_mpf_'):
- if hasattr(y, '_mpf_'):
- return ctx.make_mpf(mpf_mul(x._mpf_, y._mpf_, prec, rounding))
- if hasattr(y, '_mpc_'):
- return ctx.make_mpc(mpc_mul_mpf(y._mpc_, x._mpf_, prec, rounding))
- if hasattr(x, '_mpc_'):
- if hasattr(y, '_mpf_'):
- return ctx.make_mpc(mpc_mul_mpf(x._mpc_, y._mpf_, prec, rounding))
- if hasattr(y, '_mpc_'):
- return ctx.make_mpc(mpc_mul(x._mpc_, y._mpc_, prec, rounding))
- except (ValueError, OverflowError):
- raise OverflowError(ctx._exact_overflow_msg)
- raise ValueError("Arguments need to be mpf or mpc compatible numbers")
- def fdiv(ctx, x, y, **kwargs):
- """
- Divides the numbers *x* and *y*, giving a floating-point result,
- optionally using a custom precision and rounding mode.
- See the documentation of :func:`~mpmath.fadd` for a detailed description
- of how to specify precision and rounding.
- **Examples**
- The result is an mpmath number::
- >>> from mpmath import *
- >>> mp.dps = 15; mp.pretty = False
- >>> fdiv(3, 2)
- mpf('1.5')
- >>> fdiv(2, 3)
- mpf('0.66666666666666663')
- >>> fdiv(2+4j, 0.5)
- mpc(real='4.0', imag='8.0')
- The rounding direction and precision can be controlled::
- >>> fdiv(2, 3, dps=3) # Should be accurate to at least 3 digits
- mpf('0.6666259765625')
- >>> fdiv(2, 3, rounding='d')
- mpf('0.66666666666666663')
- >>> fdiv(2, 3, prec=60)
- mpf('0.66666666666666667')
- >>> fdiv(2, 3, rounding='u')
- mpf('0.66666666666666674')
- Checking the error of a division by performing it at higher precision::
- >>> fdiv(2, 3) - fdiv(2, 3, prec=100)
- mpf('-3.7007434154172148e-17')
- Unlike :func:`~mpmath.fadd`, :func:`~mpmath.fmul`, etc., exact division is not
- allowed since the quotient of two floating-point numbers generally
- does not have an exact floating-point representation. (In the
- future this might be changed to allow the case where the division
- is actually exact.)
- >>> fdiv(2, 3, exact=True)
- Traceback (most recent call last):
- ...
- ValueError: division is not an exact operation
- """
- prec, rounding = ctx._parse_prec(kwargs)
- if not prec:
- raise ValueError("division is not an exact operation")
- x = ctx.convert(x)
- y = ctx.convert(y)
- if hasattr(x, '_mpf_'):
- if hasattr(y, '_mpf_'):
- return ctx.make_mpf(mpf_div(x._mpf_, y._mpf_, prec, rounding))
- if hasattr(y, '_mpc_'):
- return ctx.make_mpc(mpc_div((x._mpf_, fzero), y._mpc_, prec, rounding))
- if hasattr(x, '_mpc_'):
- if hasattr(y, '_mpf_'):
- return ctx.make_mpc(mpc_div_mpf(x._mpc_, y._mpf_, prec, rounding))
- if hasattr(y, '_mpc_'):
- return ctx.make_mpc(mpc_div(x._mpc_, y._mpc_, prec, rounding))
- raise ValueError("Arguments need to be mpf or mpc compatible numbers")
- def nint_distance(ctx, x):
- r"""
- Return `(n,d)` where `n` is the nearest integer to `x` and `d` is
- an estimate of `\log_2(|x-n|)`. If `d < 0`, `-d` gives the precision
- (measured in bits) lost to cancellation when computing `x-n`.
- >>> from mpmath import *
- >>> n, d = nint_distance(5)
- >>> print(n); print(d)
- 5
- -inf
- >>> n, d = nint_distance(mpf(5))
- >>> print(n); print(d)
- 5
- -inf
- >>> n, d = nint_distance(mpf(5.00000001))
- >>> print(n); print(d)
- 5
- -26
- >>> n, d = nint_distance(mpf(4.99999999))
- >>> print(n); print(d)
- 5
- -26
- >>> n, d = nint_distance(mpc(5,10))
- >>> print(n); print(d)
- 5
- 4
- >>> n, d = nint_distance(mpc(5,0.000001))
- >>> print(n); print(d)
- 5
- -19
- """
- typx = type(x)
- if typx in int_types:
- return int(x), ctx.ninf
- elif typx is rational.mpq:
- p, q = x._mpq_
- n, r = divmod(p, q)
- if 2*r >= q:
- n += 1
- elif not r:
- return n, ctx.ninf
- # log(p/q-n) = log((p-nq)/q) = log(p-nq) - log(q)
- d = bitcount(abs(p-n*q)) - bitcount(q)
- return n, d
- if hasattr(x, "_mpf_"):
- re = x._mpf_
- im_dist = ctx.ninf
- elif hasattr(x, "_mpc_"):
- re, im = x._mpc_
- isign, iman, iexp, ibc = im
- if iman:
- im_dist = iexp + ibc
- elif im == fzero:
- im_dist = ctx.ninf
- else:
- raise ValueError("requires a finite number")
- else:
- x = ctx.convert(x)
- if hasattr(x, "_mpf_") or hasattr(x, "_mpc_"):
- return ctx.nint_distance(x)
- else:
- raise TypeError("requires an mpf/mpc")
- sign, man, exp, bc = re
- mag = exp+bc
- # |x| < 0.5
- if mag < 0:
- n = 0
- re_dist = mag
- elif man:
- # exact integer
- if exp >= 0:
- n = man << exp
- re_dist = ctx.ninf
- # exact half-integer
- elif exp == -1:
- n = (man>>1)+1
- re_dist = 0
- else:
- d = (-exp-1)
- t = man >> d
- if t & 1:
- t += 1
- man = (t<<d) - man
- else:
- man -= (t<<d)
- n = t>>1 # int(t)>>1
- re_dist = exp+bitcount(man)
- if sign:
- n = -n
- elif re == fzero:
- re_dist = ctx.ninf
- n = 0
- else:
- raise ValueError("requires a finite number")
- return n, max(re_dist, im_dist)
- def fprod(ctx, factors):
- r"""
- Calculates a product containing a finite number of factors (for
- infinite products, see :func:`~mpmath.nprod`). The factors will be
- converted to mpmath numbers.
