123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835 |
- """
- Low-level functions for complex arithmetic.
- """
- import sys
- from .backend import MPZ, MPZ_ZERO, MPZ_ONE, MPZ_TWO, BACKEND
- from .libmpf import (\
- round_floor, round_ceiling, round_down, round_up,
- round_nearest, round_fast, bitcount,
- bctable, normalize, normalize1, reciprocal_rnd, rshift, lshift, giant_steps,
- negative_rnd,
- to_str, to_fixed, from_man_exp, from_float, to_float, from_int, to_int,
- fzero, fone, ftwo, fhalf, finf, fninf, fnan, fnone,
- mpf_abs, mpf_pos, mpf_neg, mpf_add, mpf_sub, mpf_mul,
- mpf_div, mpf_mul_int, mpf_shift, mpf_sqrt, mpf_hypot,
- mpf_rdiv_int, mpf_floor, mpf_ceil, mpf_nint, mpf_frac,
- mpf_sign, mpf_hash,
- ComplexResult
- )
- from .libelefun import (\
- mpf_pi, mpf_exp, mpf_log, mpf_cos_sin, mpf_cosh_sinh, mpf_tan, mpf_pow_int,
- mpf_log_hypot,
- mpf_cos_sin_pi, mpf_phi,
- mpf_cos, mpf_sin, mpf_cos_pi, mpf_sin_pi,
- mpf_atan, mpf_atan2, mpf_cosh, mpf_sinh, mpf_tanh,
- mpf_asin, mpf_acos, mpf_acosh, mpf_nthroot, mpf_fibonacci
- )
- # An mpc value is a (real, imag) tuple
- mpc_one = fone, fzero
- mpc_zero = fzero, fzero
- mpc_two = ftwo, fzero
- mpc_half = (fhalf, fzero)
- _infs = (finf, fninf)
- _infs_nan = (finf, fninf, fnan)
- def mpc_is_inf(z):
- """Check if either real or imaginary part is infinite"""
- re, im = z
- if re in _infs: return True
- if im in _infs: return True
- return False
- def mpc_is_infnan(z):
- """Check if either real or imaginary part is infinite or nan"""
- re, im = z
- if re in _infs_nan: return True
- if im in _infs_nan: return True
- return False
- def mpc_to_str(z, dps, **kwargs):
- re, im = z
- rs = to_str(re, dps)
- if im[0]:
- return rs + " - " + to_str(mpf_neg(im), dps, **kwargs) + "j"
- else:
- return rs + " + " + to_str(im, dps, **kwargs) + "j"
- def mpc_to_complex(z, strict=False, rnd=round_fast):
- re, im = z
- return complex(to_float(re, strict, rnd), to_float(im, strict, rnd))
- def mpc_hash(z):
- if sys.version_info >= (3, 2):
- re, im = z
- h = mpf_hash(re) + sys.hash_info.imag * mpf_hash(im)
- # Need to reduce either module 2^32 or 2^64
- h = h % (2**sys.hash_info.width)
- return int(h)
- else:
- try:
- return hash(mpc_to_complex(z, strict=True))
- except OverflowError:
- return hash(z)
- def mpc_conjugate(z, prec, rnd=round_fast):
- re, im = z
- return re, mpf_neg(im, prec, rnd)
- def mpc_is_nonzero(z):
- return z != mpc_zero
- def mpc_add(z, w, prec, rnd=round_fast):
- a, b = z
- c, d = w
- return mpf_add(a, c, prec, rnd), mpf_add(b, d, prec, rnd)
- def mpc_add_mpf(z, x, prec, rnd=round_fast):
- a, b = z
- return mpf_add(a, x, prec, rnd), b
- def mpc_sub(z, w, prec=0, rnd=round_fast):
- a, b = z
- c, d = w
- return mpf_sub(a, c, prec, rnd), mpf_sub(b, d, prec, rnd)
- def mpc_sub_mpf(z, p, prec=0, rnd=round_fast):
- a, b = z
- return mpf_sub(a, p, prec, rnd), b
- def mpc_pos(z, prec, rnd=round_fast):
- a, b = z
- return mpf_pos(a, prec, rnd), mpf_pos(b, prec, rnd)
- def mpc_neg(z, prec=None, rnd=round_fast):
- a, b = z
- return mpf_neg(a, prec, rnd), mpf_neg(b, prec, rnd)
- def mpc_shift(z, n):
- a, b = z
- return mpf_shift(a, n), mpf_shift(b, n)
- def mpc_abs(z, prec, rnd=round_fast):
- """Absolute value of a complex number, |a+bi|.
