123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166 |
- """
- -----------------------------------------------------------------------
- This module implements gamma- and zeta-related functions:
- * Bernoulli numbers
- * Factorials
- * The gamma function
- * Polygamma functions
- * Harmonic numbers
- * The Riemann zeta function
- * Constants related to these functions
- -----------------------------------------------------------------------
- """
- import math
- import sys
- from .backend import xrange
- from .backend import MPZ, MPZ_ZERO, MPZ_ONE, MPZ_THREE, gmpy
- from .libintmath import list_primes, ifac, ifac2, moebius
- from .libmpf import (\
- round_floor, round_ceiling, round_down, round_up,
- round_nearest, round_fast,
- lshift, sqrt_fixed, isqrt_fast,
- fzero, fone, fnone, fhalf, ftwo, finf, fninf, fnan,
- from_int, to_int, to_fixed, from_man_exp, from_rational,
- mpf_pos, mpf_neg, mpf_abs, mpf_add, mpf_sub,
- mpf_mul, mpf_mul_int, mpf_div, mpf_sqrt, mpf_pow_int,
- mpf_rdiv_int,
- mpf_perturb, mpf_le, mpf_lt, mpf_gt, mpf_shift,
- negative_rnd, reciprocal_rnd,
- bitcount, to_float, mpf_floor, mpf_sign, ComplexResult
- )
- from .libelefun import (\
- constant_memo,
- def_mpf_constant,
- mpf_pi, pi_fixed, ln2_fixed, log_int_fixed, mpf_ln2,
- mpf_exp, mpf_log, mpf_pow, mpf_cosh,
- mpf_cos_sin, mpf_cosh_sinh, mpf_cos_sin_pi, mpf_cos_pi, mpf_sin_pi,
- ln_sqrt2pi_fixed, mpf_ln_sqrt2pi, sqrtpi_fixed, mpf_sqrtpi,
- cos_sin_fixed, exp_fixed
- )
- from .libmpc import (\
- mpc_zero, mpc_one, mpc_half, mpc_two,
- mpc_abs, mpc_shift, mpc_pos, mpc_neg,
- mpc_add, mpc_sub, mpc_mul, mpc_div,
- mpc_add_mpf, mpc_mul_mpf, mpc_div_mpf, mpc_mpf_div,
- mpc_mul_int, mpc_pow_int,
- mpc_log, mpc_exp, mpc_pow,
- mpc_cos_pi, mpc_sin_pi,
- mpc_reciprocal, mpc_square,
- mpc_sub_mpf
- )
- # Catalan's constant is computed using Lupas's rapidly convergent series
- # (listed on http://mathworld.wolfram.com/CatalansConstant.html)
- # oo
- # ___ n-1 8n 2 3 2
- # 1 \ (-1) 2 (40n - 24n + 3) [(2n)!] (n!)
- # K = --- ) -----------------------------------------
- # 64 /___ 3 2
- # n (2n-1) [(4n)!]
- # n = 1
- @constant_memo
- def catalan_fixed(prec):
- prec = prec + 20
- a = one = MPZ_ONE << prec
- s, t, n = 0, 1, 1
- while t:
- a *= 32 * n**3 * (2*n-1)
- a //= (3-16*n+16*n**2)**2
- t = a * (-1)**(n-1) * (40*n**2-24*n+3) // (n**3 * (2*n-1))
- s += t
- n += 1
- return s >> (20 + 6)
- # Khinchin's constant is relatively difficult to compute. Here
- # we use the rational zeta series
- # oo 2*n-1
- # ___ ___
- # \ ` zeta(2*n)-1 \ ` (-1)^(k+1)
- # log(K)*log(2) = ) ------------ ) ----------
- # /___. n /___. k
- # n = 1 k = 1
- # which adds half a digit per term. The essential trick for achieving
- # reasonable efficiency is to recycle both the values of the zeta
- # function (essentially Bernoulli numbers) and the partial terms of
- # the inner sum.
- # An alternative might be to use K = 2*exp[1/log(2) X] where
- # / 1 1 [ pi*x*(1-x^2) ]
- # X = | ------ log [ ------------ ].
- # / 0 x(1+x) [ sin(pi*x) ]
- # and integrate numerically. In practice, this seems to be slightly
- # slower than the zeta series at high precision.
- @constant_memo
- def khinchin_fixed(prec):
- wp = int(prec + prec**0.5 + 15)
- s = MPZ_ZERO
- fac = from_int(4)
- t = ONE = MPZ_ONE << wp
- pi = mpf_pi(wp)
- pipow = twopi2 = mpf_shift(mpf_mul(pi, pi, wp), 2)
- n = 1
- while 1:
- zeta2n = mpf_abs(mpf_bernoulli(2*n, wp))
- zeta2n = mpf_mul(zeta2n, pipow, wp)
- zeta2n = mpf_div(zeta2n, fac, wp)
- zeta2n = to_fixed(zeta2n, wp)
- term = (((zeta2n - ONE) * t) // n) >> wp
- if term < 100:
- break
- #if not n % 10:
- # print n, math.log(int(abs(term)))
- s += term
- t += ONE//(2*n+1) - ONE//(2*n)
- n += 1
- fac = mpf_mul_int(fac, (2*n)*(2*n-1), wp)
- pipow = mpf_mul(pipow, twopi2, wp)
- s = (s << wp) // ln2_fixed(wp)
- K = mpf_exp(from_man_exp(s, -wp), wp)
- K = to_fixed(K, prec)
- return K
- # Glaisher's constant is defined as A = exp(1/2 - zeta'(-1)).
- # One way to compute it would be to perform direct numerical
- # differentiation, but computing arbitrary Riemann zeta function
- # values at high precision is expensive. We instead use the formula
- # A = exp((6 (-zeta'(2))/pi^2 + log 2 pi + gamma)/12)
- # and compute zeta'(2) from the series representation
- # oo
- # ___
- # \ log k
- # -zeta'(2) = ) -----
- # /___ 2
- # k
- # k = 2
- # This series converges exceptionally slowly, but can be accelerated
- # using Euler-Maclaurin formula. The important insight is that the
- # E-M integral can be done in closed form and that the high order
- # are given by
- # n / \
- # d | log x | a + b log x
- # --- | ----- | = -----------
- # n | 2 | 2 + n
- # dx \ x / x
- # where a and b are integers given by a simple recurrence. Note
- # that just one logarithm is needed. However, lots of integer
- # logarithms are required for the initial summation.
- # This algorithm could possibly be turned into a faster algorithm
- # for general evaluation of zeta(s) or zeta'(s); this should be
- # looked into.
- @constant_memo
- def glaisher_fixed(prec):
- wp = prec + 30
- # Number of direct terms to sum before applying the Euler-Maclaurin
- # formula to the tail. TODO: choose more intelligently
- N = int(0.33*prec + 5)
- ONE = MPZ_ONE << wp
- # Euler-Maclaurin, step 1: sum log(k)/k**2 for k from 2 to N-1
- s = MPZ_ZERO
- for k in range(2, N):
- #print k, N
- s += log_int_fixed(k, wp) // k**2
- logN = log_int_fixed(N, wp)
- #logN = to_fixed(mpf_log(from_int(N), wp+20), wp)
- # E-M step 2: integral of log(x)/x**2 from N to inf
- s += (ONE + logN) // N
- # E-M step 3: endpoint correction term f(N)/2
- s += logN // (N**2 * 2)
- # E-M step 4: the series of derivatives
- pN = N**3
- a = 1
- b = -2
- j = 3
- fac = from_int(2)
- k = 1
- while 1:
- # D(2*k-1) * B(2*k) / fac(2*k) [D(n) = nth derivative]
- D = ((a << wp) + b*logN) // pN
- D = from_man_exp(D, -wp)
- B = mpf_bernoulli(2*k, wp)
- term = mpf_mul(B, D, wp)
- term = mpf_div(term, fac, wp)
- term = to_fixed(term, wp)
- if abs(term) < 100:
- break
- #if not k % 10:
- # print k, math.log(int(abs(term)), 10)
- s -= term
- # Advance derivative twice
- a, b, pN, j = b-a*j, -j*b, pN*N, j+1
- a, b, pN, j = b-a*j, -j*b, pN*N, j+1
- k += 1
- fac = mpf_mul_int(fac, (2*k)*(2*k-1), wp)
- # A = exp((6*s/pi**2 + log(2*pi) + euler)/12)
- pi = pi_fixed(wp)
- s *= 6
- s = (s << wp) // (pi**2 >> wp)
- s += euler_fixed(wp)
- s += to_fixed(mpf_log(from_man_exp(2*pi, -wp), wp), wp)
- s //= 12
- A = mpf_exp(from_man_exp(s, -wp), wp)
- return to_fixed(A, prec)
- # Apery's constant can be computed using the very rapidly convergent
- # series
- # oo
- # ___ 2 10
- # \ n 205 n + 250 n + 77 (n!)
- # zeta(3) = ) (-1) ------------------- ----------
- # /___ 64 5
- # n = 0 ((2n+1)!)
- @constant_memo
- def apery_fixed(prec):
- prec += 20
- d = MPZ_ONE << prec
- term = MPZ(77) << prec
- n = 1
- s = MPZ_ZERO
- while term:
- s += term
- d *= (n**10)
- d //= (((2*n+1)**5) * (2*n)**5)
- term = (-1)**n * (205*(n**2) + 250*n + 77) * d
- n += 1
- return s >> (20 + 6)
- """
- Euler's constant (gamma) is computed using the Brent-McMillan formula,
- gamma ~= I(n)/J(n) - log(n), where
- I(n) = sum_{k=0,1,2,...} (n**k / k!)**2 * H(k)
- J(n) = sum_{k=0,1,2,...} (n**k / k!)**2
- H(k) = 1 + 1/2 + 1/3 + ... + 1/k
- The error is bounded by O(exp(-4n)). Choosing n to be a power
- of two, 2**p, the logarithm becomes particularly easy to calculate.[1]
- We use the formulation of Algorithm 3.9 in [2] to make the summation
- more efficient.
