1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414 |
- """
- Low-level functions for arbitrary-precision floating-point arithmetic.
- """
- __docformat__ = 'plaintext'
- import math
- from bisect import bisect
- import sys
- # Importing random is slow
- #from random import getrandbits
- getrandbits = None
- from .backend import (MPZ, MPZ_TYPE, MPZ_ZERO, MPZ_ONE, MPZ_TWO, MPZ_FIVE,
- BACKEND, STRICT, HASH_MODULUS, HASH_BITS, gmpy, sage, sage_utils)
- from .libintmath import (giant_steps,
- trailtable, bctable, lshift, rshift, bitcount, trailing,
- sqrt_fixed, numeral, isqrt, isqrt_fast, sqrtrem,
- bin_to_radix)
- # We don't pickle tuples directly for the following reasons:
- # 1: pickle uses str() for ints, which is inefficient when they are large
- # 2: pickle doesn't work for gmpy mpzs
- # Both problems are solved by using hex()
- if BACKEND == 'sage':
- def to_pickable(x):
- sign, man, exp, bc = x
- return sign, hex(man), exp, bc
- else:
- def to_pickable(x):
- sign, man, exp, bc = x
- return sign, hex(man)[2:], exp, bc
- def from_pickable(x):
- sign, man, exp, bc = x
- return (sign, MPZ(man, 16), exp, bc)
- class ComplexResult(ValueError):
- pass
- try:
- intern
- except NameError:
- intern = lambda x: x
- # All supported rounding modes
- round_nearest = intern('n')
- round_floor = intern('f')
- round_ceiling = intern('c')
- round_up = intern('u')
- round_down = intern('d')
- round_fast = round_down
- def prec_to_dps(n):
- """Return number of accurate decimals that can be represented
- with a precision of n bits."""
- return max(1, int(round(int(n)/3.3219280948873626)-1))
- def dps_to_prec(n):
- """Return the number of bits required to represent n decimals
- accurately."""
- return max(1, int(round((int(n)+1)*3.3219280948873626)))
- def repr_dps(n):
- """Return the number of decimal digits required to represent
- a number with n-bit precision so that it can be uniquely
- reconstructed from the representation."""
- dps = prec_to_dps(n)
- if dps == 15:
- return 17
- return dps + 3
- #----------------------------------------------------------------------------#
- # Some commonly needed float values #
- #----------------------------------------------------------------------------#
- # Regular number format:
- # (-1)**sign * mantissa * 2**exponent, plus bitcount of mantissa
- fzero = (0, MPZ_ZERO, 0, 0)
- fnzero = (1, MPZ_ZERO, 0, 0)
- fone = (0, MPZ_ONE, 0, 1)
- fnone = (1, MPZ_ONE, 0, 1)
- ftwo = (0, MPZ_ONE, 1, 1)
- ften = (0, MPZ_FIVE, 1, 3)
- fhalf = (0, MPZ_ONE, -1, 1)
- # Arbitrary encoding for special numbers: zero mantissa, nonzero exponent
- fnan = (0, MPZ_ZERO, -123, -1)
- finf = (0, MPZ_ZERO, -456, -2)
- fninf = (1, MPZ_ZERO, -789, -3)
- # Was 1e1000; this is broken in Python 2.4
- math_float_inf = 1e300 * 1e300
- #----------------------------------------------------------------------------#
- # Rounding #
- #----------------------------------------------------------------------------#
- # This function can be used to round a mantissa generally. However,
- # we will try to do most rounding inline for efficiency.
- def round_int(x, n, rnd):
- if rnd == round_nearest:
- if x >= 0:
- t = x >> (n-1)
- if t & 1 and ((t & 2) or (x & h_mask[n<300][n])):
- return (t>>1)+1
- else:
- return t>>1
- else:
- return -round_int(-x, n, rnd)
- if rnd == round_floor:
- return x >> n
- if rnd == round_ceiling:
- return -((-x) >> n)
- if rnd == round_down:
- if x >= 0:
- return x >> n
- return -((-x) >> n)
- if rnd == round_up:
- if x >= 0:
- return -((-x) >> n)
- return x >> n
- # These masks are used to pick out segments of numbers to determine
- # which direction to round when rounding to nearest.
- class h_mask_big:
- def __getitem__(self, n):
- return (MPZ_ONE<<(n-1))-1
- h_mask_small = [0]+[((MPZ_ONE<<(_-1))-1) for _ in range(1, 300)]
- h_mask = [h_mask_big(), h_mask_small]
- # The >> operator rounds to floor. shifts_down[rnd][sign]
- # tells whether this is the right direction to use, or if the
- # number should be negated before shifting
- shifts_down = {round_floor:(1,0), round_ceiling:(0,1),
- round_down:(1,1), round_up:(0,0)}
- #----------------------------------------------------------------------------#
- # Normalization of raw mpfs #
- #----------------------------------------------------------------------------#
- # This function is called almost every time an mpf is created.
- # It has been optimized accordingly.
- def _normalize(sign, man, exp, bc, prec, rnd):
- """
- Create a raw mpf tuple with value (-1)**sign * man * 2**exp and
- normalized mantissa. The mantissa is rounded in the specified
- direction if its size exceeds the precision. Trailing zero bits
- are also stripped from the mantissa to ensure that the
- representation is canonical.
- Conditions on the input:
- * The input must represent a regular (finite) number
- * The sign bit must be 0 or 1
- * The mantissa must be positive
- * The exponent must be an integer
- * The bitcount must be exact
- If these conditions are not met, use from_man_exp, mpf_pos, or any
- of the conversion functions to create normalized raw mpf tuples.
