123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280 |
- from .functions import defun, defun_wrapped
- @defun
- def qp(ctx, a, q=None, n=None, **kwargs):
- r"""
- Evaluates the q-Pochhammer symbol (or q-rising factorial)
- .. math ::
- (a; q)_n = \prod_{k=0}^{n-1} (1-a q^k)
- where `n = \infty` is permitted if `|q| < 1`. Called with two arguments,
- ``qp(a,q)`` computes `(a;q)_{\infty}`; with a single argument, ``qp(q)``
- computes `(q;q)_{\infty}`. The special case
- .. math ::
- \phi(q) = (q; q)_{\infty} = \prod_{k=1}^{\infty} (1-q^k) =
- \sum_{k=-\infty}^{\infty} (-1)^k q^{(3k^2-k)/2}
- is also known as the Euler function, or (up to a factor `q^{-1/24}`)
- the Dedekind eta function.
- **Examples**
- If `n` is a positive integer, the function amounts to a finite product::
- >>> from mpmath import *
- >>> mp.dps = 25; mp.pretty = True
- >>> qp(2,3,5)
- -725305.0
- >>> fprod(1-2*3**k for k in range(5))
- -725305.0
- >>> qp(2,3,0)
- 1.0
- Complex arguments are allowed::
- >>> qp(2-1j, 0.75j)
- (0.4628842231660149089976379 + 4.481821753552703090628793j)
- The regular Pochhammer symbol `(a)_n` is obtained in the
- following limit as `q \to 1`::
- >>> a, n = 4, 7
- >>> limit(lambda q: qp(q**a,q,n) / (1-q)**n, 1)
- 604800.0
- >>> rf(a,n)
- 604800.0
- The Taylor series of the reciprocal Euler function gives
- the partition function `P(n)`, i.e. the number of ways of writing
- `n` as a sum of positive integers::
- >>> taylor(lambda q: 1/qp(q), 0, 10)
- [1.0, 1.0, 2.0, 3.0, 5.0, 7.0, 11.0, 15.0, 22.0, 30.0, 42.0]
- Special values include::
- >>> qp(0)
- 1.0
- >>> findroot(diffun(qp), -0.4) # location of maximum
- -0.4112484791779547734440257
- >>> qp(_)
- 1.228348867038575112586878
- The q-Pochhammer symbol is related to the Jacobi theta functions.
- For example, the following identity holds::
- >>> q = mpf(0.5) # arbitrary
- >>> qp(q)
- 0.2887880950866024212788997
- >>> root(3,-2)*root(q,-24)*jtheta(2,pi/6,root(q,6))
- 0.2887880950866024212788997
- """
- a = ctx.convert(a)
- if n is None:
- n = ctx.inf
- else:
- n = ctx.convert(n)
- if n < 0:
- raise ValueError("n cannot be negative")
- if q is None:
- q = a
- else:
- q = ctx.convert(q)
- if n == 0:
- return ctx.one + 0*(a+q)
- infinite = (n == ctx.inf)
- same = (a == q)
- if infinite:
- if abs(q) >= 1:
- if same and (q == -1 or q == 1):
- return ctx.zero * q
- raise ValueError("q-function only defined for |q| < 1")
- elif q == 0:
- return ctx.one - a
- maxterms = kwargs.get('maxterms', 50*ctx.prec)
- if infinite and same:
- # Euler's pentagonal theorem
- def terms():
- t = 1
- yield t
- k = 1
- x1 = q
- x2 = q**2
- while 1:
- yield (-1)**k * x1
- yield (-1)**k * x2
- x1 *= q**(3*k+1)
- x2 *= q**(3*k+2)
- k += 1
- if k > maxterms:
- raise ctx.NoConvergence
- return ctx.sum_accurately(terms)
- # return ctx.nprod(lambda k: 1-a*q**k, [0,n-1])
- def factors():
- k = 0
- r = ctx.one
- while 1:
- yield 1 - a*r
- r *= q
- k += 1
- if k >= n:
- return
- if k > maxterms:
- raise ctx.NoConvergence
- return ctx.mul_accurately(factors)
- @defun_wrapped
- def qgamma(ctx, z, q, **kwargs):
- r"""
- Evaluates the q-gamma function
- .. math ::
- \Gamma_q(z) = \frac{(q; q)_{\infty}}{(q^z; q)_{\infty}} (1-q)^{1-z}.