- Reference:
- [1] Xavier Gourdon & Pascal Sebah, The Euler constant: gamma
- http://numbers.computation.free.fr/Constants/Gamma/gamma.pdf
- [2] Jonathan Borwein & David Bailey, Mathematics by Experiment,
- A K Peters, 2003
- """
- @constant_memo
- def euler_fixed(prec):
- extra = 30
- prec += extra
- # choose p such that exp(-4*(2**p)) < 2**-n
- p = int(math.log((prec/4) * math.log(2), 2)) + 1
- n = 2**p
- A = U = -p*ln2_fixed(prec)
- B = V = MPZ_ONE << prec
- k = 1
- while 1:
- B = B*n**2//k**2
- A = (A*n**2//k + B)//k
- U += A
- V += B
- if max(abs(A), abs(B)) < 100:
- break
- k += 1
- return (U<<(prec-extra))//V
- # Use zeta accelerated formulas for the Mertens and twin
- # prime constants; see
- # http://mathworld.wolfram.com/MertensConstant.html
- # http://mathworld.wolfram.com/TwinPrimesConstant.html
- @constant_memo
- def mertens_fixed(prec):
- wp = prec + 20
- m = 2
- s = mpf_euler(wp)
- while 1:
- t = mpf_zeta_int(m, wp)
- if t == fone:
- break
- t = mpf_log(t, wp)
- t = mpf_mul_int(t, moebius(m), wp)
- t = mpf_div(t, from_int(m), wp)
- s = mpf_add(s, t)
- m += 1
- return to_fixed(s, prec)
- @constant_memo
- def twinprime_fixed(prec):
- def I(n):
- return sum(moebius(d)<<(n//d) for d in xrange(1,n+1) if not n%d)//n
- wp = 2*prec + 30
- res = fone
- primes = [from_rational(1,p,wp) for p in [2,3,5,7]]
- ppowers = [mpf_mul(p,p,wp) for p in primes]
- n = 2
- while 1:
- a = mpf_zeta_int(n, wp)
- for i in range(4):
- a = mpf_mul(a, mpf_sub(fone, ppowers[i]), wp)
- ppowers[i] = mpf_mul(ppowers[i], primes[i], wp)
- a = mpf_pow_int(a, -I(n), wp)
- if mpf_pos(a, prec+10, 'n') == fone:
- break
- #from libmpf import to_str
- #print n, to_str(mpf_sub(fone, a), 6)
- res = mpf_mul(res, a, wp)
- n += 1
- res = mpf_mul(res, from_int(3*15*35), wp)
- res = mpf_div(res, from_int(4*16*36), wp)
- return to_fixed(res, prec)
- mpf_euler = def_mpf_constant(euler_fixed)
- mpf_apery = def_mpf_constant(apery_fixed)
- mpf_khinchin = def_mpf_constant(khinchin_fixed)
- mpf_glaisher = def_mpf_constant(glaisher_fixed)
- mpf_catalan = def_mpf_constant(catalan_fixed)
- mpf_mertens = def_mpf_constant(mertens_fixed)
- mpf_twinprime = def_mpf_constant(twinprime_fixed)
- #-----------------------------------------------------------------------#
- # #
- # Bernoulli numbers #
- # #
- #-----------------------------------------------------------------------#
- MAX_BERNOULLI_CACHE = 3000
- r"""
- Small Bernoulli numbers and factorials are used in numerous summations,
- so it is critical for speed that sequential computation is fast and that
- values are cached up to a fairly high threshold.
- On the other hand, we also want to support fast computation of isolated
- large numbers. Currently, no such acceleration is provided for integer
- factorials (though it is for large floating-point factorials, which are
- computed via gamma if the precision is low enough).
- For sequential computation of Bernoulli numbers, we use Ramanujan's formula
- / n + 3 \
- B = (A(n) - S(n)) / | |
- n \ n /
- where A(n) = (n+3)/3 when n = 0 or 2 (mod 6), A(n) = -(n+3)/6
- when n = 4 (mod 6), and
- [n/6]
- ___
- \ / n + 3 \
- S(n) = ) | | * B
- /___ \ n - 6*k / n-6*k
- k = 1
- For isolated large Bernoulli numbers, we use the Riemann zeta function
- to calculate a numerical value for B_n. The von Staudt-Clausen theorem
- can then be used to optionally find the exact value of the
- numerator and denominator.
- """
- bernoulli_cache = {}
- f3 = from_int(3)
- f6 = from_int(6)
- def bernoulli_size(n):
- """Accurately estimate the size of B_n (even n > 2 only)"""
- lgn = math.log(n,2)
- return int(2.326 + 0.5*lgn + n*(lgn - 4.094))
- BERNOULLI_PREC_CUTOFF = bernoulli_size(MAX_BERNOULLI_CACHE)
- def mpf_bernoulli(n, prec, rnd=None):
- """Computation of Bernoulli numbers (numerically)"""
- if n < 2:
- if n < 0:
- raise ValueError("Bernoulli numbers only defined for n >= 0")
- if n == 0:
- return fone
- if n == 1:
- return mpf_neg(fhalf)
- # For odd n > 1, the Bernoulli numbers are zero
- if n & 1:
- return fzero
- # If precision is extremely high, we can save time by computing
- # the Bernoulli number at a lower precision that is sufficient to
- # obtain the exact fraction, round to the exact fraction, and
- # convert the fraction back to an mpf value at the original precision
- if prec > BERNOULLI_PREC_CUTOFF and prec > bernoulli_size(n)*1.1 + 1000:
- p, q = bernfrac(n)
- return from_rational(p, q, prec, rnd or round_floor)
- if n > MAX_BERNOULLI_CACHE:
- return mpf_bernoulli_huge(n, prec, rnd)
- wp = prec + 30
- # Reuse nearby precisions
- wp += 32 - (prec & 31)
- cached = bernoulli_cache.get(wp)
- if cached:
- numbers, state = cached
- if n in numbers:
- if not rnd:
- return numbers[n]
- return mpf_pos(numbers[n], prec, rnd)
- m, bin, bin1 = state
- if n - m > 10:
- return mpf_bernoulli_huge(n, prec, rnd)
- else:
- if n > 10:
- return mpf_bernoulli_huge(n, prec, rnd)
- numbers = {0:fone}
- m, bin, bin1 = state = [2, MPZ(10), MPZ_ONE]
- bernoulli_cache[wp] = (numbers, state)
- while m <= n:
- #print m
- case = m % 6
- # Accurately estimate size of B_m so we can use
- # fixed point math without using too much precision
- szbm = bernoulli_size(m)
- s = 0
- sexp = max(0, szbm) - wp
- if m < 6:
- a = MPZ_ZERO
- else:
- a = bin1
- for j in xrange(1, m//6+1):
- usign, uman, uexp, ubc = u = numbers[m-6*j]
- if usign:
- uman = -uman
- s += lshift(a*uman, uexp-sexp)
- # Update inner binomial coefficient
- j6 = 6*j
- a *= ((m-5-j6)*(m-4-j6)*(m-3-j6)*(m-2-j6)*(m-1-j6)*(m-j6))
- a //= ((4+j6)*(5+j6)*(6+j6)*(7+j6)*(8+j6)*(9+j6))
- if case == 0: b = mpf_rdiv_int(m+3, f3, wp)
- if case == 2: b = mpf_rdiv_int(m+3, f3, wp)
- if case == 4: b = mpf_rdiv_int(-m-3, f6, wp)
- s = from_man_exp(s, sexp, wp)
- b = mpf_div(mpf_sub(b, s, wp), from_int(bin), wp)
- numbers[m] = b
- m += 2
- # Update outer binomial coefficient
- bin = bin * ((m+2)*(m+3)) // (m*(m-1))
- if m > 6:
- bin1 = bin1 * ((2+m)*(3+m)) // ((m-7)*(m-6))
- state[:] = [m, bin, bin1]
- return numbers[n]
- def mpf_bernoulli_huge(n, prec, rnd=None):
- wp = prec + 10
- piprec = wp + int(math.log(n,2))
- v = mpf_gamma_int(n+1, wp)
- v = mpf_mul(v, mpf_zeta_int(n, wp), wp)
- v = mpf_mul(v, mpf_pow_int(mpf_pi(piprec), -n, wp))
- v = mpf_shift(v, 1-n)
- if not n & 3:
- v = mpf_neg(v)
- return mpf_pos(v, prec, rnd or round_fast)
- def bernfrac(n):
- r"""
- Returns a tuple of integers `(p, q)` such that `p/q = B_n` exactly,
- where `B_n` denotes the `n`-th Bernoulli number. The fraction is
- always reduced to lowest terms. Note that for `n > 1` and `n` odd,
- `B_n = 0`, and `(0, 1)` is returned.
- **Examples**
- The first few Bernoulli numbers are exactly::
- >>> from mpmath import *
- >>> for n in range(15):
- ... p, q = bernfrac(n)
- ... print("%s %s/%s" % (n, p, q))
- ...
- 0 1/1
- 1 -1/2
- 2 1/6
- 3 0/1
- 4 -1/30
- 5 0/1
- 6 1/42
- 7 0/1
- 8 -1/30
- 9 0/1
- 10 5/66
- 11 0/1
- 12 -691/2730
- 13 0/1
- 14 7/6
- This function works for arbitrarily large `n`::
- >>> p, q = bernfrac(10**4)
- >>> print(q)
- 2338224387510
- >>> print(len(str(p)))
- 27692
- >>> mp.dps = 15
- >>> print(mpf(p) / q)
- -9.04942396360948e+27677
- >>> print(bernoulli(10**4))
- -9.04942396360948e+27677
- .. note ::
- :func:`~mpmath.bernoulli` computes a floating-point approximation
- directly, without computing the exact fraction first.
- This is much faster for large `n`.
- **Algorithm**
- :func:`~mpmath.bernfrac` works by computing the value of `B_n` numerically
- and then using the von Staudt-Clausen theorem [1] to reconstruct
- the exact fraction. For large `n`, this is significantly faster than
- computing `B_1, B_2, \ldots, B_2` recursively with exact arithmetic.
- The implementation has been tested for `n = 10^m` up to `m = 6`.