- """
- if not man:
- return fzero
- # Cut mantissa down to size if larger than target precision
- n = bc - prec
- if n > 0:
- if rnd == round_nearest:
- t = man >> (n-1)
- if t & 1 and ((t & 2) or (man & h_mask[n<300][n])):
- man = (t>>1)+1
- else:
- man = t>>1
- elif shifts_down[rnd][sign]:
- man >>= n
- else:
- man = -((-man)>>n)
- exp += n
- bc = prec
- # Strip trailing bits
- if not man & 1:
- t = trailtable[int(man & 255)]
- if not t:
- while not man & 255:
- man >>= 8
- exp += 8
- bc -= 8
- t = trailtable[int(man & 255)]
- man >>= t
- exp += t
- bc -= t
- # Bit count can be wrong if the input mantissa was 1 less than
- # a power of 2 and got rounded up, thereby adding an extra bit.
- # With trailing bits removed, all powers of two have mantissa 1,
- # so this is easy to check for.
- if man == 1:
- bc = 1
- return sign, man, exp, bc
- def _normalize1(sign, man, exp, bc, prec, rnd):
- """same as normalize, but with the added condition that
- man is odd or zero
- """
- if not man:
- return fzero
- if bc <= prec:
- return sign, man, exp, bc
- n = bc - prec
- if rnd == round_nearest:
- t = man >> (n-1)
- if t & 1 and ((t & 2) or (man & h_mask[n<300][n])):
- man = (t>>1)+1
- else:
- man = t>>1
- elif shifts_down[rnd][sign]:
- man >>= n
- else:
- man = -((-man)>>n)
- exp += n
- bc = prec
- # Strip trailing bits
- if not man & 1:
- t = trailtable[int(man & 255)]
- if not t:
- while not man & 255:
- man >>= 8
- exp += 8
- bc -= 8
- t = trailtable[int(man & 255)]
- man >>= t
- exp += t
- bc -= t
- # Bit count can be wrong if the input mantissa was 1 less than
- # a power of 2 and got rounded up, thereby adding an extra bit.
- # With trailing bits removed, all powers of two have mantissa 1,
- # so this is easy to check for.
- if man == 1:
- bc = 1
- return sign, man, exp, bc
- try:
- _exp_types = (int, long)
- except NameError:
- _exp_types = (int,)
- def strict_normalize(sign, man, exp, bc, prec, rnd):
- """Additional checks on the components of an mpf. Enable tests by setting
- the environment variable MPMATH_STRICT to Y."""
- assert type(man) == MPZ_TYPE
- assert type(bc) in _exp_types
- assert type(exp) in _exp_types
- assert bc == bitcount(man)
- return _normalize(sign, man, exp, bc, prec, rnd)
- def strict_normalize1(sign, man, exp, bc, prec, rnd):
- """Additional checks on the components of an mpf. Enable tests by setting
- the environment variable MPMATH_STRICT to Y."""
- assert type(man) == MPZ_TYPE
- assert type(bc) in _exp_types
- assert type(exp) in _exp_types
- assert bc == bitcount(man)
- assert (not man) or (man & 1)
- return _normalize1(sign, man, exp, bc, prec, rnd)
- if BACKEND == 'gmpy' and '_mpmath_normalize' in dir(gmpy):
- _normalize = gmpy._mpmath_normalize
- _normalize1 = gmpy._mpmath_normalize
- if BACKEND == 'sage':
- _normalize = _normalize1 = sage_utils.normalize
- if STRICT:
- normalize = strict_normalize
- normalize1 = strict_normalize1
- else:
- normalize = _normalize
- normalize1 = _normalize1
- #----------------------------------------------------------------------------#
- # Conversion functions #
- #----------------------------------------------------------------------------#
- def from_man_exp(man, exp, prec=None, rnd=round_fast):
- """Create raw mpf from (man, exp) pair. The mantissa may be signed.
- If no precision is specified, the mantissa is stored exactly."""
- man = MPZ(man)
- sign = 0
- if man < 0:
- sign = 1
- man = -man
- if man < 1024:
- bc = bctable[int(man)]
- else:
- bc = bitcount(man)
- if not prec:
- if not man:
- return fzero
- if not man & 1:
- if man & 2:
- return (sign, man >> 1, exp + 1, bc - 1)
- t = trailtable[int(man & 255)]
- if not t:
- while not man & 255:
- man >>= 8
- exp += 8
- bc -= 8
- t = trailtable[int(man & 255)]
- man >>= t
- exp += t
- bc -= t
- return (sign, man, exp, bc)
- return normalize(sign, man, exp, bc, prec, rnd)
- int_cache = dict((n, from_man_exp(n, 0)) for n in range(-10, 257))
- if BACKEND == 'gmpy' and '_mpmath_create' in dir(gmpy):
- from_man_exp = gmpy._mpmath_create
- if BACKEND == 'sage':
- from_man_exp = sage_utils.from_man_exp
- def from_int(n, prec=0, rnd=round_fast):
- """Create a raw mpf from an integer. If no precision is specified,
- the mantissa is stored exactly."""
- if not prec:
- if n in int_cache:
- return int_cache[n]
- return from_man_exp(n, 0, prec, rnd)
- def to_man_exp(s):
- """Return (man, exp) of a raw mpf. Raise an error if inf/nan."""
- sign, man, exp, bc = s
- if (not man) and exp:
- raise ValueError("mantissa and exponent are undefined for %s" % man)
- return man, exp
- def to_int(s, rnd=None):
- """Convert a raw mpf to the nearest int. Rounding is done down by
- default (same as int(float) in Python), but can be changed. If the
- input is inf/nan, an exception is raised."""