- Returns an mpf value."""
- a, b = z
- return mpf_hypot(a, b, prec, rnd)
- def mpc_arg(z, prec, rnd=round_fast):
- """Argument of a complex number. Returns an mpf value."""
- a, b = z
- return mpf_atan2(b, a, prec, rnd)
- def mpc_floor(z, prec, rnd=round_fast):
- a, b = z
- return mpf_floor(a, prec, rnd), mpf_floor(b, prec, rnd)
- def mpc_ceil(z, prec, rnd=round_fast):
- a, b = z
- return mpf_ceil(a, prec, rnd), mpf_ceil(b, prec, rnd)
- def mpc_nint(z, prec, rnd=round_fast):
- a, b = z
- return mpf_nint(a, prec, rnd), mpf_nint(b, prec, rnd)
- def mpc_frac(z, prec, rnd=round_fast):
- a, b = z
- return mpf_frac(a, prec, rnd), mpf_frac(b, prec, rnd)
- def mpc_mul(z, w, prec, rnd=round_fast):
- """
- Complex multiplication.
- Returns the real and imaginary part of (a+bi)*(c+di), rounded to
- the specified precision. The rounding mode applies to the real and
- imaginary parts separately.
- """
- a, b = z
- c, d = w
- p = mpf_mul(a, c)
- q = mpf_mul(b, d)
- r = mpf_mul(a, d)
- s = mpf_mul(b, c)
- re = mpf_sub(p, q, prec, rnd)
- im = mpf_add(r, s, prec, rnd)
- return re, im
- def mpc_square(z, prec, rnd=round_fast):
- # (a+b*I)**2 == a**2 - b**2 + 2*I*a*b
- a, b = z
- p = mpf_mul(a,a)
- q = mpf_mul(b,b)
- r = mpf_mul(a,b, prec, rnd)
- re = mpf_sub(p, q, prec, rnd)
- im = mpf_shift(r, 1)
- return re, im
- def mpc_mul_mpf(z, p, prec, rnd=round_fast):
- a, b = z
- re = mpf_mul(a, p, prec, rnd)
- im = mpf_mul(b, p, prec, rnd)
- return re, im
- def mpc_mul_imag_mpf(z, x, prec, rnd=round_fast):
- """
- Multiply the mpc value z by I*x where x is an mpf value.
- """
- a, b = z
- re = mpf_neg(mpf_mul(b, x, prec, rnd))
- im = mpf_mul(a, x, prec, rnd)
- return re, im
- def mpc_mul_int(z, n, prec, rnd=round_fast):
- a, b = z
- re = mpf_mul_int(a, n, prec, rnd)
- im = mpf_mul_int(b, n, prec, rnd)
- return re, im
- def mpc_div(z, w, prec, rnd=round_fast):
- a, b = z
- c, d = w
- wp = prec + 10
- # mag = c*c + d*d
- mag = mpf_add(mpf_mul(c, c), mpf_mul(d, d), wp)
- # (a*c+b*d)/mag, (b*c-a*d)/mag
- t = mpf_add(mpf_mul(a,c), mpf_mul(b,d), wp)
- u = mpf_sub(mpf_mul(b,c), mpf_mul(a,d), wp)
- return mpf_div(t,mag,prec,rnd), mpf_div(u,mag,prec,rnd)
- def mpc_div_mpf(z, p, prec, rnd=round_fast):
- """Calculate z/p where p is real"""
- a, b = z
- re = mpf_div(a, p, prec, rnd)
- im = mpf_div(b, p, prec, rnd)
- return re, im
- def mpc_reciprocal(z, prec, rnd=round_fast):
- """Calculate 1/z efficiently"""
- a, b = z
- m = mpf_add(mpf_mul(a,a),mpf_mul(b,b),prec+10)
- re = mpf_div(a, m, prec, rnd)
- im = mpf_neg(mpf_div(b, m, prec, rnd))
- return re, im
- def mpc_mpf_div(p, z, prec, rnd=round_fast):
- """Calculate p/z where p is real efficiently"""
- a, b = z
- m = mpf_add(mpf_mul(a,a),mpf_mul(b,b), prec+10)
- re = mpf_div(mpf_mul(a,p), m, prec, rnd)
- im = mpf_div(mpf_neg(mpf_mul(b,p)), m, prec, rnd)
- return re, im
- def complex_int_pow(a, b, n):
- """Complex integer power: computes (a+b*I)**n exactly for
- nonnegative n (a and b must be Python ints)."""