- In practice, :func:`~mpmath.bernfrac` appears to be about three times
- slower than the specialized program calcbn.exe [2]
- **References**
- 1. MathWorld, von Staudt-Clausen Theorem:
- http://mathworld.wolfram.com/vonStaudt-ClausenTheorem.html
- 2. The Bernoulli Number Page:
- http://www.bernoulli.org/
- """
- n = int(n)
- if n < 3:
- return [(1, 1), (-1, 2), (1, 6)][n]
- if n & 1:
- return (0, 1)
- q = 1
- for k in list_primes(n+1):
- if not (n % (k-1)):
- q *= k
- prec = bernoulli_size(n) + int(math.log(q,2)) + 20
- b = mpf_bernoulli(n, prec)
- p = mpf_mul(b, from_int(q))
- pint = to_int(p, round_nearest)
- return (pint, q)
- #-----------------------------------------------------------------------#
- # #
- # Polygamma functions #
- # #
- #-----------------------------------------------------------------------#
- r"""
- For all polygamma (psi) functions, we use the Euler-Maclaurin summation
- formula. It looks slightly different in the m = 0 and m > 0 cases.
- For m = 0, we have
- oo
- ___ B
- (0) 1 \ 2 k -2 k
- psi (z) ~ log z + --- - ) ------ z
- 2 z /___ (2 k)!
- k = 1
- Experiment shows that the minimum term of the asymptotic series
- reaches 2^(-p) when Re(z) > 0.11*p. So we simply use the recurrence
- for psi (equivalent, in fact, to summing to the first few terms
- directly before applying E-M) to obtain z large enough.
- Since, very crudely, log z ~= 1 for Re(z) > 1, we can use
- fixed-point arithmetic (if z is extremely large, log(z) itself
- is a sufficient approximation, so we can stop there already).
- For Re(z) << 0, we could use recurrence, but this is of course
- inefficient for large negative z, so there we use the
- reflection formula instead.
- For m > 0, we have
- N - 1
- ___
- ~~~(m) [ \ 1 ] 1 1
- psi (z) ~ [ ) -------- ] + ---------- + -------- +
- [ /___ m+1 ] m+1 m
- k = 1 (z+k) ] 2 (z+N) m (z+N)
- oo
- ___ B
- \ 2 k (m+1) (m+2) ... (m+2k-1)
- + ) ------ ------------------------
- /___ (2 k)! m + 2 k
- k = 1 (z+N)
- where ~~~ denotes the function rescaled by 1/((-1)^(m+1) m!).
- Here again N is chosen to make z+N large enough for the minimum
- term in the last series to become smaller than eps.
- TODO: the current estimation of N for m > 0 is *very suboptimal*.
- TODO: implement the reflection formula for m > 0, Re(z) << 0.
- It is generally a combination of multiple cotangents. Need to
- figure out a reasonably simple way to generate these formulas
- on the fly.
- TODO: maybe use exact algorithms to compute psi for integral
- and certain rational arguments, as this can be much more
- efficient. (On the other hand, the availability of these
- special values provides a convenient way to test the general
- algorithm.)
- """
- # Harmonic numbers are just shifted digamma functions
- # We should calculate these exactly when x is an integer
- # and when doing so is faster.
- def mpf_harmonic(x, prec, rnd):
- if x in (fzero, fnan, finf):
- return x
- a = mpf_psi0(mpf_add(fone, x, prec+5), prec)
- return mpf_add(a, mpf_euler(prec+5, rnd), prec, rnd)
- def mpc_harmonic(z, prec, rnd):
- if z[1] == fzero:
- return (mpf_harmonic(z[0], prec, rnd), fzero)
- a = mpc_psi0(mpc_add_mpf(z, fone, prec+5), prec)
- return mpc_add_mpf(a, mpf_euler(prec+5, rnd), prec, rnd)
- def mpf_psi0(x, prec, rnd=round_fast):
- """
- Computation of the digamma function (psi function of order 0)
- of a real argument.
- """
- sign, man, exp, bc = x
- wp = prec + 10
- if not man:
- if x == finf: return x
- if x == fninf or x == fnan: return fnan
- if x == fzero or (exp >= 0 and sign):
- raise ValueError("polygamma pole")
- # Near 0 -- fixed-point arithmetic becomes bad
- if exp+bc < -5:
- v = mpf_psi0(mpf_add(x, fone, prec, rnd), prec, rnd)
- return mpf_sub(v, mpf_div(fone, x, wp, rnd), prec, rnd)
- # Reflection formula
- if sign and exp+bc > 3:
- c, s = mpf_cos_sin_pi(x, wp)
- q = mpf_mul(mpf_div(c, s, wp), mpf_pi(wp), wp)
- p = mpf_psi0(mpf_sub(fone, x, wp), wp)
- return mpf_sub(p, q, prec, rnd)
- # The logarithmic term is accurate enough
- if (not sign) and bc + exp > wp:
- return mpf_log(mpf_sub(x, fone, wp), prec, rnd)
- # Initial recurrence to obtain a large enough x
- m = to_int(x)
- n = int(0.11*wp) + 2
- s = MPZ_ZERO
- x = to_fixed(x, wp)
- one = MPZ_ONE << wp
- if m < n:
- for k in xrange(m, n):
- s -= (one << wp) // x
- x += one
- x -= one
- # Logarithmic term
- s += to_fixed(mpf_log(from_man_exp(x, -wp, wp), wp), wp)
- # Endpoint term in Euler-Maclaurin expansion
- s += (one << wp) // (2*x)
- # Euler-Maclaurin remainder sum
- x2 = (x*x) >> wp
- t = one
- prev = 0
- k = 1
- while 1:
- t = (t*x2) >> wp
- bsign, bman, bexp, bbc = mpf_bernoulli(2*k, wp)
- offset = (bexp + 2*wp)
- if offset >= 0: term = (bman << offset) // (t*(2*k))
- else: term = (bman >> (-offset)) // (t*(2*k))
- if k & 1: s -= term
- else: s += term
- if k > 2 and term >= prev:
- break
- prev = term
- k += 1
- return from_man_exp(s, -wp, wp, rnd)
- def mpc_psi0(z, prec, rnd=round_fast):
- """
- Computation of the digamma function (psi function of order 0)
- of a complex argument.
- """
- re, im = z
- # Fall back to the real case
- if im == fzero:
- return (mpf_psi0(re, prec, rnd), fzero)
- wp = prec + 20
- sign, man, exp, bc = re
- # Reflection formula
- if sign and exp+bc > 3:
- c = mpc_cos_pi(z, wp)
- s = mpc_sin_pi(z, wp)
- q = mpc_mul_mpf(mpc_div(c, s, wp), mpf_pi(wp), wp)
- p = mpc_psi0(mpc_sub(mpc_one, z, wp), wp)
- return mpc_sub(p, q, prec, rnd)
- # Just the logarithmic term
- if (not sign) and bc + exp > wp:
- return mpc_log(mpc_sub(z, mpc_one, wp), prec, rnd)
- # Initial recurrence to obtain a large enough z
- w = to_int(re)
- n = int(0.11*wp) + 2
- s = mpc_zero
- if w < n:
- for k in xrange(w, n):
- s = mpc_sub(s, mpc_reciprocal(z, wp), wp)
- z = mpc_add_mpf(z, fone, wp)
- z = mpc_sub(z, mpc_one, wp)
- # Logarithmic and endpoint term
- s = mpc_add(s, mpc_log(z, wp), wp)
- s = mpc_add(s, mpc_div(mpc_half, z, wp), wp)
- # Euler-Maclaurin remainder sum
- z2 = mpc_square(z, wp)
- t = mpc_one
- prev = mpc_zero
- k = 1
- eps = mpf_shift(fone, -wp+2)
- while 1:
- t = mpc_mul(t, z2, wp)
- bern = mpf_bernoulli(2*k, wp)
- term = mpc_mpf_div(bern, mpc_mul_int(t, 2*k, wp), wp)
- s = mpc_sub(s, term, wp)
- szterm = mpc_abs(term, 10)
- if k > 2 and mpf_le(szterm, eps):
- break
- prev = term
- k += 1
- return s
- # Currently unoptimized
- def mpf_psi(m, x, prec, rnd=round_fast):
- """
- Computation of the polygamma function of arbitrary integer order
- m >= 0, for a real argument x.
- """
- if m == 0:
- return mpf_psi0(x, prec, rnd=round_fast)
- return mpc_psi(m, (x, fzero), prec, rnd)[0]
- def mpc_psi(m, z, prec, rnd=round_fast):
- """
- Computation of the polygamma function of arbitrary integer order
- m >= 0, for a complex argument z.
- """
- if m == 0:
- return mpc_psi0(z, prec, rnd)
- re, im = z
- wp = prec + 20
- sign, man, exp, bc = re
- if not im[1]:
- if im in (finf, fninf, fnan):
- return (fnan, fnan)
- if not man:
- if re == finf and im == fzero:
- return (fzero, fzero)
- if re == fnan:
- return (fnan, fnan)
- # Recurrence
- w = to_int(re)
- n = int(0.4*wp + 4*m)
- s = mpc_zero
- if w < n:
- for k in xrange(w, n):
- t = mpc_pow_int(z, -m-1, wp)
- s = mpc_add(s, t, wp)
- z = mpc_add_mpf(z, fone, wp)
- zm = mpc_pow_int(z, -m, wp)
- z2 = mpc_pow_int(z, -2, wp)
- # 1/m*(z+N)^m
- integral_term = mpc_div_mpf(zm, from_int(m), wp)
- s = mpc_add(s, integral_term, wp)
- # 1/2*(z+N)^(-(m+1))
- s = mpc_add(s, mpc_mul_mpf(mpc_div(zm, z, wp), fhalf, wp), wp)
- a = m + 1
- b = 2
- k = 1
- # Important: we want to sum up to the *relative* error,
- # not the absolute error, because psi^(m)(z) might be tiny
- magn = mpc_abs(s, 10)
- magn = magn[2]+magn[3]
- eps = mpf_shift(fone, magn-wp+2)
- while 1:
- zm = mpc_mul(zm, z2, wp)
- bern = mpf_bernoulli(2*k, wp)
- scal = mpf_mul_int(bern, a, wp)
- scal = mpf_div(scal, from_int(b), wp)
- term = mpc_mul_mpf(zm, scal, wp)
- s = mpc_add(s, term, wp)
- szterm = mpc_abs(term, 10)
- if k > 2 and mpf_le(szterm, eps):
- break
- #print k, to_str(szterm, 10), to_str(eps, 10)
- a *= (m+2*k)*(m+2*k+1)
- b *= (2*k+1)*(2*k+2)
- k += 1
- # Scale and sign factor
- v = mpc_mul_mpf(s, mpf_gamma(from_int(m+1), wp), prec, rnd)
- if not (m & 1):
- v = mpf_neg(v[0]), mpf_neg(v[1])
- return v
- #-----------------------------------------------------------------------#
- # #
- # Riemann zeta function #
- # #
- #-----------------------------------------------------------------------#
- r"""
- We use zeta(s) = eta(s) / (1 - 2**(1-s)) and Borwein's approximation
- n-1
- ___ k
- -1 \ (-1) (d_k - d_n)
- eta(s) ~= ---- ) ------------------
- d_n /___ s
- k = 0 (k + 1)
- where
- k
- ___ i
- \ (n + i - 1)! 4
- d_k = n ) ---------------.