- >>> from mpmath import *
- >>> mp.dps = 15; mp.pretty = False
- >>> fprod([1, 2, 0.5, 7])
- mpf('7.0')
- """
- orig = ctx.prec
- try:
- v = ctx.one
- for p in factors:
- v *= p
- finally:
- ctx.prec = orig
- return +v
- def rand(ctx):
- """
- Returns an ``mpf`` with value chosen randomly from `[0, 1)`.
- The number of randomly generated bits in the mantissa is equal
- to the working precision.
- """
- return ctx.make_mpf(mpf_rand(ctx._prec))
- def fraction(ctx, p, q):
- """
- Given Python integers `(p, q)`, returns a lazy ``mpf`` representing
- the fraction `p/q`. The value is updated with the precision.
- >>> from mpmath import *
- >>> mp.dps = 15
- >>> a = fraction(1,100)
- >>> b = mpf(1)/100
- >>> print(a); print(b)
- 0.01
- 0.01
- >>> mp.dps = 30
- >>> print(a); print(b) # a will be accurate
- 0.01
- 0.0100000000000000002081668171172
- >>> mp.dps = 15
- """
- return ctx.constant(lambda prec, rnd: from_rational(p, q, prec, rnd),
- '%s/%s' % (p, q))
- def absmin(ctx, x):
- return abs(ctx.convert(x))
- def absmax(ctx, x):
- return abs(ctx.convert(x))
- def _as_points(ctx, x):
- # XXX: remove this?
- if hasattr(x, '_mpi_'):
- a, b = x._mpi_
- return [ctx.make_mpf(a), ctx.make_mpf(b)]
- return x
- '''
- def _zetasum(ctx, s, a, b):
- """
- Computes sum of k^(-s) for k = a, a+1, ..., b with a, b both small
- integers.
- """
- a = int(a)
- b = int(b)
- s = ctx.convert(s)
- prec, rounding = ctx._prec_rounding
- if hasattr(s, '_mpf_'):
- v = ctx.make_mpf(libmp.mpf_zetasum(s._mpf_, a, b, prec))
- elif hasattr(s, '_mpc_'):
- v = ctx.make_mpc(libmp.mpc_zetasum(s._mpc_, a, b, prec))
- return v
- '''
- def _zetasum_fast(ctx, s, a, n, derivatives=[0], reflect=False):
- if not (ctx.isint(a) and hasattr(s, "_mpc_")):
- raise NotImplementedError
- a = int(a)
- prec = ctx._prec
- xs, ys = libmp.mpc_zetasum(s._mpc_, a, n, derivatives, reflect, prec)
- xs = [ctx.make_mpc(x) for x in xs]
- ys = [ctx.make_mpc(y) for y in ys]
- return xs, ys
- class PrecisionManager:
- def __init__(self, ctx, precfun, dpsfun, normalize_output=False):
- self.ctx = ctx
- self.precfun = precfun
- self.dpsfun = dpsfun
- self.normalize_output = normalize_output
- def __call__(self, f):
- @functools.wraps(f)
- def g(*args, **kwargs):
- orig = self.ctx.prec
- try:
- if self.precfun:
- self.ctx.prec = self.precfun(self.ctx.prec)
- else:
- self.ctx.dps = self.dpsfun(self.ctx.dps)
- if self.normalize_output:
- v = f(*args, **kwargs)
- if type(v) is tuple:
- return tuple([+a for a in v])
- return +v
- else:
- return f(*args, **kwargs)
- finally:
- self.ctx.prec = orig
- return g
- def __enter__(self):
- self.origp = self.ctx.prec
- if self.precfun:
- self.ctx.prec = self.precfun(self.ctx.prec)
- else:
- self.ctx.dps = self.dpsfun(self.ctx.dps)
- def __exit__(self, exc_type, exc_val, exc_tb):
- self.ctx.prec = self.origp
- return False
- if __name__ == '__main__':
- import doctest
- doctest.testmod()
|