- wre = 1
- wim = 0
- while n:
- if n & 1:
- wre, wim = wre*a - wim*b, wim*a + wre*b
- n -= 1
- a, b = a*a - b*b, 2*a*b
- n //= 2
- return wre, wim
- def mpc_pow(z, w, prec, rnd=round_fast):
- if w[1] == fzero:
- return mpc_pow_mpf(z, w[0], prec, rnd)
- return mpc_exp(mpc_mul(mpc_log(z, prec+10), w, prec+10), prec, rnd)
- def mpc_pow_mpf(z, p, prec, rnd=round_fast):
- psign, pman, pexp, pbc = p
- if pexp >= 0:
- return mpc_pow_int(z, (-1)**psign * (pman<<pexp), prec, rnd)
- if pexp == -1:
- sqrtz = mpc_sqrt(z, prec+10)
- return mpc_pow_int(sqrtz, (-1)**psign * pman, prec, rnd)
- return mpc_exp(mpc_mul_mpf(mpc_log(z, prec+10), p, prec+10), prec, rnd)
- def mpc_pow_int(z, n, prec, rnd=round_fast):
- a, b = z
- if b == fzero:
- return mpf_pow_int(a, n, prec, rnd), fzero
- if a == fzero:
- v = mpf_pow_int(b, n, prec, rnd)
- n %= 4
- if n == 0:
- return v, fzero
- elif n == 1:
- return fzero, v
- elif n == 2:
- return mpf_neg(v), fzero
- elif n == 3:
- return fzero, mpf_neg(v)
- if n == 0: return mpc_one
- if n == 1: return mpc_pos(z, prec, rnd)
- if n == 2: return mpc_square(z, prec, rnd)
- if n == -1: return mpc_reciprocal(z, prec, rnd)
- if n < 0: return mpc_reciprocal(mpc_pow_int(z, -n, prec+4), prec, rnd)
- asign, aman, aexp, abc = a
- bsign, bman, bexp, bbc = b
- if asign: aman = -aman
- if bsign: bman = -bman
- de = aexp - bexp
- abs_de = abs(de)
- exact_size = n*(abs_de + max(abc, bbc))
- if exact_size < 10000:
- if de > 0:
- aman <<= de
- aexp = bexp
- else:
- bman <<= (-de)
- bexp = aexp
- re, im = complex_int_pow(aman, bman, n)
- re = from_man_exp(re, int(n*aexp), prec, rnd)
- im = from_man_exp(im, int(n*bexp), prec, rnd)
- return re, im
- return mpc_exp(mpc_mul_int(mpc_log(z, prec+10), n, prec+10), prec, rnd)
- def mpc_sqrt(z, prec, rnd=round_fast):
- """Complex square root (principal branch).
- We have sqrt(a+bi) = sqrt((r+a)/2) + b/sqrt(2*(r+a))*i where
- r = abs(a+bi), when a+bi is not a negative real number."""
- a, b = z
- if b == fzero:
- if a == fzero:
- return (a, b)
- # When a+bi is a negative real number, we get a real sqrt times i
- if a[0]:
- im = mpf_sqrt(mpf_neg(a), prec, rnd)
- return (fzero, im)
- else:
- re = mpf_sqrt(a, prec, rnd)
- return (re, fzero)
- wp = prec+20
- if not a[0]: # case a positive
- t = mpf_add(mpc_abs((a, b), wp), a, wp) # t = abs(a+bi) + a
- u = mpf_shift(t, -1) # u = t/2
- re = mpf_sqrt(u, prec, rnd) # re = sqrt(u)
- v = mpf_shift(t, 1) # v = 2*t
- w = mpf_sqrt(v, wp) # w = sqrt(v)
- im = mpf_div(b, w, prec, rnd) # im = b / w
- else: # case a negative
- t = mpf_sub(mpc_abs((a, b), wp), a, wp) # t = abs(a+bi) - a
- u = mpf_shift(t, -1) # u = t/2
- im = mpf_sqrt(u, prec, rnd) # im = sqrt(u)
- v = mpf_shift(t, 1) # v = 2*t
- w = mpf_sqrt(v, wp) # w = sqrt(v)
- re = mpf_div(b, w, prec, rnd) # re = b/w
- if b[0]:
- re = mpf_neg(re)
- im = mpf_neg(im)
- return re, im
- def mpc_nthroot_fixed(a, b, n, prec):
- # a, b signed integers at fixed precision prec
- start = 50