- /___ (n - i)! (2i)!
- i = 0
- If s = a + b*I, the absolute error for eta(s) is bounded by
- 3 (1 + 2|b|)
- ------------ * exp(|b| pi/2)
- n
- (3+sqrt(8))
- Disregarding the linear term, we have approximately,
- log(err) ~= log(exp(1.58*|b|)) - log(5.8**n)
- log(err) ~= 1.58*|b| - log(5.8)*n
- log(err) ~= 1.58*|b| - 1.76*n
- log2(err) ~= 2.28*|b| - 2.54*n
- So for p bits, we should choose n > (p + 2.28*|b|) / 2.54.
- References:
- -----------
- Peter Borwein, "An Efficient Algorithm for the Riemann Zeta Function"
- http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P117.ps
- http://en.wikipedia.org/wiki/Dirichlet_eta_function
- """
- borwein_cache = {}
- def borwein_coefficients(n):
- if n in borwein_cache:
- return borwein_cache[n]
- ds = [MPZ_ZERO] * (n+1)
- d = MPZ_ONE
- s = ds[0] = MPZ_ONE
- for i in range(1, n+1):
- d = d * 4 * (n+i-1) * (n-i+1)
- d //= ((2*i) * ((2*i)-1))
- s += d
- ds[i] = s
- borwein_cache[n] = ds
- return ds
- ZETA_INT_CACHE_MAX_PREC = 1000
- zeta_int_cache = {}
- def mpf_zeta_int(s, prec, rnd=round_fast):
- """
- Optimized computation of zeta(s) for an integer s.
- """
- wp = prec + 20
- s = int(s)
- if s in zeta_int_cache and zeta_int_cache[s][0] >= wp:
- return mpf_pos(zeta_int_cache[s][1], prec, rnd)
- if s < 2:
- if s == 1:
- raise ValueError("zeta(1) pole")
- if not s:
- return mpf_neg(fhalf)
- return mpf_div(mpf_bernoulli(-s+1, wp), from_int(s-1), prec, rnd)
- # 2^-s term vanishes?
- if s >= wp:
- return mpf_perturb(fone, 0, prec, rnd)
- # 5^-s term vanishes?
- elif s >= wp*0.431:
- t = one = 1 << wp
- t += 1 << (wp - s)
- t += one // (MPZ_THREE ** s)
- t += 1 << max(0, wp - s*2)
- return from_man_exp(t, -wp, prec, rnd)
- else:
- # Fast enough to sum directly?
- # Even better, we use the Euler product (idea stolen from pari)
- m = (float(wp)/(s-1) + 1)
- if m < 30:
- needed_terms = int(2.0**m + 1)
- if needed_terms < int(wp/2.54 + 5) / 10:
- t = fone
- for k in list_primes(needed_terms):
- #print k, needed_terms
- powprec = int(wp - s*math.log(k,2))
- if powprec < 2:
- break
- a = mpf_sub(fone, mpf_pow_int(from_int(k), -s, powprec), wp)
- t = mpf_mul(t, a, wp)
- return mpf_div(fone, t, wp)
- # Use Borwein's algorithm
- n = int(wp/2.54 + 5)
- d = borwein_coefficients(n)
- t = MPZ_ZERO
- s = MPZ(s)
- for k in xrange(n):
- t += (((-1)**k * (d[k] - d[n])) << wp) // (k+1)**s
- t = (t << wp) // (-d[n])
- t = (t << wp) // ((1 << wp) - (1 << (wp+1-s)))
- if (s in zeta_int_cache and zeta_int_cache[s][0] < wp) or (s not in zeta_int_cache):
- zeta_int_cache[s] = (wp, from_man_exp(t, -wp-wp))
- return from_man_exp(t, -wp-wp, prec, rnd)
- def mpf_zeta(s, prec, rnd=round_fast, alt=0):
- sign, man, exp, bc = s
- if not man:
- if s == fzero:
- if alt:
- return fhalf
- else:
- return mpf_neg(fhalf)
- if s == finf:
- return fone
- return fnan
- wp = prec + 20
- # First term vanishes?
- if (not sign) and (exp + bc > (math.log(wp,2) + 2)):
- return mpf_perturb(fone, alt, prec, rnd)
- # Optimize for integer arguments
- elif exp >= 0:
- if alt:
- if s == fone:
- return mpf_ln2(prec, rnd)
- z = mpf_zeta_int(to_int(s), wp, negative_rnd[rnd])
- q = mpf_sub(fone, mpf_pow(ftwo, mpf_sub(fone, s, wp), wp), wp)
- return mpf_mul(z, q, prec, rnd)
- else:
- return mpf_zeta_int(to_int(s), prec, rnd)
- # Negative: use the reflection formula
- # Borwein only proves the accuracy bound for x >= 1/2. However, based on
- # tests, the accuracy without reflection is quite good even some distance
- # to the left of 1/2. XXX: verify this.
- if sign:
- # XXX: could use the separate refl. formula for Dirichlet eta
- if alt:
- q = mpf_sub(fone, mpf_pow(ftwo, mpf_sub(fone, s, wp), wp), wp)
- return mpf_mul(mpf_zeta(s, wp), q, prec, rnd)
- # XXX: -1 should be done exactly
- y = mpf_sub(fone, s, 10*wp)
- a = mpf_gamma(y, wp)
- b = mpf_zeta(y, wp)
- c = mpf_sin_pi(mpf_shift(s, -1), wp)
- wp2 = wp + max(0,exp+bc)
- pi = mpf_pi(wp+wp2)
- d = mpf_div(mpf_pow(mpf_shift(pi, 1), s, wp2), pi, wp2)
- return mpf_mul(a,mpf_mul(b,mpf_mul(c,d,wp),wp),prec,rnd)
- # Near pole
- r = mpf_sub(fone, s, wp)
- asign, aman, aexp, abc = mpf_abs(r)
- pole_dist = -2*(aexp+abc)
- if pole_dist > wp:
- if alt:
- return mpf_ln2(prec, rnd)
- else:
- q = mpf_neg(mpf_div(fone, r, wp))
- return mpf_add(q, mpf_euler(wp), prec, rnd)
- else:
- wp += max(0, pole_dist)
- t = MPZ_ZERO
- #wp += 16 - (prec & 15)
- # Use Borwein's algorithm
- n = int(wp/2.54 + 5)
- d = borwein_coefficients(n)
- t = MPZ_ZERO
- sf = to_fixed(s, wp)
- ln2 = ln2_fixed(wp)
- for k in xrange(n):
- u = (-sf*log_int_fixed(k+1, wp, ln2)) >> wp
- #esign, eman, eexp, ebc = mpf_exp(u, wp)
- #offset = eexp + wp
- #if offset >= 0:
- # w = ((d[k] - d[n]) * eman) << offset
- #else:
- # w = ((d[k] - d[n]) * eman) >> (-offset)
- eman = exp_fixed(u, wp, ln2)
- w = (d[k] - d[n]) * eman
- if k & 1:
- t -= w
- else:
- t += w
- t = t // (-d[n])
- t = from_man_exp(t, -wp, wp)
- if alt:
- return mpf_pos(t, prec, rnd)
- else:
- q = mpf_sub(fone, mpf_pow(ftwo, mpf_sub(fone, s, wp), wp), wp)
- return mpf_div(t, q, prec, rnd)
- def mpc_zeta(s, prec, rnd=round_fast, alt=0, force=False):
- re, im = s
- if im == fzero:
- return mpf_zeta(re, prec, rnd, alt), fzero
- # slow for large s
- if (not force) and mpf_gt(mpc_abs(s, 10), from_int(prec)):
- raise NotImplementedError
- wp = prec + 20
- # Near pole
- r = mpc_sub(mpc_one, s, wp)
- asign, aman, aexp, abc = mpc_abs(r, 10)
- pole_dist = -2*(aexp+abc)
- if pole_dist > wp:
- if alt:
- q = mpf_ln2(wp)
- y = mpf_mul(q, mpf_euler(wp), wp)
- g = mpf_shift(mpf_mul(q, q, wp), -1)
- g = mpf_sub(y, g)
- z = mpc_mul_mpf(r, mpf_neg(g), wp)
- z = mpc_add_mpf(z, q, wp)
- return mpc_pos(z, prec, rnd)
- else:
- q = mpc_neg(mpc_div(mpc_one, r, wp))
- q = mpc_add_mpf(q, mpf_euler(wp), wp)
- return mpc_pos(q, prec, rnd)
- else:
- wp += max(0, pole_dist)
- # Reflection formula. To be rigorous, we should reflect to the left of
- # re = 1/2 (see comments for mpf_zeta), but this leads to unnecessary
- # slowdown for interesting values of s
- if mpf_lt(re, fzero):
- # XXX: could use the separate refl. formula for Dirichlet eta
- if alt:
- q = mpc_sub(mpc_one, mpc_pow(mpc_two, mpc_sub(mpc_one, s, wp),
- wp), wp)
- return mpc_mul(mpc_zeta(s, wp), q, prec, rnd)
- # XXX: -1 should be done exactly
- y = mpc_sub(mpc_one, s, 10*wp)
- a = mpc_gamma(y, wp)
- b = mpc_zeta(y, wp)
- c = mpc_sin_pi(mpc_shift(s, -1), wp)
- rsign, rman, rexp, rbc = re
- isign, iman, iexp, ibc = im
- mag = max(rexp+rbc, iexp+ibc)
- wp2 = wp + max(0, mag)
- pi = mpf_pi(wp+wp2)
- pi2 = (mpf_shift(pi, 1), fzero)
- d = mpc_div_mpf(mpc_pow(pi2, s, wp2), pi, wp2)
- return mpc_mul(a,mpc_mul(b,mpc_mul(c,d,wp),wp),prec,rnd)
- n = int(wp/2.54 + 5)
- n += int(0.9*abs(to_int(im)))
- d = borwein_coefficients(n)
- ref = to_fixed(re, wp)
- imf = to_fixed(im, wp)
- tre = MPZ_ZERO
- tim = MPZ_ZERO
- one = MPZ_ONE << wp
- one_2wp = MPZ_ONE << (2*wp)
- critical_line = re == fhalf