- sign, man, exp, bc = s
- if (not man) and exp:
- raise ValueError("cannot convert inf or nan to int")
- if exp >= 0:
- if sign:
- return (-man) << exp
- return man << exp
- # Make default rounding fast
- if not rnd:
- if sign:
- return -(man >> (-exp))
- else:
- return man >> (-exp)
- if sign:
- return round_int(-man, -exp, rnd)
- else:
- return round_int(man, -exp, rnd)
- def mpf_round_int(s, rnd):
- sign, man, exp, bc = s
- if (not man) and exp:
- return s
- if exp >= 0:
- return s
- mag = exp+bc
- if mag < 1:
- if rnd == round_ceiling:
- if sign: return fzero
- else: return fone
- elif rnd == round_floor:
- if sign: return fnone
- else: return fzero
- elif rnd == round_nearest:
- if mag < 0 or man == MPZ_ONE: return fzero
- elif sign: return fnone
- else: return fone
- else:
- raise NotImplementedError
- return mpf_pos(s, min(bc, mag), rnd)
- def mpf_floor(s, prec=0, rnd=round_fast):
- v = mpf_round_int(s, round_floor)
- if prec:
- v = mpf_pos(v, prec, rnd)
- return v
- def mpf_ceil(s, prec=0, rnd=round_fast):
- v = mpf_round_int(s, round_ceiling)
- if prec:
- v = mpf_pos(v, prec, rnd)
- return v
- def mpf_nint(s, prec=0, rnd=round_fast):
- v = mpf_round_int(s, round_nearest)
- if prec:
- v = mpf_pos(v, prec, rnd)
- return v
- def mpf_frac(s, prec=0, rnd=round_fast):
- return mpf_sub(s, mpf_floor(s), prec, rnd)
- def from_float(x, prec=53, rnd=round_fast):
- """Create a raw mpf from a Python float, rounding if necessary.
- If prec >= 53, the result is guaranteed to represent exactly the
- same number as the input. If prec is not specified, use prec=53."""
- # frexp only raises an exception for nan on some platforms
- if x != x:
- return fnan
- # in Python2.5 math.frexp gives an exception for float infinity
- # in Python2.6 it returns (float infinity, 0)
- try:
- m, e = math.frexp(x)
- except:
- if x == math_float_inf: return finf
- if x == -math_float_inf: return fninf
- return fnan
- if x == math_float_inf: return finf
- if x == -math_float_inf: return fninf
- return from_man_exp(int(m*(1<<53)), e-53, prec, rnd)
- def from_npfloat(x, prec=113, rnd=round_fast):
- """Create a raw mpf from a numpy float, rounding if necessary.
- If prec >= 113, the result is guaranteed to represent exactly the
- same number as the input. If prec is not specified, use prec=113."""
- y = float(x)
- if x == y: # ldexp overflows for float16
- return from_float(y, prec, rnd)
- import numpy as np
- if np.isfinite(x):
- m, e = np.frexp(x)
- return from_man_exp(int(np.ldexp(m, 113)), int(e-113), prec, rnd)
- if np.isposinf(x): return finf
- if np.isneginf(x): return fninf
- return fnan
- def from_Decimal(x, prec=None, rnd=round_fast):
- """Create a raw mpf from a Decimal, rounding if necessary.
- If prec is not specified, use the equivalent bit precision
- of the number of significant digits in x."""
- if x.is_nan(): return fnan
- if x.is_infinite(): return fninf if x.is_signed() else finf
- if prec is None:
- prec = int(len(x.as_tuple()[1])*3.3219280948873626)
- return from_str(str(x), prec, rnd)
- def to_float(s, strict=False, rnd=round_fast):
- """
- Convert a raw mpf to a Python float. The result is exact if the
- bitcount of s is <= 53 and no underflow/overflow occurs.
- If the number is too large or too small to represent as a regular
- float, it will be converted to inf or 0.0. Setting strict=True
- forces an OverflowError to be raised instead.
- Warning: with a directed rounding mode, the correct nearest representable
- floating-point number in the specified direction might not be computed
- in case of overflow or (gradual) underflow.
- """
- sign, man, exp, bc = s
- if not man:
- if s == fzero: return 0.0
- if s == finf: return math_float_inf
- if s == fninf: return -math_float_inf
- return math_float_inf/math_float_inf
- if bc > 53:
- sign, man, exp, bc = normalize1(sign, man, exp, bc, 53, rnd)
- if sign:
- man = -man
- try:
- return math.ldexp(man, exp)
- except OverflowError:
- if strict:
- raise
- # Overflow to infinity
- if exp + bc > 0:
- if sign:
- return -math_float_inf
- else:
- return math_float_inf
- # Underflow to zero
- return 0.0
- def from_rational(p, q, prec, rnd=round_fast):
- """Create a raw mpf from a rational number p/q, round if
- necessary."""
- return mpf_div(from_int(p), from_int(q), prec, rnd)
- def to_rational(s):
- """Convert a raw mpf to a rational number. Return integers (p, q)
- such that s = p/q exactly."""
- sign, man, exp, bc = s
- if sign:
- man = -man
- if bc == -1:
- raise ValueError("cannot convert %s to a rational number" % man)
- if exp >= 0:
- return man * (1<<exp), 1
- else:
- return man, 1<<(-exp)
- def to_fixed(s, prec):
- """Convert a raw mpf to a fixed-point big integer"""
- sign, man, exp, bc = s
- offset = exp + prec
- if sign:
- if offset >= 0: return (-man) << offset
- else: return (-man) >> (-offset)
- else:
- if offset >= 0: return man << offset
- else: return man >> (-offset)
- ##############################################################################
- ##############################################################################
- #----------------------------------------------------------------------------#
- # Arithmetic operations, etc. #
- #----------------------------------------------------------------------------#
- def mpf_rand(prec):
- """Return a raw mpf chosen randomly from [0, 1), with prec bits
- in the mantissa."""
