123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493 |
- from .functions import defun, defun_wrapped
- def _hermite_param(ctx, n, z, parabolic_cylinder):
- """
- Combined calculation of the Hermite polynomial H_n(z) (and its
- generalization to complex n) and the parabolic cylinder
- function D.
- """
- n, ntyp = ctx._convert_param(n)
- z = ctx.convert(z)
- q = -ctx.mpq_1_2
- # For re(z) > 0, 2F0 -- http://functions.wolfram.com/
- # HypergeometricFunctions/HermiteHGeneral/06/02/0009/
- # Otherwise, there is a reflection formula
- # 2F0 + http://functions.wolfram.com/HypergeometricFunctions/
- # HermiteHGeneral/16/01/01/0006/
- #
- # TODO:
- # An alternative would be to use
- # http://functions.wolfram.com/HypergeometricFunctions/
- # HermiteHGeneral/06/02/0006/
- #
- # Also, the 1F1 expansion
- # http://functions.wolfram.com/HypergeometricFunctions/
- # HermiteHGeneral/26/01/02/0001/
- # should probably be used for tiny z
- if not z:
- T1 = [2, ctx.pi], [n, 0.5], [], [q*(n-1)], [], [], 0
- if parabolic_cylinder:
- T1[1][0] += q*n
- return T1,
- can_use_2f0 = ctx.isnpint(-n) or ctx.re(z) > 0 or \
- (ctx.re(z) == 0 and ctx.im(z) > 0)
- expprec = ctx.prec*4 + 20
- if parabolic_cylinder:
- u = ctx.fmul(ctx.fmul(z,z,prec=expprec), -0.25, exact=True)
- w = ctx.fmul(z, ctx.sqrt(0.5,prec=expprec), prec=expprec)
- else:
- w = z
- w2 = ctx.fmul(w, w, prec=expprec)
- rw2 = ctx.fdiv(1, w2, prec=expprec)
- nrw2 = ctx.fneg(rw2, exact=True)
- nw = ctx.fneg(w, exact=True)
- if can_use_2f0:
- T1 = [2, w], [n, n], [], [], [q*n, q*(n-1)], [], nrw2
- terms = [T1]
- else:
- T1 = [2, nw], [n, n], [], [], [q*n, q*(n-1)], [], nrw2
- T2 = [2, ctx.pi, nw], [n+2, 0.5, 1], [], [q*n], [q*(n-1)], [1-q], w2
- terms = [T1,T2]
- # Multiply by prefactor for D_n
- if parabolic_cylinder:
- expu = ctx.exp(u)
- for i in range(len(terms)):
- terms[i][1][0] += q*n
- terms[i][0].append(expu)
- terms[i][1].append(1)
- return tuple(terms)
- @defun
- def hermite(ctx, n, z, **kwargs):
- return ctx.hypercomb(lambda: _hermite_param(ctx, n, z, 0), [], **kwargs)
- @defun
- def pcfd(ctx, n, z, **kwargs):
- r"""
- Gives the parabolic cylinder function in Whittaker's notation
- `D_n(z) = U(-n-1/2, z)` (see :func:`~mpmath.pcfu`).
- It solves the differential equation
- .. math ::
- y'' + \left(n + \frac{1}{2} - \frac{1}{4} z^2\right) y = 0.
- and can be represented in terms of Hermite polynomials
- (see :func:`~mpmath.hermite`) as
- .. math ::
- D_n(z) = 2^{-n/2} e^{-z^2/4} H_n\left(\frac{z}{\sqrt{2}}\right).