- ln2 = ln2_fixed(wp)
- pi2 = pi_fixed(wp-1)
- wp2 = wp+wp
- for k in xrange(n):
- log = log_int_fixed(k+1, wp, ln2)
- # A square root is much cheaper than an exp
- if critical_line:
- w = one_2wp // isqrt_fast((k+1) << wp2)
- else:
- w = exp_fixed((-ref*log) >> wp, wp)
- if k & 1:
- w *= (d[n] - d[k])
- else:
- w *= (d[k] - d[n])
- wre, wim = cos_sin_fixed((-imf*log)>>wp, wp, pi2)
- tre += (w * wre) >> wp
- tim += (w * wim) >> wp
- tre //= (-d[n])
- tim //= (-d[n])
- tre = from_man_exp(tre, -wp, wp)
- tim = from_man_exp(tim, -wp, wp)
- if alt:
- return mpc_pos((tre, tim), prec, rnd)
- else:
- q = mpc_sub(mpc_one, mpc_pow(mpc_two, r, wp), wp)
- return mpc_div((tre, tim), q, prec, rnd)
- def mpf_altzeta(s, prec, rnd=round_fast):
- return mpf_zeta(s, prec, rnd, 1)
- def mpc_altzeta(s, prec, rnd=round_fast):
- return mpc_zeta(s, prec, rnd, 1)
- # Not optimized currently
- mpf_zetasum = None
- def pow_fixed(x, n, wp):
- if n == 1:
- return x
- y = MPZ_ONE << wp
- while n:
- if n & 1:
- y = (y*x) >> wp
- n -= 1
- x = (x*x) >> wp
- n //= 2
- return y
- # TODO: optimize / cleanup interface / unify with list_primes
- sieve_cache = []
- primes_cache = []
- mult_cache = []
- def primesieve(n):
- global sieve_cache, primes_cache, mult_cache
- if n < len(sieve_cache):
- sieve = sieve_cache#[:n+1]
- primes = primes_cache[:primes_cache.index(max(sieve))+1]
- mult = mult_cache#[:n+1]
- return sieve, primes, mult
- sieve = [0] * (n+1)
- mult = [0] * (n+1)
- primes = list_primes(n)
- for p in primes:
- #sieve[p::p] = p
- for k in xrange(p,n+1,p):
- sieve[k] = p
- for i, p in enumerate(sieve):
- if i >= 2:
- m = 1
- n = i // p
- while not n % p:
- n //= p
- m += 1
- mult[i] = m
- sieve_cache = sieve
- primes_cache = primes
- mult_cache = mult
- return sieve, primes, mult
- def zetasum_sieved(critical_line, sre, sim, a, n, wp):
- if a < 1:
- raise ValueError("a cannot be less than 1")
- sieve, primes, mult = primesieve(a+n)
- basic_powers = {}
- one = MPZ_ONE << wp
- one_2wp = MPZ_ONE << (2*wp)
- wp2 = wp+wp
- ln2 = ln2_fixed(wp)
- pi2 = pi_fixed(wp-1)
- for p in primes:
- if p*2 > a+n:
- break
- log = log_int_fixed(p, wp, ln2)
- cos, sin = cos_sin_fixed((-sim*log)>>wp, wp, pi2)
- if critical_line:
- u = one_2wp // isqrt_fast(p<<wp2)
- else:
- u = exp_fixed((-sre*log)>>wp, wp)
- pre = (u*cos) >> wp
- pim = (u*sin) >> wp
- basic_powers[p] = [(pre, pim)]
- tre, tim = pre, pim
- for m in range(1,int(math.log(a+n,p)+0.01)+1):
- tre, tim = ((pre*tre-pim*tim)>>wp), ((pim*tre+pre*tim)>>wp)
- basic_powers[p].append((tre,tim))
- xre = MPZ_ZERO
- xim = MPZ_ZERO
- if a == 1:
- xre += one
- aa = max(a,2)
- for k in xrange(aa, a+n+1):
- p = sieve[k]
- if p in basic_powers:
- m = mult[k]
- tre, tim = basic_powers[p][m-1]
- while 1:
- k //= p**m
- if k == 1:
- break
- p = sieve[k]
- m = mult[k]
- pre, pim = basic_powers[p][m-1]
- tre, tim = ((pre*tre-pim*tim)>>wp), ((pim*tre+pre*tim)>>wp)
- else:
- log = log_int_fixed(k, wp, ln2)
- cos, sin = cos_sin_fixed((-sim*log)>>wp, wp, pi2)
- if critical_line:
- u = one_2wp // isqrt_fast(k<<wp2)
- else:
- u = exp_fixed((-sre*log)>>wp, wp)
- tre = (u*cos) >> wp
- tim = (u*sin) >> wp
- xre += tre
- xim += tim
- return xre, xim
- # Set to something large to disable
- ZETASUM_SIEVE_CUTOFF = 10
- def mpc_zetasum(s, a, n, derivatives, reflect, prec):
- """
- Fast version of mp._zetasum, assuming s = complex, a = integer.
- """
- wp = prec + 10
- derivatives = list(derivatives)
- have_derivatives = derivatives != [0]
- have_one_derivative = len(derivatives) == 1
- # parse s
- sre, sim = s
- critical_line = (sre == fhalf)
- sre = to_fixed(sre, wp)
- sim = to_fixed(sim, wp)
- if a > 0 and n > ZETASUM_SIEVE_CUTOFF and not have_derivatives \
- and not reflect and (n < 4e7 or sys.maxsize > 2**32):
- re, im = zetasum_sieved(critical_line, sre, sim, a, n, wp)
- xs = [(from_man_exp(re, -wp, prec, 'n'), from_man_exp(im, -wp, prec, 'n'))]
- return xs, []
- maxd = max(derivatives)
- if not have_one_derivative:
- derivatives = range(maxd+1)
- # x_d = 0, y_d = 0
- xre = [MPZ_ZERO for d in derivatives]
- xim = [MPZ_ZERO for d in derivatives]
- if reflect:
- yre = [MPZ_ZERO for d in derivatives]
- yim = [MPZ_ZERO for d in derivatives]
- else:
- yre = yim = []
- one = MPZ_ONE << wp
- one_2wp = MPZ_ONE << (2*wp)
- ln2 = ln2_fixed(wp)
- pi2 = pi_fixed(wp-1)
- wp2 = wp+wp
- for w in xrange(a, a+n+1):
- log = log_int_fixed(w, wp, ln2)
- cos, sin = cos_sin_fixed((-sim*log)>>wp, wp, pi2)
- if critical_line:
- u = one_2wp // isqrt_fast(w<<wp2)
- else:
- u = exp_fixed((-sre*log)>>wp, wp)
- xterm_re = (u * cos) >> wp
- xterm_im = (u * sin) >> wp
- if reflect:
- reciprocal = (one_2wp // (u*w))
- yterm_re = (reciprocal * cos) >> wp
- yterm_im = (reciprocal * sin) >> wp
- if have_derivatives:
- if have_one_derivative:
- log = pow_fixed(log, maxd, wp)
- xre[0] += (xterm_re * log) >> wp
- xim[0] += (xterm_im * log) >> wp
- if reflect:
- yre[0] += (yterm_re * log) >> wp
- yim[0] += (yterm_im * log) >> wp
- else:
- t = MPZ_ONE << wp
- for d in derivatives:
- xre[d] += (xterm_re * t) >> wp
- xim[d] += (xterm_im * t) >> wp
- if reflect:
- yre[d] += (yterm_re * t) >> wp
- yim[d] += (yterm_im * t) >> wp
- t = (t * log) >> wp
- else:
- xre[0] += xterm_re
- xim[0] += xterm_im
- if reflect:
- yre[0] += yterm_re
- yim[0] += yterm_im
- if have_derivatives:
- if have_one_derivative:
- if maxd % 2:
- xre[0] = -xre[0]
- xim[0] = -xim[0]
- if reflect:
- yre[0] = -yre[0]
- yim[0] = -yim[0]
- else:
- xre = [(-1)**d * xre[d] for d in derivatives]
- xim = [(-1)**d * xim[d] for d in derivatives]
- if reflect:
- yre = [(-1)**d * yre[d] for d in derivatives]
- yim = [(-1)**d * yim[d] for d in derivatives]
- xs = [(from_man_exp(xa, -wp, prec, 'n'), from_man_exp(xb, -wp, prec, 'n'))
- for (xa, xb) in zip(xre, xim)]
- ys = [(from_man_exp(ya, -wp, prec, 'n'), from_man_exp(yb, -wp, prec, 'n'))
- for (ya, yb) in zip(yre, yim)]
- return xs, ys
- #-----------------------------------------------------------------------#
- # #
- # The gamma function (NEW IMPLEMENTATION) #
- # #
- #-----------------------------------------------------------------------#
- # Higher means faster, but more precomputation time
- MAX_GAMMA_TAYLOR_PREC = 5000
- # Need to derive higher bounds for Taylor series to go higher
- assert MAX_GAMMA_TAYLOR_PREC < 15000
- # Use Stirling's series if abs(x) > beta*prec
- # Important: must be large enough for convergence!
- GAMMA_STIRLING_BETA = 0.2
- SMALL_FACTORIAL_CACHE_SIZE = 150
- gamma_taylor_cache = {}
- gamma_stirling_cache = {}
- small_factorial_cache = [from_int(ifac(n)) for \
- n in range(SMALL_FACTORIAL_CACHE_SIZE+1)]
- def zeta_array(N, prec):
- """
- zeta(n) = A * pi**n / n! + B
- where A is a rational number (A = Bernoulli number
- for n even) and B is an infinite sum over powers of exp(2*pi).
- (B = 0 for n even).
- TODO: this is currently only used for gamma, but could
- be very useful elsewhere.