- global getrandbits
- if not getrandbits:
- import random
- getrandbits = random.getrandbits
- return from_man_exp(getrandbits(prec), -prec, prec, round_floor)
- def mpf_eq(s, t):
- """Test equality of two raw mpfs. This is simply tuple comparison
- unless either number is nan, in which case the result is False."""
- if not s[1] or not t[1]:
- if s == fnan or t == fnan:
- return False
- return s == t
- def mpf_hash(s):
- # Duplicate the new hash algorithm introduces in Python 3.2.
- if sys.version_info >= (3, 2):
- ssign, sman, sexp, sbc = s
- # Handle special numbers
- if not sman:
- if s == fnan: return sys.hash_info.nan
- if s == finf: return sys.hash_info.inf
- if s == fninf: return -sys.hash_info.inf
- h = sman % HASH_MODULUS
- if sexp >= 0:
- sexp = sexp % HASH_BITS
- else:
- sexp = HASH_BITS - 1 - ((-1 - sexp) % HASH_BITS)
- h = (h << sexp) % HASH_MODULUS
- if ssign: h = -h
- if h == -1: h == -2
- return int(h)
- else:
- try:
- # Try to be compatible with hash values for floats and ints
- return hash(to_float(s, strict=1))
- except OverflowError:
- # We must unfortunately sacrifice compatibility with ints here.
- # We could do hash(man << exp) when the exponent is positive, but
- # this would cause unreasonable inefficiency for large numbers.
- return hash(s)
- def mpf_cmp(s, t):
- """Compare the raw mpfs s and t. Return -1 if s < t, 0 if s == t,
- and 1 if s > t. (Same convention as Python's cmp() function.)"""
- # In principle, a comparison amounts to determining the sign of s-t.
- # A full subtraction is relatively slow, however, so we first try to
- # look at the components.
- ssign, sman, sexp, sbc = s
- tsign, tman, texp, tbc = t
- # Handle zeros and special numbers
- if not sman or not tman:
- if s == fzero: return -mpf_sign(t)
- if t == fzero: return mpf_sign(s)
- if s == t: return 0
- # Follow same convention as Python's cmp for float nan
- if t == fnan: return 1
- if s == finf: return 1
- if t == fninf: return 1
- return -1
- # Different sides of zero
- if ssign != tsign:
- if not ssign: return 1
- return -1
- # This reduces to direct integer comparison
- if sexp == texp:
- if sman == tman:
- return 0
- if sman > tman:
- if ssign: return -1
- else: return 1
- else:
- if ssign: return 1
- else: return -1
- # Check position of the highest set bit in each number. If
- # different, there is certainly an inequality.
- a = sbc + sexp
- b = tbc + texp
- if ssign:
- if a < b: return 1
- if a > b: return -1
- else:
- if a < b: return -1
- if a > b: return 1
- # Both numbers have the same highest bit. Subtract to find
- # how the lower bits compare.
- delta = mpf_sub(s, t, 5, round_floor)
- if delta[0]:
- return -1
- return 1
- def mpf_lt(s, t):
- if s == fnan or t == fnan:
- return False
- return mpf_cmp(s, t) < 0
- def mpf_le(s, t):
- if s == fnan or t == fnan:
- return False
- return mpf_cmp(s, t) <= 0
- def mpf_gt(s, t):
- if s == fnan or t == fnan:
- return False
- return mpf_cmp(s, t) > 0
- def mpf_ge(s, t):
- if s == fnan or t == fnan:
- return False
- return mpf_cmp(s, t) >= 0
- def mpf_min_max(seq):
- min = max = seq[0]
- for x in seq[1:]:
- if mpf_lt(x, min): min = x
- if mpf_gt(x, max): max = x
- return min, max
- def mpf_pos(s, prec=0, rnd=round_fast):
- """Calculate 0+s for a raw mpf (i.e., just round s to the specified
- precision)."""
- if prec:
- sign, man, exp, bc = s
- if (not man) and exp:
- return s
- return normalize1(sign, man, exp, bc, prec, rnd)
- return s
- def mpf_neg(s, prec=None, rnd=round_fast):
- """Negate a raw mpf (return -s), rounding the result to the
- specified precision. The prec argument can be omitted to do the
- operation exactly."""
- sign, man, exp, bc = s
- if not man:
- if exp:
- if s == finf: return fninf
- if s == fninf: return finf
- return s
- if not prec:
- return (1-sign, man, exp, bc)
- return normalize1(1-sign, man, exp, bc, prec, rnd)
- def mpf_abs(s, prec=None, rnd=round_fast):
- """Return abs(s) of the raw mpf s, rounded to the specified
- precision. The prec argument can be omitted to generate an
- exact result."""
- sign, man, exp, bc = s
- if (not man) and exp:
- if s == fninf:
- return finf
- return s
- if not prec:
- if sign:
- return (0, man, exp, bc)
- return s
- return normalize1(0, man, exp, bc, prec, rnd)
- def mpf_sign(s):
- """Return -1, 0, or 1 (as a Python int, not a raw mpf) depending on
- whether s is negative, zero, or positive. (Nan is taken to give 0.)"""
- sign, man, exp, bc = s
- if not man:
- if s == finf: return 1
- if s == fninf: return -1
- return 0
- return (-1) ** sign
- def mpf_add(s, t, prec=0, rnd=round_fast, _sub=0):
- """
- Add the two raw mpf values s and t.
- With prec=0, no rounding is performed. Note that this can
- produce a very large mantissa (potentially too large to fit
- in memory) if exponents are far apart.