- **Plots**
- .. literalinclude :: /plots/pcfd.py
- .. image :: /plots/pcfd.png
- **Examples**
- >>> from mpmath import *
- >>> mp.dps = 25; mp.pretty = True
- >>> pcfd(0,0); pcfd(1,0); pcfd(2,0); pcfd(3,0)
- 1.0
- 0.0
- -1.0
- 0.0
- >>> pcfd(4,0); pcfd(-3,0)
- 3.0
- 0.6266570686577501256039413
- >>> pcfd('1/2', 2+3j)
- (-5.363331161232920734849056 - 3.858877821790010714163487j)
- >>> pcfd(2, -10)
- 1.374906442631438038871515e-9
- Verifying the differential equation::
- >>> n = mpf(2.5)
- >>> y = lambda z: pcfd(n,z)
- >>> z = 1.75
- >>> chop(diff(y,z,2) + (n+0.5-0.25*z**2)*y(z))
- 0.0
- Rational Taylor series expansion when `n` is an integer::
- >>> taylor(lambda z: pcfd(5,z), 0, 7)
- [0.0, 15.0, 0.0, -13.75, 0.0, 3.96875, 0.0, -0.6015625]
- """
- return ctx.hypercomb(lambda: _hermite_param(ctx, n, z, 1), [], **kwargs)
- @defun
- def pcfu(ctx, a, z, **kwargs):
- r"""
- Gives the parabolic cylinder function `U(a,z)`, which may be
- defined for `\Re(z) > 0` in terms of the confluent
- U-function (see :func:`~mpmath.hyperu`) by
- .. math ::
- U(a,z) = 2^{-\frac{1}{4}-\frac{a}{2}} e^{-\frac{1}{4} z^2}
- U\left(\frac{a}{2}+\frac{1}{4},
- \frac{1}{2}, \frac{1}{2}z^2\right)
- or, for arbitrary `z`,
- .. math ::
- e^{-\frac{1}{4}z^2} U(a,z) =
- U(a,0) \,_1F_1\left(-\tfrac{a}{2}+\tfrac{1}{4};
- \tfrac{1}{2}; -\tfrac{1}{2}z^2\right) +
- U'(a,0) z \,_1F_1\left(-\tfrac{a}{2}+\tfrac{3}{4};
- \tfrac{3}{2}; -\tfrac{1}{2}z^2\right).
- **Examples**
- Connection to other functions::
- >>> from mpmath import *
- >>> mp.dps = 25; mp.pretty = True
- >>> z = mpf(3)
- >>> pcfu(0.5,z)
- 0.03210358129311151450551963
- >>> sqrt(pi/2)*exp(z**2/4)*erfc(z/sqrt(2))
- 0.03210358129311151450551963
- >>> pcfu(0.5,-z)
- 23.75012332835297233711255
- >>> sqrt(pi/2)*exp(z**2/4)*erfc(-z/sqrt(2))
- 23.75012332835297233711255
- >>> pcfu(0.5,-z)
- 23.75012332835297233711255
- >>> sqrt(pi/2)*exp(z**2/4)*erfc(-z/sqrt(2))
- 23.75012332835297233711255
- """
- n, _ = ctx._convert_param(a)
- return ctx.pcfd(-n-ctx.mpq_1_2, z)
- @defun
- def pcfv(ctx, a, z, **kwargs):
- r"""
- Gives the parabolic cylinder function `V(a,z)`, which can be
- represented in terms of :func:`~mpmath.pcfu` as
- .. math ::
- V(a,z) = \frac{\Gamma(a+\tfrac{1}{2}) (U(a,-z)-\sin(\pi a) U(a,z)}{\pi}.