- a1 = int(rshift(a, prec - n*start))
- b1 = int(rshift(b, prec - n*start))
- try:
- r = (a1 + 1j * b1)**(1.0/n)
- re = r.real
- im = r.imag
- re = MPZ(int(re))
- im = MPZ(int(im))
- except OverflowError:
- a1 = from_int(a1, start)
- b1 = from_int(b1, start)
- fn = from_int(n)
- nth = mpf_rdiv_int(1, fn, start)
- re, im = mpc_pow((a1, b1), (nth, fzero), start)
- re = to_int(re)
- im = to_int(im)
- extra = 10
- prevp = start
- extra1 = n
- for p in giant_steps(start, prec+extra):
- # this is slow for large n, unlike int_pow_fixed
- re2, im2 = complex_int_pow(re, im, n-1)
- re2 = rshift(re2, (n-1)*prevp - p - extra1)
- im2 = rshift(im2, (n-1)*prevp - p - extra1)
- r4 = (re2*re2 + im2*im2) >> (p + extra1)
- ap = rshift(a, prec - p)
- bp = rshift(b, prec - p)
- rec = (ap * re2 + bp * im2) >> p
- imc = (-ap * im2 + bp * re2) >> p
- reb = (rec << p) // r4
- imb = (imc << p) // r4
- re = (reb + (n-1)*lshift(re, p-prevp))//n
- im = (imb + (n-1)*lshift(im, p-prevp))//n
- prevp = p
- return re, im
- def mpc_nthroot(z, n, prec, rnd=round_fast):
- """
- Complex n-th root.
- Use Newton method as in the real case when it is faster,
- otherwise use z**(1/n)
- """
- a, b = z
- if a[0] == 0 and b == fzero:
- re = mpf_nthroot(a, n, prec, rnd)
- return (re, fzero)
- if n < 2:
- if n == 0:
- return mpc_one
- if n == 1:
- return mpc_pos((a, b), prec, rnd)
- if n == -1:
- return mpc_div(mpc_one, (a, b), prec, rnd)
- inverse = mpc_nthroot((a, b), -n, prec+5, reciprocal_rnd[rnd])
- return mpc_div(mpc_one, inverse, prec, rnd)
- if n <= 20:
- prec2 = int(1.2 * (prec + 10))
- asign, aman, aexp, abc = a
- bsign, bman, bexp, bbc = b
- pf = mpc_abs((a,b), prec)
- if pf[-2] + pf[-1] > -10 and pf[-2] + pf[-1] < prec:
- af = to_fixed(a, prec2)
- bf = to_fixed(b, prec2)
- re, im = mpc_nthroot_fixed(af, bf, n, prec2)
- extra = 10
- re = from_man_exp(re, -prec2-extra, prec2, rnd)
- im = from_man_exp(im, -prec2-extra, prec2, rnd)
- return re, im
- fn = from_int(n)
- prec2 = prec+10 + 10
- nth = mpf_rdiv_int(1, fn, prec2)
- re, im = mpc_pow((a, b), (nth, fzero), prec2, rnd)
- re = normalize(re[0], re[1], re[2], re[3], prec, rnd)
- im = normalize(im[0], im[1], im[2], im[3], prec, rnd)
- return re, im
- def mpc_cbrt(z, prec, rnd=round_fast):
- """
- Complex cubic root.
- """
- return mpc_nthroot(z, 3, prec, rnd)
- def mpc_exp(z, prec, rnd=round_fast):
- """
- Complex exponential function.
- We use the direct formula exp(a+bi) = exp(a) * (cos(b) + sin(b)*i)
- for the computation. This formula is very nice because it is
- pefectly stable; since we just do real multiplications, the only
- numerical errors that can creep in are single-ulp rounding errors.
- The formula is efficient since mpmath's real exp is quite fast and
- since we can compute cos and sin simultaneously.
- It is no problem if a and b are large; if the implementations of
- exp/cos/sin are accurate and efficient for all real numbers, then
- so is this function for all complex numbers.