- """
- ssign, sman, sexp, sbc = s
- tsign, tman, texp, tbc = t
- tsign ^= _sub
- # Standard case: two nonzero, regular numbers
- if sman and tman:
- offset = sexp - texp
- if offset:
- if offset > 0:
- # Outside precision range; only need to perturb
- if offset > 100 and prec:
- delta = sbc + sexp - tbc - texp
- if delta > prec + 4:
- offset = prec + 4
- sman <<= offset
- if tsign == ssign: sman += 1
- else: sman -= 1
- return normalize1(ssign, sman, sexp-offset,
- bitcount(sman), prec, rnd)
- # Add
- if ssign == tsign:
- man = tman + (sman << offset)
- # Subtract
- else:
- if ssign: man = tman - (sman << offset)
- else: man = (sman << offset) - tman
- if man >= 0:
- ssign = 0
- else:
- man = -man
- ssign = 1
- bc = bitcount(man)
- return normalize1(ssign, man, texp, bc, prec or bc, rnd)
- elif offset < 0:
- # Outside precision range; only need to perturb
- if offset < -100 and prec:
- delta = tbc + texp - sbc - sexp
- if delta > prec + 4:
- offset = prec + 4
- tman <<= offset
- if ssign == tsign: tman += 1
- else: tman -= 1
- return normalize1(tsign, tman, texp-offset,
- bitcount(tman), prec, rnd)
- # Add
- if ssign == tsign:
- man = sman + (tman << -offset)
- # Subtract
- else:
- if tsign: man = sman - (tman << -offset)
- else: man = (tman << -offset) - sman
- if man >= 0:
- ssign = 0
- else:
- man = -man
- ssign = 1
- bc = bitcount(man)
- return normalize1(ssign, man, sexp, bc, prec or bc, rnd)
- # Equal exponents; no shifting necessary
- if ssign == tsign:
- man = tman + sman
- else:
- if ssign: man = tman - sman
- else: man = sman - tman
- if man >= 0:
- ssign = 0
- else:
- man = -man
- ssign = 1
- bc = bitcount(man)
- return normalize(ssign, man, texp, bc, prec or bc, rnd)
- # Handle zeros and special numbers
- if _sub:
- t = mpf_neg(t)
- if not sman:
- if sexp:
- if s == t or tman or not texp:
- return s
- return fnan
- if tman:
- return normalize1(tsign, tman, texp, tbc, prec or tbc, rnd)
- return t
- if texp:
- return t
- if sman:
- return normalize1(ssign, sman, sexp, sbc, prec or sbc, rnd)
- return s
- def mpf_sub(s, t, prec=0, rnd=round_fast):
- """Return the difference of two raw mpfs, s-t. This function is
- simply a wrapper of mpf_add that changes the sign of t."""
- return mpf_add(s, t, prec, rnd, 1)
- def mpf_sum(xs, prec=0, rnd=round_fast, absolute=False):
- """
- Sum a list of mpf values efficiently and accurately
- (typically no temporary roundoff occurs). If prec=0,
- the final result will not be rounded either.
- There may be roundoff error or cancellation if extremely
- large exponent differences occur.
- With absolute=True, sums the absolute values.
- """
- man = 0
- exp = 0
- max_extra_prec = prec*2 or 1000000 # XXX
- special = None
- for x in xs:
- xsign, xman, xexp, xbc = x
- if xman:
- if xsign and not absolute:
- xman = -xman
- delta = xexp - exp
- if xexp >= exp:
- # x much larger than existing sum?
- # first: quick test
- if (delta > max_extra_prec) and \
- ((not man) or delta-bitcount(abs(man)) > max_extra_prec):
- man = xman
- exp = xexp
- else:
- man += (xman << delta)
- else:
- delta = -delta
- # x much smaller than existing sum?
- if delta-xbc > max_extra_prec:
- if not man:
- man, exp = xman, xexp
- else:
- man = (man << delta) + xman
- exp = xexp
- elif xexp:
- if absolute:
- x = mpf_abs(x)
- special = mpf_add(special or fzero, x, 1)
- # Will be inf or nan
- if special:
- return special
- return from_man_exp(man, exp, prec, rnd)
- def gmpy_mpf_mul(s, t, prec=0, rnd=round_fast):
- """Multiply two raw mpfs"""
- ssign, sman, sexp, sbc = s
- tsign, tman, texp, tbc = t
- sign = ssign ^ tsign
- man = sman*tman
- if man:
- bc = bitcount(man)
- if prec:
- return normalize1(sign, man, sexp+texp, bc, prec, rnd)
- else:
- return (sign, man, sexp+texp, bc)
- s_special = (not sman) and sexp
- t_special = (not tman) and texp
- if not s_special and not t_special:
- return fzero
- if fnan in (s, t): return fnan
- if (not tman) and texp: s, t = t, s
- if t == fzero: return fnan
- return {1:finf, -1:fninf}[mpf_sign(s) * mpf_sign(t)]
- def gmpy_mpf_mul_int(s, n, prec, rnd=round_fast):
- """Multiply by a Python integer."""
- sign, man, exp, bc = s
- if not man:
- return mpf_mul(s, from_int(n), prec, rnd)
- if not n:
- return fzero
- if n < 0:
- sign ^= 1
- n = -n
- man *= n
- return normalize(sign, man, exp, bitcount(man), prec, rnd)
- def python_mpf_mul(s, t, prec=0, rnd=round_fast):
- """Multiply two raw mpfs"""
- ssign, sman, sexp, sbc = s
- tsign, tman, texp, tbc = t
- sign = ssign ^ tsign
- man = sman*tman
- if man:
- bc = sbc + tbc - 1
- bc += int(man>>bc)
- if prec:
- return normalize1(sign, man, sexp+texp, bc, prec, rnd)
- else:
- return (sign, man, sexp+texp, bc)
- s_special = (not sman) and sexp
- t_special = (not tman) and texp
- if not s_special and not t_special:
- return fzero
- if fnan in (s, t): return fnan
- if (not tman) and texp: s, t = t, s
- if t == fzero: return fnan
- return {1:finf, -1:fninf}[mpf_sign(s) * mpf_sign(t)]
- def python_mpf_mul_int(s, n, prec, rnd=round_fast):
- """Multiply by a Python integer."""