- **Examples**
- Wronskian relation between `U` and `V`::
- >>> from mpmath import *
- >>> mp.dps = 25; mp.pretty = True
- >>> a, z = 2, 3
- >>> pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z)
- 0.7978845608028653558798921
- >>> sqrt(2/pi)
- 0.7978845608028653558798921
- >>> a, z = 2.5, 3
- >>> pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z)
- 0.7978845608028653558798921
- >>> a, z = 0.25, -1
- >>> pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z)
- 0.7978845608028653558798921
- >>> a, z = 2+1j, 2+3j
- >>> chop(pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z))
- 0.7978845608028653558798921
- """
- n, ntype = ctx._convert_param(a)
- z = ctx.convert(z)
- q = ctx.mpq_1_2
- r = ctx.mpq_1_4
- if ntype == 'Q' and ctx.isint(n*2):
- # Faster for half-integers
- def h():
- jz = ctx.fmul(z, -1j, exact=True)
- T1terms = _hermite_param(ctx, -n-q, z, 1)
- T2terms = _hermite_param(ctx, n-q, jz, 1)
- for T in T1terms:
- T[0].append(1j)
- T[1].append(1)
- T[3].append(q-n)
- u = ctx.expjpi((q*n-r)) * ctx.sqrt(2/ctx.pi)
- for T in T2terms:
- T[0].append(u)
- T[1].append(1)
- return T1terms + T2terms
- v = ctx.hypercomb(h, [], **kwargs)
- if ctx._is_real_type(n) and ctx._is_real_type(z):
- v = ctx._re(v)
- return v
- else:
- def h(n):
- w = ctx.square_exp_arg(z, -0.25)
- u = ctx.square_exp_arg(z, 0.5)
- e = ctx.exp(w)
- l = [ctx.pi, q, ctx.exp(w)]
- Y1 = l, [-q, n*q+r, 1], [r-q*n], [], [q*n+r], [q], u
- Y2 = l + [z], [-q, n*q-r, 1, 1], [1-r-q*n], [], [q*n+1-r], [1+q], u
- c, s = ctx.cospi_sinpi(r+q*n)
- Y1[0].append(s)
- Y2[0].append(c)
- for Y in (Y1, Y2):
- Y[1].append(1)
- Y[3].append(q-n)
- return Y1, Y2
- return ctx.hypercomb(h, [n], **kwargs)
- @defun
- def pcfw(ctx, a, z, **kwargs):
- r"""
- Gives the parabolic cylinder function `W(a,z)` defined in (DLMF 12.14).
- **Examples**
- Value at the origin::
- >>> from mpmath import *
- >>> mp.dps = 25; mp.pretty = True
- >>> a = mpf(0.25)
- >>> pcfw(a,0)
- 0.9722833245718180765617104
- >>> power(2,-0.75)*sqrt(abs(gamma(0.25+0.5j*a)/gamma(0.75+0.5j*a)))
- 0.9722833245718180765617104
- >>> diff(pcfw,(a,0),(0,1))
- -0.5142533944210078966003624
- >>> -power(2,-0.25)*sqrt(abs(gamma(0.75+0.5j*a)/gamma(0.25+0.5j*a)))
- -0.5142533944210078966003624
- """
- n, _ = ctx._convert_param(a)
- z = ctx.convert(z)
- def terms():
- phi2 = ctx.arg(ctx.gamma(0.5 + ctx.j*n))
- phi2 = (ctx.loggamma(0.5+ctx.j*n) - ctx.loggamma(0.5-ctx.j*n))/2j
- rho = ctx.pi/8 + 0.5*phi2
- # XXX: cancellation computing k
- k = ctx.sqrt(1 + ctx.exp(2*ctx.pi*n)) - ctx.exp(ctx.pi*n)
- C = ctx.sqrt(k/2) * ctx.exp(0.25*ctx.pi*n)
- yield C * ctx.expj(rho) * ctx.pcfu(ctx.j*n, z*ctx.expjpi(-0.25))
- yield C * ctx.expj(-rho) * ctx.pcfu(-ctx.j*n, z*ctx.expjpi(0.25))
- v = ctx.sum_accurately(terms)
- if ctx._is_real_type(n) and ctx._is_real_type(z):
- v = ctx._re(v)
- return v
- """
- Even/odd PCFs. Useful?