- """
- extra = 30
- wp = prec+extra
- zeta_values = [MPZ_ZERO] * (N+2)
- pi = pi_fixed(wp)
- # STEP 1:
- one = MPZ_ONE << wp
- zeta_values[0] = -one//2
- f_2pi = mpf_shift(mpf_pi(wp),1)
- exp_2pi_k = exp_2pi = mpf_exp(f_2pi, wp)
- # Compute exponential series
- # Store values of 1/(exp(2*pi*k)-1),
- # exp(2*pi*k)/(exp(2*pi*k)-1)**2, 1/(exp(2*pi*k)-1)**2
- # pi*k*exp(2*pi*k)/(exp(2*pi*k)-1)**2
- exps3 = []
- k = 1
- while 1:
- tp = wp - 9*k
- if tp < 1:
- break
- # 1/(exp(2*pi*k-1)
- q1 = mpf_div(fone, mpf_sub(exp_2pi_k, fone, tp), tp)
- # pi*k*exp(2*pi*k)/(exp(2*pi*k)-1)**2
- q2 = mpf_mul(exp_2pi_k, mpf_mul(q1,q1,tp), tp)
- q1 = to_fixed(q1, wp)
- q2 = to_fixed(q2, wp)
- q2 = (k * q2 * pi) >> wp
- exps3.append((q1, q2))
- # Multiply for next round
- exp_2pi_k = mpf_mul(exp_2pi_k, exp_2pi, wp)
- k += 1
- # Exponential sum
- for n in xrange(3, N+1, 2):
- s = MPZ_ZERO
- k = 1
- for e1, e2 in exps3:
- if n%4 == 3:
- t = e1 // k**n
- else:
- U = (n-1)//4
- t = (e1 + e2//U) // k**n
- if not t:
- break
- s += t
- k += 1
- zeta_values[n] = -2*s
- # Even zeta values
- B = [mpf_abs(mpf_bernoulli(k,wp)) for k in xrange(N+2)]
- pi_pow = fpi = mpf_pow_int(mpf_shift(mpf_pi(wp), 1), 2, wp)
- pi_pow = mpf_div(pi_pow, from_int(4), wp)
- for n in xrange(2,N+2,2):
- z = mpf_mul(B[n], pi_pow, wp)
- zeta_values[n] = to_fixed(z, wp)
- pi_pow = mpf_mul(pi_pow, fpi, wp)
- pi_pow = mpf_div(pi_pow, from_int((n+1)*(n+2)), wp)
- # Zeta sum
- reciprocal_pi = (one << wp) // pi
- for n in xrange(3, N+1, 4):
- U = (n-3)//4
- s = zeta_values[4*U+4]*(4*U+7)//4
- for k in xrange(1, U+1):
- s -= (zeta_values[4*k] * zeta_values[4*U+4-4*k]) >> wp
- zeta_values[n] += (2*s*reciprocal_pi) >> wp
- for n in xrange(5, N+1, 4):
- U = (n-1)//4
- s = zeta_values[4*U+2]*(2*U+1)
- for k in xrange(1, 2*U+1):
- s += ((-1)**k*2*k* zeta_values[2*k] * zeta_values[4*U+2-2*k])>>wp
- zeta_values[n] += ((s*reciprocal_pi)>>wp)//(2*U)
- return [x>>extra for x in zeta_values]
- def gamma_taylor_coefficients(inprec):
- """
- Gives the Taylor coefficients of 1/gamma(1+x) as
- a list of fixed-point numbers. Enough coefficients are returned
- to ensure that the series converges to the given precision
- when x is in [0.5, 1.5].
- """
- # Reuse nearby cache values (small case)
- if inprec < 400:
- prec = inprec + (10-(inprec%10))
- elif inprec < 1000:
- prec = inprec + (30-(inprec%30))
- else:
- prec = inprec
- if prec in gamma_taylor_cache:
- return gamma_taylor_cache[prec], prec
- # Experimentally determined bounds
- if prec < 1000:
- N = int(prec**0.76 + 2)
- else:
- # Valid to at least 15000 bits
- N = int(prec**0.787 + 2)
- # Reuse higher precision values
- for cprec in gamma_taylor_cache:
- if cprec > prec:
- coeffs = [x>>(cprec-prec) for x in gamma_taylor_cache[cprec][-N:]]
- if inprec < 1000:
- gamma_taylor_cache[prec] = coeffs
- return coeffs, prec
- # Cache at a higher precision (large case)
- if prec > 1000:
- prec = int(prec * 1.2)
- wp = prec + 20
- A = [0] * N
- A[0] = MPZ_ZERO
- A[1] = MPZ_ONE << wp
- A[2] = euler_fixed(wp)
- # SLOW, reference implementation
- #zeta_values = [0,0]+[to_fixed(mpf_zeta_int(k,wp),wp) for k in xrange(2,N)]
- zeta_values = zeta_array(N, wp)
- for k in xrange(3, N):
- a = (-A[2]*A[k-1])>>wp
- for j in xrange(2,k):
- a += ((-1)**j * zeta_values[j] * A[k-j]) >> wp
- a //= (1-k)
- A[k] = a
- A = [a>>20 for a in A]
- A = A[::-1]
- A = A[:-1]
- gamma_taylor_cache[prec] = A
- #return A, prec
- return gamma_taylor_coefficients(inprec)
- def gamma_fixed_taylor(xmpf, x, wp, prec, rnd, type):
- # Determine nearest multiple of N/2
- #n = int(x >> (wp-1))
- #steps = (n-1)>>1
- nearest_int = ((x >> (wp-1)) + MPZ_ONE) >> 1
- one = MPZ_ONE << wp
- coeffs, cwp = gamma_taylor_coefficients(wp)
- if nearest_int > 0:
- r = one
- for i in xrange(nearest_int-1):
- x -= one
- r = (r*x) >> wp
- x -= one
- p = MPZ_ZERO
- for c in coeffs:
- p = c + ((x*p)>>wp)
- p >>= (cwp-wp)
- if type == 0:
- return from_man_exp((r<<wp)//p, -wp, prec, rnd)
- if type == 2:
- return mpf_shift(from_rational(p, (r<<wp), prec, rnd), wp)
- if type == 3:
- return mpf_log(mpf_abs(from_man_exp((r<<wp)//p, -wp)), prec, rnd)
- else:
- r = one
- for i in xrange(-nearest_int):
- r = (r*x) >> wp
- x += one
- p = MPZ_ZERO
- for c in coeffs:
- p = c + ((x*p)>>wp)
- p >>= (cwp-wp)
- if wp - bitcount(abs(x)) > 10:
- # pass very close to 0, so do floating-point multiply
- g = mpf_add(xmpf, from_int(-nearest_int)) # exact
- r = from_man_exp(p*r,-wp-wp)
- r = mpf_mul(r, g, wp)
- if type == 0:
- return mpf_div(fone, r, prec, rnd)
- if type == 2:
- return mpf_pos(r, prec, rnd)
- if type == 3:
- return mpf_log(mpf_abs(mpf_div(fone, r, wp)), prec, rnd)
- else:
- r = from_man_exp(x*p*r,-3*wp)
- if type == 0: return mpf_div(fone, r, prec, rnd)
- if type == 2: return mpf_pos(r, prec, rnd)
- if type == 3: return mpf_neg(mpf_log(mpf_abs(r), prec, rnd))
- def stirling_coefficient(n):
- if n in gamma_stirling_cache:
- return gamma_stirling_cache[n]
- p, q = bernfrac(n)
- q *= MPZ(n*(n-1))
- gamma_stirling_cache[n] = p, q, bitcount(abs(p)), bitcount(q)
- return gamma_stirling_cache[n]
- def real_stirling_series(x, prec):
- """
- Sums the rational part of Stirling's expansion,
- log(sqrt(2*pi)) - z + 1/(12*z) - 1/(360*z^3) + ...