- sign, man, exp, bc = s
- if not man:
- return mpf_mul(s, from_int(n), prec, rnd)
- if not n:
- return fzero
- if n < 0:
- sign ^= 1
- n = -n
- man *= n
- # Generally n will be small
- if n < 1024:
- bc += bctable[int(n)] - 1
- else:
- bc += bitcount(n) - 1
- bc += int(man>>bc)
- return normalize(sign, man, exp, bc, prec, rnd)
- if BACKEND == 'gmpy':
- mpf_mul = gmpy_mpf_mul
- mpf_mul_int = gmpy_mpf_mul_int
- else:
- mpf_mul = python_mpf_mul
- mpf_mul_int = python_mpf_mul_int
- def mpf_shift(s, n):
- """Quickly multiply the raw mpf s by 2**n without rounding."""
- sign, man, exp, bc = s
- if not man:
- return s
- return sign, man, exp+n, bc
- def mpf_frexp(x):
- """Convert x = y*2**n to (y, n) with abs(y) in [0.5, 1) if nonzero"""
- sign, man, exp, bc = x
- if not man:
- if x == fzero:
- return (fzero, 0)
- else:
- raise ValueError
- return mpf_shift(x, -bc-exp), bc+exp
- def mpf_div(s, t, prec, rnd=round_fast):
- """Floating-point division"""
- ssign, sman, sexp, sbc = s
- tsign, tman, texp, tbc = t
- if not sman or not tman:
- if s == fzero:
- if t == fzero: raise ZeroDivisionError
- if t == fnan: return fnan
- return fzero
- if t == fzero:
- raise ZeroDivisionError
- s_special = (not sman) and sexp
- t_special = (not tman) and texp
- if s_special and t_special:
- return fnan
- if s == fnan or t == fnan:
- return fnan
- if not t_special:
- if t == fzero:
- return fnan
- return {1:finf, -1:fninf}[mpf_sign(s) * mpf_sign(t)]
- return fzero
- sign = ssign ^ tsign
- if tman == 1:
- return normalize1(sign, sman, sexp-texp, sbc, prec, rnd)
- # Same strategy as for addition: if there is a remainder, perturb
- # the result a few bits outside the precision range before rounding
- extra = prec - sbc + tbc + 5
- if extra < 5:
- extra = 5
- quot, rem = divmod(sman<<extra, tman)
- if rem:
- quot = (quot<<1) + 1
- extra += 1
- return normalize1(sign, quot, sexp-texp-extra, bitcount(quot), prec, rnd)
- return normalize(sign, quot, sexp-texp-extra, bitcount(quot), prec, rnd)
- def mpf_rdiv_int(n, t, prec, rnd=round_fast):
- """Floating-point division n/t with a Python integer as numerator"""
- sign, man, exp, bc = t
- if not n or not man:
- return mpf_div(from_int(n), t, prec, rnd)
- if n < 0:
- sign ^= 1
- n = -n
- extra = prec + bc + 5
- quot, rem = divmod(n<<extra, man)
- if rem:
- quot = (quot<<1) + 1
- extra += 1
- return normalize1(sign, quot, -exp-extra, bitcount(quot), prec, rnd)
- return normalize(sign, quot, -exp-extra, bitcount(quot), prec, rnd)
- def mpf_mod(s, t, prec, rnd=round_fast):
- ssign, sman, sexp, sbc = s
- tsign, tman, texp, tbc = t
- if ((not sman) and sexp) or ((not tman) and texp):
- return fnan
- # Important special case: do nothing if t is larger
- if ssign == tsign and texp > sexp+sbc:
- return s
- # Another important special case: this allows us to do e.g. x % 1.0
- # to find the fractional part of x, and it will work when x is huge.
- if tman == 1 and sexp > texp+tbc:
- return fzero
- base = min(sexp, texp)
- sman = (-1)**ssign * sman
- tman = (-1)**tsign * tman
- man = (sman << (sexp-base)) % (tman << (texp-base))
- if man >= 0:
- sign = 0
- else:
- man = -man
- sign = 1
- return normalize(sign, man, base, bitcount(man), prec, rnd)
- reciprocal_rnd = {
- round_down : round_up,
- round_up : round_down,
- round_floor : round_ceiling,
- round_ceiling : round_floor,
- round_nearest : round_nearest
- }
- negative_rnd = {
- round_down : round_down,
- round_up : round_up,
- round_floor : round_ceiling,
- round_ceiling : round_floor,
- round_nearest : round_nearest
- }
- def mpf_pow_int(s, n, prec, rnd=round_fast):
- """Compute s**n, where s is a raw mpf and n is a Python integer."""