- """
- a, b = z
- if a == fzero:
- return mpf_cos_sin(b, prec, rnd)
- if b == fzero:
- return mpf_exp(a, prec, rnd), fzero
- mag = mpf_exp(a, prec+4, rnd)
- c, s = mpf_cos_sin(b, prec+4, rnd)
- re = mpf_mul(mag, c, prec, rnd)
- im = mpf_mul(mag, s, prec, rnd)
- return re, im
- def mpc_log(z, prec, rnd=round_fast):
- re = mpf_log_hypot(z[0], z[1], prec, rnd)
- im = mpc_arg(z, prec, rnd)
- return re, im
- def mpc_cos(z, prec, rnd=round_fast):
- """Complex cosine. The formula used is cos(a+bi) = cos(a)*cosh(b) -
- sin(a)*sinh(b)*i.
- The same comments apply as for the complex exp: only real
- multiplications are pewrormed, so no cancellation errors are
- possible. The formula is also efficient since we can compute both
- pairs (cos, sin) and (cosh, sinh) in single stwps."""
- a, b = z
- if b == fzero:
- return mpf_cos(a, prec, rnd), fzero
- if a == fzero:
- return mpf_cosh(b, prec, rnd), fzero
- wp = prec + 6
- c, s = mpf_cos_sin(a, wp)
- ch, sh = mpf_cosh_sinh(b, wp)
- re = mpf_mul(c, ch, prec, rnd)
- im = mpf_mul(s, sh, prec, rnd)
- return re, mpf_neg(im)
- def mpc_sin(z, prec, rnd=round_fast):
- """Complex sine. We have sin(a+bi) = sin(a)*cosh(b) +
- cos(a)*sinh(b)*i. See the docstring for mpc_cos for additional
- comments."""
- a, b = z
- if b == fzero:
- return mpf_sin(a, prec, rnd), fzero
- if a == fzero:
- return fzero, mpf_sinh(b, prec, rnd)
- wp = prec + 6
- c, s = mpf_cos_sin(a, wp)
- ch, sh = mpf_cosh_sinh(b, wp)
- re = mpf_mul(s, ch, prec, rnd)
- im = mpf_mul(c, sh, prec, rnd)
- return re, im
- def mpc_tan(z, prec, rnd=round_fast):
- """Complex tangent. Computed as tan(a+bi) = sin(2a)/M + sinh(2b)/M*i
- where M = cos(2a) + cosh(2b)."""
- a, b = z
- asign, aman, aexp, abc = a
- bsign, bman, bexp, bbc = b
- if b == fzero: return mpf_tan(a, prec, rnd), fzero
- if a == fzero: return fzero, mpf_tanh(b, prec, rnd)
- wp = prec + 15
- a = mpf_shift(a, 1)
- b = mpf_shift(b, 1)
- c, s = mpf_cos_sin(a, wp)
- ch, sh = mpf_cosh_sinh(b, wp)
- # TODO: handle cancellation when c ~= -1 and ch ~= 1
- mag = mpf_add(c, ch, wp)
- re = mpf_div(s, mag, prec, rnd)
- im = mpf_div(sh, mag, prec, rnd)
- return re, im
- def mpc_cos_pi(z, prec, rnd=round_fast):
- a, b = z
- if b == fzero:
- return mpf_cos_pi(a, prec, rnd), fzero
- b = mpf_mul(b, mpf_pi(prec+5), prec+5)
- if a == fzero:
- return mpf_cosh(b, prec, rnd), fzero
- wp = prec + 6
- c, s = mpf_cos_sin_pi(a, wp)
- ch, sh = mpf_cosh_sinh(b, wp)
- re = mpf_mul(c, ch, prec, rnd)
- im = mpf_mul(s, sh, prec, rnd)
- return re, mpf_neg(im)
- def mpc_sin_pi(z, prec, rnd=round_fast):
- a, b = z
- if b == fzero:
- return mpf_sin_pi(a, prec, rnd), fzero
- b = mpf_mul(b, mpf_pi(prec+5), prec+5)
- if a == fzero:
- return fzero, mpf_sinh(b, prec, rnd)
- wp = prec + 6
- c, s = mpf_cos_sin_pi(a, wp)
- ch, sh = mpf_cosh_sinh(b, wp)
- re = mpf_mul(s, ch, prec, rnd)
- im = mpf_mul(c, sh, prec, rnd)
- return re, im
- def mpc_cos_sin(z, prec, rnd=round_fast):
- a, b = z