- """
- t = (MPZ_ONE<<(prec+prec)) // x # t = 1/x
- u = (t*t)>>prec # u = 1/x**2
- s = ln_sqrt2pi_fixed(prec) - x
- # Add initial terms of Stirling's series
- s += t//12; t = (t*u)>>prec
- s -= t//360; t = (t*u)>>prec
- s += t//1260; t = (t*u)>>prec
- s -= t//1680; t = (t*u)>>prec
- if not t: return s
- s += t//1188; t = (t*u)>>prec
- s -= 691*t//360360; t = (t*u)>>prec
- s += t//156; t = (t*u)>>prec
- if not t: return s
- s -= 3617*t//122400; t = (t*u)>>prec
- s += 43867*t//244188; t = (t*u)>>prec
- s -= 174611*t//125400; t = (t*u)>>prec
- if not t: return s
- k = 22
- # From here on, the coefficients are growing, so we
- # have to keep t at a roughly constant size
- usize = bitcount(abs(u))
- tsize = bitcount(abs(t))
- texp = 0
- while 1:
- p, q, pb, qb = stirling_coefficient(k)
- term_mag = tsize + pb + texp
- shift = -texp
- m = pb - term_mag
- if m > 0 and shift < m:
- p >>= m
- shift -= m
- m = tsize - term_mag
- if m > 0 and shift < m:
- w = t >> m
- shift -= m
- else:
- w = t
- term = (t*p//q) >> shift
- if not term:
- break
- s += term
- t = (t*u) >> usize
- texp -= (prec - usize)
- k += 2
- return s
- def complex_stirling_series(x, y, prec):
- # t = 1/z
- _m = (x*x + y*y) >> prec
- tre = (x << prec) // _m
- tim = (-y << prec) // _m
- # u = 1/z**2
- ure = (tre*tre - tim*tim) >> prec
- uim = tim*tre >> (prec-1)
- # s = log(sqrt(2*pi)) - z
- sre = ln_sqrt2pi_fixed(prec) - x
- sim = -y
- # Add initial terms of Stirling's series
- sre += tre//12; sim += tim//12;
- tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec)
- sre -= tre//360; sim -= tim//360;
- tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec)
- sre += tre//1260; sim += tim//1260;
- tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec)
- sre -= tre//1680; sim -= tim//1680;
- tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec)
- if abs(tre) + abs(tim) < 5: return sre, sim
- sre += tre//1188; sim += tim//1188;
- tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec)
- sre -= 691*tre//360360; sim -= 691*tim//360360;
- tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec)
- sre += tre//156; sim += tim//156;
- tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec)
- if abs(tre) + abs(tim) < 5: return sre, sim
- sre -= 3617*tre//122400; sim -= 3617*tim//122400;
- tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec)
- sre += 43867*tre//244188; sim += 43867*tim//244188;
- tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec)
- sre -= 174611*tre//125400; sim -= 174611*tim//125400;
- tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec)
- if abs(tre) + abs(tim) < 5: return sre, sim
- k = 22
- # From here on, the coefficients are growing, so we
- # have to keep t at a roughly constant size
- usize = bitcount(max(abs(ure), abs(uim)))
- tsize = bitcount(max(abs(tre), abs(tim)))
- texp = 0
- while 1:
- p, q, pb, qb = stirling_coefficient(k)
- term_mag = tsize + pb + texp
- shift = -texp
- m = pb - term_mag
- if m > 0 and shift < m:
- p >>= m
- shift -= m
- m = tsize - term_mag
- if m > 0 and shift < m:
- wre = tre >> m
- wim = tim >> m
- shift -= m
- else:
- wre = tre
- wim = tim
- termre = (tre*p//q) >> shift
- termim = (tim*p//q) >> shift
- if abs(termre) + abs(termim) < 5:
- break
- sre += termre
- sim += termim
- tre, tim = ((tre*ure - tim*uim)>>usize), \
- ((tre*uim + tim*ure)>>usize)
- texp -= (prec - usize)
- k += 2
- return sre, sim
- def mpf_gamma(x, prec, rnd='d', type=0):
- """
- This function implements multipurpose evaluation of the gamma
- function, G(x), as well as the following versions of the same:
- type = 0 -- G(x) [standard gamma function]
- type = 1 -- G(x+1) = x*G(x+1) = x! [factorial]
- type = 2 -- 1/G(x) [reciprocal gamma function]
- type = 3 -- log(|G(x)|) [log-gamma function, real part]
- """
- # Specal values
- sign, man, exp, bc = x
- if not man:
- if x == fzero:
- if type == 1: return fone
- if type == 2: return fzero
- raise ValueError("gamma function pole")
- if x == finf:
- if type == 2: return fzero
- return finf
- return fnan
- # First of all, for log gamma, numbers can be well beyond the fixed-point
- # range, so we must take care of huge numbers before e.g. trying
- # to convert x to the nearest integer
- if type == 3:
- wp = prec+20
- if exp+bc > wp and not sign:
- return mpf_sub(mpf_mul(x, mpf_log(x, wp), wp), x, prec, rnd)
- # We strongly want to special-case small integers
- is_integer = exp >= 0
- if is_integer:
- # Poles
- if sign:
- if type == 2:
- return fzero
- raise ValueError("gamma function pole")
- # n = x
- n = man << exp
- if n < SMALL_FACTORIAL_CACHE_SIZE:
- if type == 0:
- return mpf_pos(small_factorial_cache[n-1], prec, rnd)
- if type == 1:
- return mpf_pos(small_factorial_cache[n], prec, rnd)
- if type == 2:
- return mpf_div(fone, small_factorial_cache[n-1], prec, rnd)
- if type == 3:
- return mpf_log(small_factorial_cache[n-1], prec, rnd)
- else:
- # floor(abs(x))
- n = int(man >> (-exp))
- # Estimate size and precision
- # Estimate log(gamma(|x|),2) as x*log(x,2)
- mag = exp + bc
- gamma_size = n*mag
- if type == 3:
- wp = prec + 20
- else:
- wp = prec + bitcount(gamma_size) + 20
- # Very close to 0, pole
- if mag < -wp:
- if type == 0:
- return mpf_sub(mpf_div(fone,x, wp),mpf_shift(fone,-wp),prec,rnd)
- if type == 1: return mpf_sub(fone, x, prec, rnd)
- if type == 2: return mpf_add(x, mpf_shift(fone,mag-wp), prec, rnd)
- if type == 3: return mpf_neg(mpf_log(mpf_abs(x), prec, rnd))
- # From now on, we assume having a gamma function
- if type == 1:
- return mpf_gamma(mpf_add(x, fone), prec, rnd, 0)
- # Special case integers (those not small enough to be caught above,
- # but still small enough for an exact factorial to be faster
- # than an approximate algorithm), and half-integers
- if exp >= -1:
- if is_integer:
- if gamma_size < 10*wp:
- if type == 0:
- return from_int(ifac(n-1), prec, rnd)
- if type == 2:
- return from_rational(MPZ_ONE, ifac(n-1), prec, rnd)
- if type == 3:
- return mpf_log(from_int(ifac(n-1)), prec, rnd)
- # half-integer
- if n < 100 or gamma_size < 10*wp:
- if sign:
- w = sqrtpi_fixed(wp)
- if n % 2: f = ifac2(2*n+1)
- else: f = -ifac2(2*n+1)
- if type == 0:
- return mpf_shift(from_rational(w, f, prec, rnd), -wp+n+1)
- if type == 2:
- return mpf_shift(from_rational(f, w, prec, rnd), wp-n-1)
- if type == 3:
- return mpf_log(mpf_shift(from_rational(w, abs(f),
- prec, rnd), -wp+n+1), prec, rnd)
- elif n == 0:
- if type == 0: return mpf_sqrtpi(prec, rnd)
- if type == 2: return mpf_div(fone, mpf_sqrtpi(wp), prec, rnd)
- if type == 3: return mpf_log(mpf_sqrtpi(wp), prec, rnd)
- else:
- w = sqrtpi_fixed(wp)
- w = from_man_exp(w * ifac2(2*n-1), -wp-n)
- if type == 0: return mpf_pos(w, prec, rnd)
- if type == 2: return mpf_div(fone, w, prec, rnd)
- if type == 3: return mpf_log(mpf_abs(w), prec, rnd)
- # Convert to fixed point
- offset = exp + wp
- if offset >= 0: absxman = man << offset
- else: absxman = man >> (-offset)
- # For log gamma, provide accurate evaluation for x = 1+eps and 2+eps
- if type == 3 and not sign:
- one = MPZ_ONE << wp
- one_dist = abs(absxman-one)
- two_dist = abs(absxman-2*one)
- cancellation = (wp - bitcount(min(one_dist, two_dist)))
- if cancellation > 10:
- xsub1 = mpf_sub(fone, x)
- xsub2 = mpf_sub(ftwo, x)
- xsub1mag = xsub1[2]+xsub1[3]
- xsub2mag = xsub2[2]+xsub2[3]
- if xsub1mag < -wp:
- return mpf_mul(mpf_euler(wp), mpf_sub(fone, x), prec, rnd)
- if xsub2mag < -wp:
- return mpf_mul(mpf_sub(fone, mpf_euler(wp)),
- mpf_sub(x, ftwo), prec, rnd)
- # Proceed but increase precision
- wp += max(-xsub1mag, -xsub2mag)
- offset = exp + wp
- if offset >= 0: absxman = man << offset
- else: absxman = man >> (-offset)
- # Use Taylor series if appropriate
- n_for_stirling = int(GAMMA_STIRLING_BETA*wp)
- if n < max(100, n_for_stirling) and wp < MAX_GAMMA_TAYLOR_PREC:
- if sign:
- absxman = -absxman
- return gamma_fixed_taylor(x, absxman, wp, prec, rnd, type)
- # Use Stirling's series
- # First ensure that |x| is large enough for rapid convergence
- xorig = x
- # Argument reduction
- r = 0
- if n < n_for_stirling:
- r = one = MPZ_ONE << wp
- d = n_for_stirling - n
- for k in xrange(d):
- r = (r * absxman) >> wp
- absxman += one
- x = xabs = from_man_exp(absxman, -wp)
- if sign:
- x = mpf_neg(x)
- else:
- xabs = mpf_abs(x)
- # Asymptotic series
- y = real_stirling_series(absxman, wp)
- u = to_fixed(mpf_log(xabs, wp), wp)
- u = ((absxman - (MPZ_ONE<<(wp-1))) * u) >> wp
- y += u
- w = from_man_exp(y, -wp)
- # Compute final value
- if sign:
- # Reflection formula
- A = mpf_mul(mpf_sin_pi(xorig, wp), xorig, wp)
- B = mpf_neg(mpf_pi(wp))
- if type == 0 or type == 2:
- A = mpf_mul(A, mpf_exp(w, wp))
- if r:
- B = mpf_mul(B, from_man_exp(r, -wp), wp)
- if type == 0:
- return mpf_div(B, A, prec, rnd)
- if type == 2:
- return mpf_div(A, B, prec, rnd)
- if type == 3:
- if r:
- B = mpf_mul(B, from_man_exp(r, -wp), wp)
- A = mpf_add(mpf_log(mpf_abs(A), wp), w, wp)
- return mpf_sub(mpf_log(mpf_abs(B), wp), A, prec, rnd)
- else:
- if type == 0:
- if r:
- return mpf_div(mpf_exp(w, wp),
- from_man_exp(r, -wp), prec, rnd)
- return mpf_exp(w, prec, rnd)
- if type == 2:
- if r:
- return mpf_div(from_man_exp(r, -wp),
- mpf_exp(w, wp), prec, rnd)
- return mpf_exp(mpf_neg(w), prec, rnd)
- if type == 3:
- if r:
- return mpf_sub(w, mpf_log(from_man_exp(r,-wp), wp), prec, rnd)
- return mpf_pos(w, prec, rnd)
- def mpc_gamma(z, prec, rnd='d', type=0):
- a, b = z
- asign, aman, aexp, abc = a
- bsign, bman, bexp, bbc = b
- if b == fzero:
- # Imaginary part on negative half-axis for log-gamma function
- if type == 3 and asign:
- re = mpf_gamma(a, prec, rnd, 3)
- n = (-aman) >> (-aexp)
- im = mpf_mul_int(mpf_pi(prec+10), n, prec, rnd)
- return re, im
- return mpf_gamma(a, prec, rnd, type), fzero
- # Some kind of complex inf/nan
- if (not aman and aexp) or (not bman and bexp):
- return (fnan, fnan)
- # Initial working precision
- wp = prec + 20
- amag = aexp+abc
- bmag = bexp+bbc
- if aman:
- mag = max(amag, bmag)
- else:
- mag = bmag
- # Close to 0
- if mag < -8:
- if mag < -wp:
- # 1/gamma(z) = z + euler*z^2 + O(z^3)
- v = mpc_add(z, mpc_mul_mpf(mpc_mul(z,z,wp),mpf_euler(wp),wp), wp)
- if type == 0: return mpc_reciprocal(v, prec, rnd)
- if type == 1: return mpc_div(z, v, prec, rnd)
- if type == 2: return mpc_pos(v, prec, rnd)
- if type == 3: return mpc_log(mpc_reciprocal(v, prec), prec, rnd)
- elif type != 1:
- wp += (-mag)
- # Handle huge log-gamma values; must do this before converting to
- # a fixed-point value. TODO: determine a precise cutoff of validity
- # depending on amag and bmag
- if type == 3 and mag > wp and ((not asign) or (bmag >= amag)):
- return mpc_sub(mpc_mul(z, mpc_log(z, wp), wp), z, prec, rnd)
- # From now on, we assume having a gamma function
- if type == 1:
- return mpc_gamma((mpf_add(a, fone), b), prec, rnd, 0)
- an = abs(to_int(a))
- bn = abs(to_int(b))
- absn = max(an, bn)
- gamma_size = absn*mag
- if type == 3:
- pass
- else:
- wp += bitcount(gamma_size)
- # Reflect to the right half-plane. Note that Stirling's expansion
- # is valid in the left half-plane too, as long as we're not too close
- # to the real axis, but in order to use this argument reduction
- # in the negative direction must be implemented.