- sign, man, exp, bc = s
- if (not man) and exp:
- if s == finf:
- if n > 0: return s
- if n == 0: return fnan
- return fzero
- if s == fninf:
- if n > 0: return [finf, fninf][n & 1]
- if n == 0: return fnan
- return fzero
- return fnan
- n = int(n)
- if n == 0: return fone
- if n == 1: return mpf_pos(s, prec, rnd)
- if n == 2:
- _, man, exp, bc = s
- if not man:
- return fzero
- man = man*man
- if man == 1:
- return (0, MPZ_ONE, exp+exp, 1)
- bc = bc + bc - 2
- bc += bctable[int(man>>bc)]
- return normalize1(0, man, exp+exp, bc, prec, rnd)
- if n == -1: return mpf_div(fone, s, prec, rnd)
- if n < 0:
- inverse = mpf_pow_int(s, -n, prec+5, reciprocal_rnd[rnd])
- return mpf_div(fone, inverse, prec, rnd)
- result_sign = sign & n
- # Use exact integer power when the exact mantissa is small
- if man == 1:
- return (result_sign, MPZ_ONE, exp*n, 1)
- if bc*n < 1000:
- man **= n
- return normalize1(result_sign, man, exp*n, bitcount(man), prec, rnd)
- # Use directed rounding all the way through to maintain rigorous
- # bounds for interval arithmetic
- rounds_down = (rnd == round_nearest) or \
- shifts_down[rnd][result_sign]
- # Now we perform binary exponentiation. Need to estimate precision
- # to avoid rounding errors from temporary operations. Roughly log_2(n)
- # operations are performed.
- workprec = prec + 4*bitcount(n) + 4
- _, pm, pe, pbc = fone
- while 1:
- if n & 1:
- pm = pm*man
- pe = pe+exp
- pbc += bc - 2
- pbc = pbc + bctable[int(pm >> pbc)]
- if pbc > workprec:
- if rounds_down:
- pm = pm >> (pbc-workprec)
- else:
- pm = -((-pm) >> (pbc-workprec))
- pe += pbc - workprec
- pbc = workprec
- n -= 1
- if not n:
- break
- man = man*man
- exp = exp+exp
- bc = bc + bc - 2
- bc = bc + bctable[int(man >> bc)]
- if bc > workprec:
- if rounds_down:
- man = man >> (bc-workprec)
- else:
- man = -((-man) >> (bc-workprec))
- exp += bc - workprec
- bc = workprec
- n = n // 2
- return normalize(result_sign, pm, pe, pbc, prec, rnd)
- def mpf_perturb(x, eps_sign, prec, rnd):
- """
- For nonzero x, calculate x + eps with directed rounding, where
- eps < prec relatively and eps has the given sign (0 for
- positive, 1 for negative).
- With rounding to nearest, this is taken to simply normalize
- x to the given precision.
- """
- if rnd == round_nearest:
- return mpf_pos(x, prec, rnd)
- sign, man, exp, bc = x
- eps = (eps_sign, MPZ_ONE, exp+bc-prec-1, 1)
- if sign:
- away = (rnd in (round_down, round_ceiling)) ^ eps_sign
- else:
- away = (rnd in (round_up, round_ceiling)) ^ eps_sign
- if away:
- return mpf_add(x, eps, prec, rnd)
- else:
- return mpf_pos(x, prec, rnd)
- #----------------------------------------------------------------------------#
- # Radix conversion #
- #----------------------------------------------------------------------------#
- def to_digits_exp(s, dps):
- """Helper function for representing the floating-point number s as
- a decimal with dps digits. Returns (sign, string, exponent) where
- sign is '' or '-', string is the digit string, and exponent is
- the decimal exponent as an int.
- If inexact, the decimal representation is rounded toward zero."""
- # Extract sign first so it doesn't mess up the string digit count
- if s[0]:
- sign = '-'
- s = mpf_neg(s)
- else:
- sign = ''
- _sign, man, exp, bc = s
- if not man:
- return '', '0', 0
- bitprec = int(dps * math.log(10,2)) + 10
- # Cut down to size
- # TODO: account for precision when doing this
- exp_from_1 = exp + bc
- if abs(exp_from_1) > 3500:
- from .libelefun import mpf_ln2, mpf_ln10
- # Set b = int(exp * log(2)/log(10))
- # If exp is huge, we must use high-precision arithmetic to
- # find the nearest power of ten
- expprec = bitcount(abs(exp)) + 5
- tmp = from_int(exp)
- tmp = mpf_mul(tmp, mpf_ln2(expprec))
- tmp = mpf_div(tmp, mpf_ln10(expprec), expprec)
- b = to_int(tmp)
- s = mpf_div(s, mpf_pow_int(ften, b, bitprec), bitprec)
- _sign, man, exp, bc = s
- exponent = b
- else:
- exponent = 0
- # First, calculate mantissa digits by converting to a binary
- # fixed-point number and then converting that number to
- # a decimal fixed-point number.
- fixprec = max(bitprec - exp - bc, 0)
- fixdps = int(fixprec / math.log(10,2) + 0.5)
- sf = to_fixed(s, fixprec)
- sd = bin_to_radix(sf, fixprec, 10, fixdps)
- digits = numeral(sd, base=10, size=dps)
- exponent += len(digits) - fixdps - 1
- return sign, digits, exponent
- def to_str(s, dps, strip_zeros=True, min_fixed=None, max_fixed=None,
- show_zero_exponent=False):
- """
- Convert a raw mpf to a decimal floating-point literal with at
- most `dps` decimal digits in the mantissa (not counting extra zeros
- that may be inserted for visual purposes).
- The number will be printed in fixed-point format if the position
- of the leading digit is strictly between min_fixed
- (default = min(-dps/3,-5)) and max_fixed (default = dps).
- To force fixed-point format always, set min_fixed = -inf,
- max_fixed = +inf. To force floating-point format, set
- min_fixed >= max_fixed.
- The literal is formatted so that it can be parsed back to a number
- by to_str, float() or Decimal().
- """
- # Special numbers
- if not s[1]:
- if s == fzero:
- if dps: t = '0.0'
- else: t = '.0'
- if show_zero_exponent:
- t += 'e+0'
- return t
- if s == finf: return '+inf'
- if s == fninf: return '-inf'
- if s == fnan: return 'nan'
- raise ValueError
- if min_fixed is None: min_fixed = min(-(dps//3), -5)
- if max_fixed is None: max_fixed = dps
- # to_digits_exp rounds to floor.