- **Examples**
- Evaluation for real and complex arguments::
- >>> from mpmath import *
- >>> mp.dps = 25; mp.pretty = True
- >>> qgamma(4,0.75)
- 4.046875
- >>> qgamma(6,6)
- 121226245.0
- >>> qgamma(3+4j, 0.5j)
- (0.1663082382255199834630088 + 0.01952474576025952984418217j)
- The q-gamma function satisfies a functional equation similar
- to that of the ordinary gamma function::
- >>> q = mpf(0.25)
- >>> z = mpf(2.5)
- >>> qgamma(z+1,q)
- 1.428277424823760954685912
- >>> (1-q**z)/(1-q)*qgamma(z,q)
- 1.428277424823760954685912
- """
- if abs(q) > 1:
- return ctx.qgamma(z,1/q)*q**((z-2)*(z-1)*0.5)
- return ctx.qp(q, q, None, **kwargs) / \
- ctx.qp(q**z, q, None, **kwargs) * (1-q)**(1-z)
- @defun_wrapped
- def qfac(ctx, z, q, **kwargs):
- r"""
- Evaluates the q-factorial,
- .. math ::
- [n]_q! = (1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1})
- or more generally
- .. math ::
- [z]_q! = \frac{(q;q)_z}{(1-q)^z}.
- **Examples**
- >>> from mpmath import *
- >>> mp.dps = 25; mp.pretty = True
- >>> qfac(0,0)
- 1.0
- >>> qfac(4,3)
- 2080.0
- >>> qfac(5,6)
- 121226245.0
- >>> qfac(1+1j, 2+1j)
- (0.4370556551322672478613695 + 0.2609739839216039203708921j)
- """
- if ctx.isint(z) and ctx._re(z) > 0:
- n = int(ctx._re(z))
- return ctx.qp(q, q, n, **kwargs) / (1-q)**n
- return ctx.qgamma(z+1, q, **kwargs)
- @defun
- def qhyper(ctx, a_s, b_s, q, z, **kwargs):
- r"""
- Evaluates the basic hypergeometric series or hypergeometric q-series
- .. math ::
- \,_r\phi_s \left[\begin{matrix}
- a_1 & a_2 & \ldots & a_r \\
- b_1 & b_2 & \ldots & b_s
- \end{matrix} ; q,z \right] =
- \sum_{n=0}^\infty
- \frac{(a_1;q)_n, \ldots, (a_r;q)_n}
- {(b_1;q)_n, \ldots, (b_s;q)_n}
- \left((-1)^n q^{n\choose 2}\right)^{1+s-r}
- \frac{z^n}{(q;q)_n}
- where `(a;q)_n` denotes the q-Pochhammer symbol (see :func:`~mpmath.qp`).
- **Examples**
- Evaluation works for real and complex arguments::
- >>> from mpmath import *
- >>> mp.dps = 25; mp.pretty = True
- >>> qhyper([0.5], [2.25], 0.25, 4)
- -0.1975849091263356009534385
- >>> qhyper([0.5], [2.25], 0.25-0.25j, 4)
- (2.806330244925716649839237 + 3.568997623337943121769938j)
- >>> qhyper([1+j], [2,3+0.5j], 0.25, 3+4j)
- (9.112885171773400017270226 - 1.272756997166375050700388j)
- Comparing with a summation of the defining series, using
- :func:`~mpmath.nsum`::
- >>> b, q, z = 3, 0.25, 0.5
- >>> qhyper([], [b], q, z)
- 0.6221136748254495583228324
- >>> nsum(lambda n: z**n / qp(q,q,n)/qp(b,q,n) * q**(n*(n-1)), [0,inf])
- 0.6221136748254495583228324
- """
- #a_s = [ctx._convert_param(a)[0] for a in a_s]
- #b_s = [ctx._convert_param(b)[0] for b in b_s]
- #q = ctx._convert_param(q)[0]
- a_s = [ctx.convert(a) for a in a_s]
- b_s = [ctx.convert(b) for b in b_s]
- q = ctx.convert(q)
- z = ctx.convert(z)
- r = len(a_s)
- s = len(b_s)
- d = 1+s-r
- maxterms = kwargs.get('maxterms', 50*ctx.prec)
- def terms():
- t = ctx.one
- yield t
- qk = 1
- k = 0
- x = 1
- while 1:
- for a in a_s:
- p = 1 - a*qk
- t *= p
- for b in b_s:
- p = 1 - b*qk
- if not p:
- raise ValueError
- t /= p
- t *= z
- x *= (-1)**d * qk ** d
- qk *= q
- t /= (1 - qk)
- k += 1
- yield t * x
- if k > maxterms:
- raise ctx.NoConvergence
- return ctx.sum_accurately(terms)
|