- if a == fzero:
- ch, sh = mpf_cosh_sinh(b, prec, rnd)
- return (ch, fzero), (fzero, sh)
- if b == fzero:
- c, s = mpf_cos_sin(a, prec, rnd)
- return (c, fzero), (s, fzero)
- wp = prec + 6
- c, s = mpf_cos_sin(a, wp)
- ch, sh = mpf_cosh_sinh(b, wp)
- cre = mpf_mul(c, ch, prec, rnd)
- cim = mpf_mul(s, sh, prec, rnd)
- sre = mpf_mul(s, ch, prec, rnd)
- sim = mpf_mul(c, sh, prec, rnd)
- return (cre, mpf_neg(cim)), (sre, sim)
- def mpc_cos_sin_pi(z, prec, rnd=round_fast):
- a, b = z
- if b == fzero:
- c, s = mpf_cos_sin_pi(a, prec, rnd)
- return (c, fzero), (s, fzero)
- b = mpf_mul(b, mpf_pi(prec+5), prec+5)
- if a == fzero:
- ch, sh = mpf_cosh_sinh(b, prec, rnd)
- return (ch, fzero), (fzero, sh)
- wp = prec + 6
- c, s = mpf_cos_sin_pi(a, wp)
- ch, sh = mpf_cosh_sinh(b, wp)
- cre = mpf_mul(c, ch, prec, rnd)
- cim = mpf_mul(s, sh, prec, rnd)
- sre = mpf_mul(s, ch, prec, rnd)
- sim = mpf_mul(c, sh, prec, rnd)
- return (cre, mpf_neg(cim)), (sre, sim)
- def mpc_cosh(z, prec, rnd=round_fast):
- """Complex hyperbolic cosine. Computed as cosh(z) = cos(z*i)."""
- a, b = z
- return mpc_cos((b, mpf_neg(a)), prec, rnd)
- def mpc_sinh(z, prec, rnd=round_fast):
- """Complex hyperbolic sine. Computed as sinh(z) = -i*sin(z*i)."""
- a, b = z
- b, a = mpc_sin((b, a), prec, rnd)
- return a, b
- def mpc_tanh(z, prec, rnd=round_fast):
- """Complex hyperbolic tangent. Computed as tanh(z) = -i*tan(z*i)."""
- a, b = z
- b, a = mpc_tan((b, a), prec, rnd)
- return a, b
- # TODO: avoid loss of accuracy
- def mpc_atan(z, prec, rnd=round_fast):
- a, b = z
- # atan(z) = (I/2)*(log(1-I*z) - log(1+I*z))
- # x = 1-I*z = 1 + b - I*a
- # y = 1+I*z = 1 - b + I*a
- wp = prec + 15
- x = mpf_add(fone, b, wp), mpf_neg(a)
- y = mpf_sub(fone, b, wp), a
- l1 = mpc_log(x, wp)
- l2 = mpc_log(y, wp)
- a, b = mpc_sub(l1, l2, prec, rnd)
- # (I/2) * (a+b*I) = (-b/2 + a/2*I)
- v = mpf_neg(mpf_shift(b,-1)), mpf_shift(a,-1)
- # Subtraction at infinity gives correct real part but
- # wrong imaginary part (should be zero)
- if v[1] == fnan and mpc_is_inf(z):
- v = (v[0], fzero)
- return v
- beta_crossover = from_float(0.6417)
- alpha_crossover = from_float(1.5)
- def acos_asin(z, prec, rnd, n):
- """ complex acos for n = 0, asin for n = 1
- The algorithm is described in
- T.E. Hull, T.F. Fairgrieve and P.T.P. Tang
- 'Implementing the Complex Arcsine and Arcosine Functions
- using Exception Handling',
- ACM Trans. on Math. Software Vol. 23 (1997), p299
- The complex acos and asin can be defined as
- acos(z) = acos(beta) - I*sign(a)* log(alpha + sqrt(alpha**2 -1))
- asin(z) = asin(beta) + I*sign(a)* log(alpha + sqrt(alpha**2 -1))
- where z = a + I*b
- alpha = (1/2)*(r + s); beta = (1/2)*(r - s) = a/alpha
- r = sqrt((a+1)**2 + y**2); s = sqrt((a-1)**2 + y**2)
- These expressions are rewritten in different ways in different
- regions, delimited by two crossovers alpha_crossover and beta_crossover,
- and by abs(a) <= 1, in order to improve the numerical accuracy.