- #need_reflection = asign and ((bmag < 0) or (amag-bmag > 4))
- need_reflection = asign
- zorig = z
- if need_reflection:
- z = mpc_neg(z)
- asign, aman, aexp, abc = a = z[0]
- bsign, bman, bexp, bbc = b = z[1]
- # Imaginary part very small compared to real one?
- yfinal = 0
- balance_prec = 0
- if bmag < -10:
- # Check z ~= 1 and z ~= 2 for loggamma
- if type == 3:
- zsub1 = mpc_sub_mpf(z, fone)
- if zsub1[0] == fzero:
- cancel1 = -bmag
- else:
- cancel1 = -max(zsub1[0][2]+zsub1[0][3], bmag)
- if cancel1 > wp:
- pi = mpf_pi(wp)
- x = mpc_mul_mpf(zsub1, pi, wp)
- x = mpc_mul(x, x, wp)
- x = mpc_div_mpf(x, from_int(12), wp)
- y = mpc_mul_mpf(zsub1, mpf_neg(mpf_euler(wp)), wp)
- yfinal = mpc_add(x, y, wp)
- if not need_reflection:
- return mpc_pos(yfinal, prec, rnd)
- elif cancel1 > 0:
- wp += cancel1
- zsub2 = mpc_sub_mpf(z, ftwo)
- if zsub2[0] == fzero:
- cancel2 = -bmag
- else:
- cancel2 = -max(zsub2[0][2]+zsub2[0][3], bmag)
- if cancel2 > wp:
- pi = mpf_pi(wp)
- t = mpf_sub(mpf_mul(pi, pi), from_int(6))
- x = mpc_mul_mpf(mpc_mul(zsub2, zsub2, wp), t, wp)
- x = mpc_div_mpf(x, from_int(12), wp)
- y = mpc_mul_mpf(zsub2, mpf_sub(fone, mpf_euler(wp)), wp)
- yfinal = mpc_add(x, y, wp)
- if not need_reflection:
- return mpc_pos(yfinal, prec, rnd)
- elif cancel2 > 0:
- wp += cancel2
- if bmag < -wp:
- # Compute directly from the real gamma function.
- pp = 2*(wp+10)
- aabs = mpf_abs(a)
- eps = mpf_shift(fone, amag-wp)
- x1 = mpf_gamma(aabs, pp, type=type)
- x2 = mpf_gamma(mpf_add(aabs, eps), pp, type=type)
- xprime = mpf_div(mpf_sub(x2, x1, pp), eps, pp)
- y = mpf_mul(b, xprime, prec, rnd)
- yfinal = (x1, y)
- # Note: we still need to use the reflection formula for
- # near-poles, and the correct branch of the log-gamma function
- if not need_reflection:
- return mpc_pos(yfinal, prec, rnd)
- else:
- balance_prec += (-bmag)
- wp += balance_prec
- n_for_stirling = int(GAMMA_STIRLING_BETA*wp)
- need_reduction = absn < n_for_stirling
- afix = to_fixed(a, wp)
- bfix = to_fixed(b, wp)
- r = 0
- if not yfinal:
- zprered = z
- # Argument reduction
- if absn < n_for_stirling:
- absn = complex(an, bn)
- d = int((1 + n_for_stirling**2 - bn**2)**0.5 - an)
- rre = one = MPZ_ONE << wp
- rim = MPZ_ZERO
- for k in xrange(d):
- rre, rim = ((afix*rre-bfix*rim)>>wp), ((afix*rim + bfix*rre)>>wp)
- afix += one
- r = from_man_exp(rre, -wp), from_man_exp(rim, -wp)
- a = from_man_exp(afix, -wp)
- z = a, b
- yre, yim = complex_stirling_series(afix, bfix, wp)
- # (z-1/2)*log(z) + S
- lre, lim = mpc_log(z, wp)
- lre = to_fixed(lre, wp)
- lim = to_fixed(lim, wp)
- yre = ((lre*afix - lim*bfix)>>wp) - (lre>>1) + yre
- yim = ((lre*bfix + lim*afix)>>wp) - (lim>>1) + yim
- y = from_man_exp(yre, -wp), from_man_exp(yim, -wp)
- if r and type == 3:
- # If re(z) > 0 and abs(z) <= 4, the branches of loggamma(z)
- # and log(gamma(z)) coincide. Otherwise, use the zeroth order
- # Stirling expansion to compute the correct imaginary part.
- y = mpc_sub(y, mpc_log(r, wp), wp)
- zfa = to_float(zprered[0])
- zfb = to_float(zprered[1])
- zfabs = math.hypot(zfa,zfb)
- #if not (zfa > 0.0 and zfabs <= 4):
- yfb = to_float(y[1])
- u = math.atan2(zfb, zfa)
- if zfabs <= 0.5:
- gi = 0.577216*zfb - u
- else:
- gi = -zfb - 0.5*u + zfa*u + zfb*math.log(zfabs)
- n = int(math.floor((gi-yfb)/(2*math.pi)+0.5))
- y = (y[0], mpf_add(y[1], mpf_mul_int(mpf_pi(wp), 2*n, wp), wp))
- if need_reflection:
- if type == 0 or type == 2:
- A = mpc_mul(mpc_sin_pi(zorig, wp), zorig, wp)
- B = (mpf_neg(mpf_pi(wp)), fzero)
- if yfinal:
- if type == 2:
- A = mpc_div(A, yfinal, wp)
- else:
- A = mpc_mul(A, yfinal, wp)
- else:
- A = mpc_mul(A, mpc_exp(y, wp), wp)
- if r:
- B = mpc_mul(B, r, wp)
- if type == 0: return mpc_div(B, A, prec, rnd)
- if type == 2: return mpc_div(A, B, prec, rnd)
- # Reflection formula for the log-gamma function with correct branch
- # http://functions.wolfram.com/GammaBetaErf/LogGamma/16/01/01/0006/
- # LogGamma[z] == -LogGamma[-z] - Log[-z] +
- # Sign[Im[z]] Floor[Re[z]] Pi I + Log[Pi] -
- # Log[Sin[Pi (z - Floor[Re[z]])]] -
- # Pi I (1 - Abs[Sign[Im[z]]]) Abs[Floor[Re[z]]]
- if type == 3:
- if yfinal:
- s1 = mpc_neg(yfinal)
- else:
- s1 = mpc_neg(y)
- # s -= log(-z)
- s1 = mpc_sub(s1, mpc_log(mpc_neg(zorig), wp), wp)
- # floor(re(z))
- rezfloor = mpf_floor(zorig[0])
- imzsign = mpf_sign(zorig[1])
- pi = mpf_pi(wp)
- t = mpf_mul(pi, rezfloor)
- t = mpf_mul_int(t, imzsign, wp)
- s1 = (s1[0], mpf_add(s1[1], t, wp))
- s1 = mpc_add_mpf(s1, mpf_log(pi, wp), wp)
- t = mpc_sin_pi(mpc_sub_mpf(zorig, rezfloor), wp)
- t = mpc_log(t, wp)
- s1 = mpc_sub(s1, t, wp)
- # Note: may actually be unused, because we fall back
- # to the mpf_ function for real arguments
- if not imzsign:
- t = mpf_mul(pi, mpf_floor(rezfloor), wp)
- s1 = (s1[0], mpf_sub(s1[1], t, wp))
- return mpc_pos(s1, prec, rnd)
- else:
- if type == 0:
- if r:
- return mpc_div(mpc_exp(y, wp), r, prec, rnd)
- return mpc_exp(y, prec, rnd)
- if type == 2:
- if r:
- return mpc_div(r, mpc_exp(y, wp), prec, rnd)
- return mpc_exp(mpc_neg(y), prec, rnd)
- if type == 3:
- return mpc_pos(y, prec, rnd)
- def mpf_factorial(x, prec, rnd='d'):
- return mpf_gamma(x, prec, rnd, 1)
- def mpc_factorial(x, prec, rnd='d'):
- return mpc_gamma(x, prec, rnd, 1)
- def mpf_rgamma(x, prec, rnd='d'):
- return mpf_gamma(x, prec, rnd, 2)
- def mpc_rgamma(x, prec, rnd='d'):
- return mpc_gamma(x, prec, rnd, 2)
- def mpf_loggamma(x, prec, rnd='d'):
- sign, man, exp, bc = x
- if sign:
- raise ComplexResult
- return mpf_gamma(x, prec, rnd, 3)
- def mpc_loggamma(z, prec, rnd='d'):
- a, b = z
- asign, aman, aexp, abc = a
- bsign, bman, bexp, bbc = b
- if b == fzero and asign:
- re = mpf_gamma(a, prec, rnd, 3)
- n = (-aman) >> (-aexp)
- im = mpf_mul_int(mpf_pi(prec+10), n, prec, rnd)
- return re, im
- return mpc_gamma(z, prec, rnd, 3)
- def mpf_gamma_int(n, prec, rnd=round_fast):
- if n < SMALL_FACTORIAL_CACHE_SIZE:
- return mpf_pos(small_factorial_cache[n-1], prec, rnd)
- return mpf_gamma(from_int(n), prec, rnd)
|