123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531 |
- from ..libmp.backend import xrange
- # TODO: should use diagonalization-based algorithms
- class MatrixCalculusMethods(object):
- def _exp_pade(ctx, a):
- """
- Exponential of a matrix using Pade approximants.
- See G. H. Golub, C. F. van Loan 'Matrix Computations',
- third Ed., page 572
- TODO:
- - find a good estimate for q
- - reduce the number of matrix multiplications to improve
- performance
- """
- def eps_pade(p):
- return ctx.mpf(2)**(3-2*p) * \
- ctx.factorial(p)**2/(ctx.factorial(2*p)**2 * (2*p + 1))
- q = 4
- extraq = 8
- while 1:
- if eps_pade(q) < ctx.eps:
- break
- q += 1
- q += extraq
- j = int(max(1, ctx.mag(ctx.mnorm(a,'inf'))))
- extra = q
- prec = ctx.prec
- ctx.dps += extra + 3
- try:
- a = a/2**j
- na = a.rows
- den = ctx.eye(na)
- num = ctx.eye(na)
- x = ctx.eye(na)
- c = ctx.mpf(1)
- for k in range(1, q+1):
- c *= ctx.mpf(q - k + 1)/((2*q - k + 1) * k)
- x = a*x
- cx = c*x
- num += cx
- den += (-1)**k * cx
- f = ctx.lu_solve_mat(den, num)
- for k in range(j):
- f = f*f
- finally:
- ctx.prec = prec
- return f*1
- def expm(ctx, A, method='taylor'):
- r"""
- Computes the matrix exponential of a square matrix `A`, which is defined
- by the power series
- .. math ::
- \exp(A) = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \ldots
- With method='taylor', the matrix exponential is computed
- using the Taylor series. With method='pade', Pade approximants
- are used instead.
- **Examples**
- Basic examples::
- >>> from mpmath import *
- >>> mp.dps = 15; mp.pretty = True
- >>> expm(zeros(3))
- [1.0 0.0 0.0]
- [0.0 1.0 0.0]
- [0.0 0.0 1.0]
- >>> expm(eye(3))
- [2.71828182845905 0.0 0.0]
- [ 0.0 2.71828182845905 0.0]
- [ 0.0 0.0 2.71828182845905]
- >>> expm([[1,1,0],[1,0,1],[0,1,0]])
- [ 3.86814500615414 2.26812870852145 0.841130841230196]
- [ 2.26812870852145 2.44114713886289 1.42699786729125]
- [0.841130841230196 1.42699786729125 1.6000162976327]
- >>> expm([[1,1,0],[1,0,1],[0,1,0]], method='pade')
- [ 3.86814500615414 2.26812870852145 0.841130841230196]
- [ 2.26812870852145 2.44114713886289 1.42699786729125]
- [0.841130841230196 1.42699786729125 1.6000162976327]
- >>> expm([[1+j, 0], [1+j,1]])
- [(1.46869393991589 + 2.28735528717884j) 0.0]
- [ (1.03776739863568 + 3.536943175722j) (2.71828182845905 + 0.0j)]
- Matrices with large entries are allowed::
- >>> expm(matrix([[1,2],[2,3]])**25)
- [5.65024064048415e+2050488462815550 9.14228140091932e+2050488462815550]
- [9.14228140091932e+2050488462815550 1.47925220414035e+2050488462815551]
- The identity `\exp(A+B) = \exp(A) \exp(B)` does not hold for
- noncommuting matrices::
- >>> A = hilbert(3)
- >>> B = A + eye(3)
- >>> chop(mnorm(A*B - B*A))
- 0.0
- >>> chop(mnorm(expm(A+B) - expm(A)*expm(B)))
- 0.0
- >>> B = A + ones(3)
- >>> mnorm(A*B - B*A)
- 1.8
- >>> mnorm(expm(A+B) - expm(A)*expm(B))
- 42.0927851137247
- """
- if method == 'pade':
- prec = ctx.prec
- try:
- A = ctx.matrix(A)
- ctx.prec += 2*A.rows
- res = ctx._exp_pade(A)
- finally:
- ctx.prec = prec
- return res
- A = ctx.matrix(A)
- prec = ctx.prec
- j = int(max(1, ctx.mag(ctx.mnorm(A,'inf'))))
- j += int(0.5*prec**0.5)
- try:
- ctx.prec += 10 + 2*j
- tol = +ctx.eps
- A = A/2**j
- T = A
- Y = A**0 + A
- k = 2
- while 1:
- T *= A * (1/ctx.mpf(k))
- if ctx.mnorm(T, 'inf') < tol:
- break
- Y += T
- k += 1
- for k in xrange(j):
- Y = Y*Y
- finally:
- ctx.prec = prec
- Y *= 1
- return Y
- def cosm(ctx, A):
- r"""
- Gives the cosine of a square matrix `A`, defined in analogy
- with the matrix exponential.