- """
- a, b = z
- wp = prec + 10
- # special cases with real argument
- if b == fzero:
- am = mpf_sub(fone, mpf_abs(a), wp)
- # case abs(a) <= 1
- if not am[0]:
- if n == 0:
- return mpf_acos(a, prec, rnd), fzero
- else:
- return mpf_asin(a, prec, rnd), fzero
- # cases abs(a) > 1
- else:
- # case a < -1
- if a[0]:
- pi = mpf_pi(prec, rnd)
- c = mpf_acosh(mpf_neg(a), prec, rnd)
- if n == 0:
- return pi, mpf_neg(c)
- else:
- return mpf_neg(mpf_shift(pi, -1)), c
- # case a > 1
- else:
- c = mpf_acosh(a, prec, rnd)
- if n == 0:
- return fzero, c
- else:
- pi = mpf_pi(prec, rnd)
- return mpf_shift(pi, -1), mpf_neg(c)
- asign = bsign = 0
- if a[0]:
- a = mpf_neg(a)
- asign = 1
- if b[0]:
- b = mpf_neg(b)
- bsign = 1
- am = mpf_sub(fone, a, wp)
- ap = mpf_add(fone, a, wp)
- r = mpf_hypot(ap, b, wp)
- s = mpf_hypot(am, b, wp)
- alpha = mpf_shift(mpf_add(r, s, wp), -1)
- beta = mpf_div(a, alpha, wp)
- b2 = mpf_mul(b,b, wp)
- # case beta <= beta_crossover
- if not mpf_sub(beta_crossover, beta, wp)[0]:
- if n == 0:
- re = mpf_acos(beta, wp)
- else:
- re = mpf_asin(beta, wp)
- else:
- # to compute the real part in this region use the identity
- # asin(beta) = atan(beta/sqrt(1-beta**2))
- # beta/sqrt(1-beta**2) = (alpha + a) * (alpha - a)
- # alpha + a is numerically accurate; alpha - a can have
- # cancellations leading to numerical inaccuracies, so rewrite
- # it in differente ways according to the region
- Ax = mpf_add(alpha, a, wp)
- # case a <= 1
- if not am[0]:
- # c = b*b/(r + (a+1)); d = (s + (1-a))
- # alpha - a = (1/2)*(c + d)
- # case n=0: re = atan(sqrt((1/2) * Ax * (c + d))/a)
- # case n=1: re = atan(a/sqrt((1/2) * Ax * (c + d)))
- c = mpf_div(b2, mpf_add(r, ap, wp), wp)
- d = mpf_add(s, am, wp)
- re = mpf_shift(mpf_mul(Ax, mpf_add(c, d, wp), wp), -1)
- if n == 0:
- re = mpf_atan(mpf_div(mpf_sqrt(re, wp), a, wp), wp)
- else:
- re = mpf_atan(mpf_div(a, mpf_sqrt(re, wp), wp), wp)
- else:
- # c = Ax/(r + (a+1)); d = Ax/(s - (1-a))
- # alpha - a = (1/2)*(c + d)
- # case n = 0: re = atan(b*sqrt(c + d)/2/a)
- # case n = 1: re = atan(a/(b*sqrt(c + d)/2)
- c = mpf_div(Ax, mpf_add(r, ap, wp), wp)
- d = mpf_div(Ax, mpf_sub(s, am, wp), wp)
- re = mpf_shift(mpf_add(c, d, wp), -1)
- re = mpf_mul(b, mpf_sqrt(re, wp), wp)
- if n == 0:
- re = mpf_atan(mpf_div(re, a, wp), wp)
- else:
- re = mpf_atan(mpf_div(a, re, wp), wp)
- # to compute alpha + sqrt(alpha**2 - 1), if alpha <= alpha_crossover
- # replace it with 1 + Am1 + sqrt(Am1*(alpha+1)))
- # where Am1 = alpha -1
- # if alpha <= alpha_crossover:
- if not mpf_sub(alpha_crossover, alpha, wp)[0]:
- c1 = mpf_div(b2, mpf_add(r, ap, wp), wp)
- # case a < 1
- if mpf_neg(am)[0]:
- # Am1 = (1/2) * (b*b/(r + (a+1)) + b*b/(s + (1-a))
- c2 = mpf_add(s, am, wp)
- c2 = mpf_div(b2, c2, wp)
- Am1 = mpf_shift(mpf_add(c1, c2, wp), -1)
- else:
- # Am1 = (1/2) * (b*b/(r + (a+1)) + (s - (1-a)))
- c2 = mpf_sub(s, am, wp)
- Am1 = mpf_shift(mpf_add(c1, c2, wp), -1)
- # im = log(1 + Am1 + sqrt(Am1*(alpha+1)))