- @defun
- def pcfy1(ctx, a, z, **kwargs):
- a, _ = ctx._convert_param(n)
- z = ctx.convert(z)
- def h():
- w = ctx.square_exp_arg(z)
- w1 = ctx.fmul(w, -0.25, exact=True)
- w2 = ctx.fmul(w, 0.5, exact=True)
- e = ctx.exp(w1)
- return [e], [1], [], [], [ctx.mpq_1_2*a+ctx.mpq_1_4], [ctx.mpq_1_2], w2
- return ctx.hypercomb(h, [], **kwargs)
- @defun
- def pcfy2(ctx, a, z, **kwargs):
- a, _ = ctx._convert_param(n)
- z = ctx.convert(z)
- def h():
- w = ctx.square_exp_arg(z)
- w1 = ctx.fmul(w, -0.25, exact=True)
- w2 = ctx.fmul(w, 0.5, exact=True)
- e = ctx.exp(w1)
- return [e, z], [1, 1], [], [], [ctx.mpq_1_2*a+ctx.mpq_3_4], \
- [ctx.mpq_3_2], w2
- return ctx.hypercomb(h, [], **kwargs)
- """
- @defun_wrapped
- def gegenbauer(ctx, n, a, z, **kwargs):
- # Special cases: a+0.5, a*2 poles
- if ctx.isnpint(a):
- return 0*(z+n)
- if ctx.isnpint(a+0.5):
- # TODO: something else is required here
- # E.g.: gegenbauer(-2, -0.5, 3) == -12
- if ctx.isnpint(n+1):
- raise NotImplementedError("Gegenbauer function with two limits")
- def h(a):
- a2 = 2*a
- T = [], [], [n+a2], [n+1, a2], [-n, n+a2], [a+0.5], 0.5*(1-z)
- return [T]
- return ctx.hypercomb(h, [a], **kwargs)
- def h(n):
- a2 = 2*a
- T = [], [], [n+a2], [n+1, a2], [-n, n+a2], [a+0.5], 0.5*(1-z)
- return [T]
- return ctx.hypercomb(h, [n], **kwargs)
- @defun_wrapped
- def jacobi(ctx, n, a, b, x, **kwargs):
- if not ctx.isnpint(a):
- def h(n):
- return (([], [], [a+n+1], [n+1, a+1], [-n, a+b+n+1], [a+1], (1-x)*0.5),)
- return ctx.hypercomb(h, [n], **kwargs)
- if not ctx.isint(b):
- def h(n, a):
- return (([], [], [-b], [n+1, -b-n], [-n, a+b+n+1], [b+1], (x+1)*0.5),)
- return ctx.hypercomb(h, [n, a], **kwargs)
- # XXX: determine appropriate limit
- return ctx.binomial(n+a,n) * ctx.hyp2f1(-n,1+n+a+b,a+1,(1-x)/2, **kwargs)
- @defun_wrapped
- def laguerre(ctx, n, a, z, **kwargs):
- # XXX: limits, poles
- #if ctx.isnpint(n):
- # return 0*(a+z)
- def h(a):
- return (([], [], [a+n+1], [a+1, n+1], [-n], [a+1], z),)
- return ctx.hypercomb(h, [a], **kwargs)
- @defun_wrapped
- def legendre(ctx, n, x, **kwargs):
- if ctx.isint(n):
- n = int(n)
- # Accuracy near zeros
- if (n + (n < 0)) & 1:
- if not x:
- return x
- mag = ctx.mag(x)
- if mag < -2*ctx.prec-10:
- return x
- if mag < -5:
- ctx.prec += -mag
- return ctx.hyp2f1(-n,n+1,1,(1-x)/2, **kwargs)
- @defun
- def legenp(ctx, n, m, z, type=2, **kwargs):
- # Legendre function, 1st kind
- n = ctx.convert(n)
- m = ctx.convert(m)
- # Faster
- if not m:
- return ctx.legendre(n, z, **kwargs)
- # TODO: correct evaluation at singularities
- if type == 2:
- def h(n,m):
- g = m*0.5
- T = [1+z, 1-z], [g, -g], [], [1-m], [-n, n+1], [1-m], 0.5*(1-z)
- return (T,)
- return ctx.hypercomb(h, [n,m], **kwargs)
- if type == 3:
- def h(n,m):
- g = m*0.5
- T = [z+1, z-1], [g, -g], [], [1-m], [-n, n+1], [1-m], 0.5*(1-z)
- return (T,)
- return ctx.hypercomb(h, [n,m], **kwargs)
- raise ValueError("requires type=2 or type=3")
- @defun
- def legenq(ctx, n, m, z, type=2, **kwargs):
- # Legendre function, 2nd kind
- n = ctx.convert(n)
- m = ctx.convert(m)
- z = ctx.convert(z)
- if z in (1, -1):
- #if ctx.isint(m):
- # return ctx.nan
- #return ctx.inf # unsigned
- return ctx.nan
- if type == 2:
- def h(n, m):
- cos, sin = ctx.cospi_sinpi(m)
- s = 2 * sin / ctx.pi
- c = cos
- a = 1+z
- b = 1-z
- u = m/2
- w = (1-z)/2
- T1 = [s, c, a, b], [-1, 1, u, -u], [], [1-m], \
- [-n, n+1], [1-m], w
- T2 = [-s, a, b], [-1, -u, u], [n+m+1], [n-m+1, m+1], \
- [-n, n+1], [m+1], w
- return T1, T2
- return ctx.hypercomb(h, [n, m], **kwargs)
- if type == 3:
- # The following is faster when there only is a single series
- # Note: not valid for -1 < z < 0 (?)