- Examples::
- >>> from mpmath import *
- >>> mp.dps = 15; mp.pretty = True
- >>> X = eye(3)
- >>> cosm(X)
- [0.54030230586814 0.0 0.0]
- [ 0.0 0.54030230586814 0.0]
- [ 0.0 0.0 0.54030230586814]
- >>> X = hilbert(3)
- >>> cosm(X)
- [ 0.424403834569555 -0.316643413047167 -0.221474945949293]
- [-0.316643413047167 0.820646708837824 -0.127183694770039]
- [-0.221474945949293 -0.127183694770039 0.909236687217541]
- >>> X = matrix([[1+j,-2],[0,-j]])
- >>> cosm(X)
- [(0.833730025131149 - 0.988897705762865j) (1.07485840848393 - 0.17192140544213j)]
- [ 0.0 (1.54308063481524 + 0.0j)]
- """
- B = 0.5 * (ctx.expm(A*ctx.j) + ctx.expm(A*(-ctx.j)))
- if not sum(A.apply(ctx.im).apply(abs)):
- B = B.apply(ctx.re)
- return B
- def sinm(ctx, A):
- r"""
- Gives the sine of a square matrix `A`, defined in analogy
- with the matrix exponential.
- Examples::
- >>> from mpmath import *
- >>> mp.dps = 15; mp.pretty = True
- >>> X = eye(3)
- >>> sinm(X)
- [0.841470984807897 0.0 0.0]
- [ 0.0 0.841470984807897 0.0]
- [ 0.0 0.0 0.841470984807897]
- >>> X = hilbert(3)
- >>> sinm(X)
- [0.711608512150994 0.339783913247439 0.220742837314741]
- [0.339783913247439 0.244113865695532 0.187231271174372]
- [0.220742837314741 0.187231271174372 0.155816730769635]
- >>> X = matrix([[1+j,-2],[0,-j]])
- >>> sinm(X)
- [(1.29845758141598 + 0.634963914784736j) (-1.96751511930922 + 0.314700021761367j)]
- [ 0.0 (0.0 - 1.1752011936438j)]
- """
- B = (-0.5j) * (ctx.expm(A*ctx.j) - ctx.expm(A*(-ctx.j)))
- if not sum(A.apply(ctx.im).apply(abs)):
- B = B.apply(ctx.re)
- return B
- def _sqrtm_rot(ctx, A, _may_rotate):
- # If the iteration fails to converge, cheat by performing
- # a rotation by a complex number
- u = ctx.j**0.3
- return ctx.sqrtm(u*A, _may_rotate) / ctx.sqrt(u)
- def sqrtm(ctx, A, _may_rotate=2):
- r"""
- Computes a square root of the square matrix `A`, i.e. returns
- a matrix `B = A^{1/2}` such that `B^2 = A`. The square root
- of a matrix, if it exists, is not unique.
- **Examples**
- Square roots of some simple matrices::
- >>> from mpmath import *
- >>> mp.dps = 15; mp.pretty = True
- >>> sqrtm([[1,0], [0,1]])
- [1.0 0.0]
- [0.0 1.0]
- >>> sqrtm([[0,0], [0,0]])
- [0.0 0.0]
- [0.0 0.0]
- >>> sqrtm([[2,0],[0,1]])
- [1.4142135623731 0.0]
- [ 0.0 1.0]
- >>> sqrtm([[1,1],[1,0]])
- [ (0.920442065259926 - 0.21728689675164j) (0.568864481005783 + 0.351577584254143j)]
- [(0.568864481005783 + 0.351577584254143j) (0.351577584254143 - 0.568864481005783j)]
- >>> sqrtm([[1,0],[0,1]])
- [1.0 0.0]
- [0.0 1.0]
- >>> sqrtm([[-1,0],[0,1]])
- [(0.0 - 1.0j) 0.0]
- [ 0.0 (1.0 + 0.0j)]
- >>> sqrtm([[j,0],[0,j]])
- [(0.707106781186547 + 0.707106781186547j) 0.0]
- [ 0.0 (0.707106781186547 + 0.707106781186547j)]
- A square root of a rotation matrix, giving the corresponding
- half-angle rotation matrix::
- >>> t1 = 0.75
- >>> t2 = t1 * 0.5
- >>> A1 = matrix([[cos(t1), -sin(t1)], [sin(t1), cos(t1)]])
- >>> A2 = matrix([[cos(t2), -sin(t2)], [sin(t2), cos(t2)]])
- >>> sqrtm(A1)
- [0.930507621912314 -0.366272529086048]
- [0.366272529086048 0.930507621912314]
- >>> A2
- [0.930507621912314 -0.366272529086048]
- [0.366272529086048 0.930507621912314]
- The identity `(A^2)^{1/2} = A` does not necessarily hold::
- >>> A = matrix([[4,1,4],[7,8,9],[10,2,11]])
- >>> sqrtm(A**2)
- [ 4.0 1.0 4.0]
- [ 7.0 8.0 9.0]
- [10.0 2.0 11.0]
- >>> sqrtm(A)**2
- [ 4.0 1.0 4.0]
- [ 7.0 8.0 9.0]
- [10.0 2.0 11.0]
- >>> A = matrix([[-4,1,4],[7,-8,9],[10,2,11]])
- >>> sqrtm(A**2)
- [ 7.43715112194995 -0.324127569985474 1.8481718827526]
- [-0.251549715716942 9.32699765900402 2.48221180985147]
- [ 4.11609388833616 0.775751877098258 13.017955697342]
- >>> chop(sqrtm(A)**2)
- [-4.0 1.0 4.0]
- [ 7.0 -8.0 9.0]
- [10.0 2.0 11.0]
- For some matrices, a square root does not exist::
- >>> sqrtm([[0,1], [0,0]])
- Traceback (most recent call last):
- ...