- im = mpf_mul(Am1, mpf_add(alpha, fone, wp), wp)
- im = mpf_log(mpf_add(fone, mpf_add(Am1, mpf_sqrt(im, wp), wp), wp), wp)
- else:
- # im = log(alpha + sqrt(alpha*alpha - 1))
- im = mpf_sqrt(mpf_sub(mpf_mul(alpha, alpha, wp), fone, wp), wp)
- im = mpf_log(mpf_add(alpha, im, wp), wp)
- if asign:
- if n == 0:
- re = mpf_sub(mpf_pi(wp), re, wp)
- else:
- re = mpf_neg(re)
- if not bsign and n == 0:
- im = mpf_neg(im)
- if bsign and n == 1:
- im = mpf_neg(im)
- re = normalize(re[0], re[1], re[2], re[3], prec, rnd)
- im = normalize(im[0], im[1], im[2], im[3], prec, rnd)
- return re, im
- def mpc_acos(z, prec, rnd=round_fast):
- return acos_asin(z, prec, rnd, 0)
- def mpc_asin(z, prec, rnd=round_fast):
- return acos_asin(z, prec, rnd, 1)
- def mpc_asinh(z, prec, rnd=round_fast):
- # asinh(z) = I * asin(-I z)
- a, b = z
- a, b = mpc_asin((b, mpf_neg(a)), prec, rnd)
- return mpf_neg(b), a
- def mpc_acosh(z, prec, rnd=round_fast):
- # acosh(z) = -I * acos(z) for Im(acos(z)) <= 0
- # +I * acos(z) otherwise
- a, b = mpc_acos(z, prec, rnd)
- if b[0] or b == fzero:
- return mpf_neg(b), a
- else:
- return b, mpf_neg(a)
- def mpc_atanh(z, prec, rnd=round_fast):
- # atanh(z) = (log(1+z)-log(1-z))/2
- wp = prec + 15
- a = mpc_add(z, mpc_one, wp)
- b = mpc_sub(mpc_one, z, wp)
- a = mpc_log(a, wp)
- b = mpc_log(b, wp)
- v = mpc_shift(mpc_sub(a, b, wp), -1)
- # Subtraction at infinity gives correct imaginary part but
- # wrong real part (should be zero)
- if v[0] == fnan and mpc_is_inf(z):
- v = (fzero, v[1])
- return v
- def mpc_fibonacci(z, prec, rnd=round_fast):
- re, im = z
- if im == fzero:
- return (mpf_fibonacci(re, prec, rnd), fzero)
- size = max(abs(re[2]+re[3]), abs(re[2]+re[3]))
- wp = prec + size + 20
- a = mpf_phi(wp)
- b = mpf_add(mpf_shift(a, 1), fnone, wp)
- u = mpc_pow((a, fzero), z, wp)
- v = mpc_cos_pi(z, wp)
- v = mpc_div(v, u, wp)
- u = mpc_sub(u, v, wp)
- u = mpc_div_mpf(u, b, prec, rnd)
- return u
- def mpf_expj(x, prec, rnd='f'):
- raise ComplexResult
- def mpc_expj(z, prec, rnd='f'):
- re, im = z
- if im == fzero:
- return mpf_cos_sin(re, prec, rnd)
- if re == fzero:
- return mpf_exp(mpf_neg(im), prec, rnd), fzero
- ey = mpf_exp(mpf_neg(im), prec+10)
- c, s = mpf_cos_sin(re, prec+10)
- re = mpf_mul(ey, c, prec, rnd)
- im = mpf_mul(ey, s, prec, rnd)
- return re, im
- def mpf_expjpi(x, prec, rnd='f'):
- raise ComplexResult
- def mpc_expjpi(z, prec, rnd='f'):
- re, im = z
- if im == fzero:
- return mpf_cos_sin_pi(re, prec, rnd)
- sign, man, exp, bc = im
- wp = prec+10
- if man:
- wp += max(0, exp+bc)
- im = mpf_neg(mpf_mul(mpf_pi(wp), im, wp))
- if re == fzero:
- return mpf_exp(im, prec, rnd), fzero
- ey = mpf_exp(im, prec+10)
- c, s = mpf_cos_sin_pi(re, prec+10)
- re = mpf_mul(ey, c, prec, rnd)
- im = mpf_mul(ey, s, prec, rnd)
- return re, im
- if BACKEND == 'sage':
- try:
- import sage.libs.mpmath.ext_libmp as _lbmp
- mpc_exp = _lbmp.mpc_exp
- mpc_sqrt = _lbmp.mpc_sqrt
- except (ImportError, AttributeError):
- print("Warning: Sage imports in libmpc failed")
|