- # This sometimes kills some instances of "...00001"
- sign, digits, exponent = to_digits_exp(s, dps+3)
- # No digits: show only .0; round exponent to nearest
- if not dps:
- if digits[0] in '56789':
- exponent += 1
- digits = ".0"
- else:
- # Rounding up kills some instances of "...99999"
- if len(digits) > dps and digits[dps] in '56789':
- digits = digits[:dps]
- i = dps - 1
- while i >= 0 and digits[i] == '9':
- i -= 1
- if i >= 0:
- digits = digits[:i] + str(int(digits[i]) + 1) + '0' * (dps - i - 1)
- else:
- digits = '1' + '0' * (dps - 1)
- exponent += 1
- else:
- digits = digits[:dps]
- # Prettify numbers close to unit magnitude
- if min_fixed < exponent < max_fixed:
- if exponent < 0:
- digits = ("0"*int(-exponent)) + digits
- split = 1
- else:
- split = exponent + 1
- if split > dps:
- digits += "0"*(split-dps)
- exponent = 0
- else:
- split = 1
- digits = (digits[:split] + "." + digits[split:])
- if strip_zeros:
- # Clean up trailing zeros
- digits = digits.rstrip('0')
- if digits[-1] == ".":
- digits += "0"
- if exponent == 0 and dps and not show_zero_exponent: return sign + digits
- if exponent >= 0: return sign + digits + "e+" + str(exponent)
- if exponent < 0: return sign + digits + "e" + str(exponent)
- def str_to_man_exp(x, base=10):
- """Helper function for from_str."""
- x = x.lower().rstrip('l')
- # Verify that the input is a valid float literal
- float(x)
- # Split into mantissa, exponent
- parts = x.split('e')
- if len(parts) == 1:
- exp = 0
- else: # == 2
- x = parts[0]
- exp = int(parts[1])
- # Look for radix point in mantissa
- parts = x.split('.')
- if len(parts) == 2:
- a, b = parts[0], parts[1].rstrip('0')
- exp -= len(b)
- x = a + b
- x = MPZ(int(x, base))
- return x, exp
- special_str = {'inf':finf, '+inf':finf, '-inf':fninf, 'nan':fnan}
- def from_str(x, prec, rnd=round_fast):
- """Create a raw mpf from a decimal literal, rounding in the
- specified direction if the input number cannot be represented
- exactly as a binary floating-point number with the given number of
- bits. The literal syntax accepted is the same as for Python
- floats.
- TODO: the rounding does not work properly for large exponents.
- """
- x = x.lower().strip()
- if x in special_str:
- return special_str[x]
- if '/' in x:
- p, q = x.split('/')
- p, q = p.rstrip('l'), q.rstrip('l')
- return from_rational(int(p), int(q), prec, rnd)
- man, exp = str_to_man_exp(x, base=10)
- # XXX: appropriate cutoffs & track direction
- # note no factors of 5
- if abs(exp) > 400:
- s = from_int(man, prec+10)
- s = mpf_mul(s, mpf_pow_int(ften, exp, prec+10), prec, rnd)
- else:
- if exp >= 0:
- s = from_int(man * 10**exp, prec, rnd)
- else:
- s = from_rational(man, 10**-exp, prec, rnd)
- return s
- # Binary string conversion. These are currently mainly used for debugging
- # and could use some improvement in the future
- def from_bstr(x):
- man, exp = str_to_man_exp(x, base=2)
- man = MPZ(man)
- sign = 0
- if man < 0:
- man = -man
- sign = 1
- bc = bitcount(man)
- return normalize(sign, man, exp, bc, bc, round_floor)
- def to_bstr(x):
- sign, man, exp, bc = x
- return ['','-'][sign] + numeral(man, size=bitcount(man), base=2) + ("e%i" % exp)
- #----------------------------------------------------------------------------#
- # Square roots #
- #----------------------------------------------------------------------------#
- def mpf_sqrt(s, prec, rnd=round_fast):
- """
- Compute the square root of a nonnegative mpf value. The
- result is correctly rounded.
- """
- sign, man, exp, bc = s
- if sign:
- raise ComplexResult("square root of a negative number")
- if not man:
- return s
- if exp & 1:
- exp -= 1
- man <<= 1
- bc += 1
- elif man == 1:
- return normalize1(sign, man, exp//2, bc, prec, rnd)
- shift = max(4, 2*prec-bc+4)
- shift += shift & 1
- if rnd in 'fd':
- man = isqrt(man<<shift)
- else:
- man, rem = sqrtrem(man<<shift)
- # Perturb up
- if rem:
- man = (man<<1)+1
- shift += 2
- return from_man_exp(man, (exp-shift)//2, prec, rnd)
- def mpf_hypot(x, y, prec, rnd=round_fast):
- """Compute the Euclidean norm sqrt(x**2 + y**2) of two raw mpfs
- x and y."""
- if y == fzero: return mpf_abs(x, prec, rnd)
- if x == fzero: return mpf_abs(y, prec, rnd)
- hypot2 = mpf_add(mpf_mul(x,x), mpf_mul(y,y), prec+4)
- return mpf_sqrt(hypot2, prec, rnd)
- if BACKEND == 'sage':
- try:
- import sage.libs.mpmath.ext_libmp as ext_lib
- mpf_add = ext_lib.mpf_add
- mpf_sub = ext_lib.mpf_sub
- mpf_mul = ext_lib.mpf_mul
- mpf_div = ext_lib.mpf_div
- mpf_sqrt = ext_lib.mpf_sqrt
- except ImportError:
- pass
|