- if abs(z) > 1:
- def h(n, m):
- T1 = [ctx.expjpi(m), 2, ctx.pi, z, z-1, z+1], \
- [1, -n-1, 0.5, -n-m-1, 0.5*m, 0.5*m], \
- [n+m+1], [n+1.5], \
- [0.5*(2+n+m), 0.5*(1+n+m)], [n+1.5], z**(-2)
- return [T1]
- return ctx.hypercomb(h, [n, m], **kwargs)
- else:
- # not valid for 1 < z < inf ?
- def h(n, m):
- s = 2 * ctx.sinpi(m) / ctx.pi
- c = ctx.expjpi(m)
- a = 1+z
- b = z-1
- u = m/2
- w = (1-z)/2
- T1 = [s, c, a, b], [-1, 1, u, -u], [], [1-m], \
- [-n, n+1], [1-m], w
- T2 = [-s, c, a, b], [-1, 1, -u, u], [n+m+1], [n-m+1, m+1], \
- [-n, n+1], [m+1], w
- return T1, T2
- return ctx.hypercomb(h, [n, m], **kwargs)
- raise ValueError("requires type=2 or type=3")
- @defun_wrapped
- def chebyt(ctx, n, x, **kwargs):
- if (not x) and ctx.isint(n) and int(ctx._re(n)) % 2 == 1:
- return x * 0
- return ctx.hyp2f1(-n,n,(1,2),(1-x)/2, **kwargs)
- @defun_wrapped
- def chebyu(ctx, n, x, **kwargs):
- if (not x) and ctx.isint(n) and int(ctx._re(n)) % 2 == 1:
- return x * 0
- return (n+1) * ctx.hyp2f1(-n, n+2, (3,2), (1-x)/2, **kwargs)
- @defun
- def spherharm(ctx, l, m, theta, phi, **kwargs):
- l = ctx.convert(l)
- m = ctx.convert(m)
- theta = ctx.convert(theta)
- phi = ctx.convert(phi)
- l_isint = ctx.isint(l)
- l_natural = l_isint and l >= 0
- m_isint = ctx.isint(m)
- if l_isint and l < 0 and m_isint:
- return ctx.spherharm(-(l+1), m, theta, phi, **kwargs)
- if theta == 0 and m_isint and m < 0:
- return ctx.zero * 1j
- if l_natural and m_isint:
- if abs(m) > l:
- return ctx.zero * 1j
- # http://functions.wolfram.com/Polynomials/
- # SphericalHarmonicY/26/01/02/0004/
- def h(l,m):
- absm = abs(m)
- C = [-1, ctx.expj(m*phi),
- (2*l+1)*ctx.fac(l+absm)/ctx.pi/ctx.fac(l-absm),
- ctx.sin(theta)**2,
- ctx.fac(absm), 2]
- P = [0.5*m*(ctx.sign(m)+1), 1, 0.5, 0.5*absm, -1, -absm-1]
- return ((C, P, [], [], [absm-l, l+absm+1], [absm+1],
- ctx.sin(0.5*theta)**2),)
- else:
- # http://functions.wolfram.com/HypergeometricFunctions/
- # SphericalHarmonicYGeneral/26/01/02/0001/
- def h(l,m):
- if ctx.isnpint(l-m+1) or ctx.isnpint(l+m+1) or ctx.isnpint(1-m):
- return (([0], [-1], [], [], [], [], 0),)
- cos, sin = ctx.cos_sin(0.5*theta)
- C = [0.5*ctx.expj(m*phi), (2*l+1)/ctx.pi,
- ctx.gamma(l-m+1), ctx.gamma(l+m+1),
- cos**2, sin**2]
- P = [1, 0.5, 0.5, -0.5, 0.5*m, -0.5*m]
- return ((C, P, [], [1-m], [-l,l+1], [1-m], sin**2),)
- return ctx.hypercomb(h, [l,m], **kwargs)
|