- ZeroDivisionError: matrix is numerically singular
- Two examples from the documentation for Matlab's ``sqrtm``::
- >>> mp.dps = 15; mp.pretty = True
- >>> sqrtm([[7,10],[15,22]])
- [1.56669890360128 1.74077655955698]
- [2.61116483933547 4.17786374293675]
- >>>
- >>> X = matrix(\
- ... [[5,-4,1,0,0],
- ... [-4,6,-4,1,0],
- ... [1,-4,6,-4,1],
- ... [0,1,-4,6,-4],
- ... [0,0,1,-4,5]])
- >>> Y = matrix(\
- ... [[2,-1,-0,-0,-0],
- ... [-1,2,-1,0,-0],
- ... [0,-1,2,-1,0],
- ... [-0,0,-1,2,-1],
- ... [-0,-0,-0,-1,2]])
- >>> mnorm(sqrtm(X) - Y)
- 4.53155328326114e-19
- """
- A = ctx.matrix(A)
- # Trivial
- if A*0 == A:
- return A
- prec = ctx.prec
- if _may_rotate:
- d = ctx.det(A)
- if abs(ctx.im(d)) < 16*ctx.eps and ctx.re(d) < 0:
- return ctx._sqrtm_rot(A, _may_rotate-1)
- try:
- ctx.prec += 10
- tol = ctx.eps * 128
- Y = A
- Z = I = A**0
- k = 0
- # Denman-Beavers iteration
- while 1:
- Yprev = Y
- try:
- Y, Z = 0.5*(Y+ctx.inverse(Z)), 0.5*(Z+ctx.inverse(Y))
- except ZeroDivisionError:
- if _may_rotate:
- Y = ctx._sqrtm_rot(A, _may_rotate-1)
- break
- else:
- raise
- mag1 = ctx.mnorm(Y-Yprev, 'inf')
- mag2 = ctx.mnorm(Y, 'inf')
- if mag1 <= mag2*tol:
- break
- if _may_rotate and k > 6 and not mag1 < mag2 * 0.001:
- return ctx._sqrtm_rot(A, _may_rotate-1)
- k += 1
- if k > ctx.prec:
- raise ctx.NoConvergence
- finally:
- ctx.prec = prec
- Y *= 1
- return Y
- def logm(ctx, A):
- r"""
- Computes a logarithm of the square matrix `A`, i.e. returns
- a matrix `B = \log(A)` such that `\exp(B) = A`. The logarithm
- of a matrix, if it exists, is not unique.
- **Examples**
- Logarithms of some simple matrices::
- >>> from mpmath import *
- >>> mp.dps = 15; mp.pretty = True
- >>> X = eye(3)
- >>> logm(X)
- [0.0 0.0 0.0]
- [0.0 0.0 0.0]
- [0.0 0.0 0.0]
- >>> logm(2*X)
- [0.693147180559945 0.0 0.0]
- [ 0.0 0.693147180559945 0.0]
- [ 0.0 0.0 0.693147180559945]
- >>> logm(expm(X))
- [1.0 0.0 0.0]
- [0.0 1.0 0.0]
- [0.0 0.0 1.0]
- A logarithm of a complex matrix::
- >>> X = matrix([[2+j, 1, 3], [1-j, 1-2*j, 1], [-4, -5, j]])
- >>> B = logm(X)
- >>> nprint(B)
- [ (0.808757 + 0.107759j) (2.20752 + 0.202762j) (1.07376 - 0.773874j)]
- [ (0.905709 - 0.107795j) (0.0287395 - 0.824993j) (0.111619 + 0.514272j)]
- [(-0.930151 + 0.399512j) (-2.06266 - 0.674397j) (0.791552 + 0.519839j)]
- >>> chop(expm(B))
- [(2.0 + 1.0j) 1.0 3.0]
- [(1.0 - 1.0j) (1.0 - 2.0j) 1.0]
- [ -4.0 -5.0 (0.0 + 1.0j)]
- A matrix `X` close to the identity matrix, for which
- `\log(\exp(X)) = \exp(\log(X)) = X` holds::
- >>> X = eye(3) + hilbert(3)/4
- >>> X
- [ 1.25 0.125 0.0833333333333333]
- [ 0.125 1.08333333333333 0.0625]
- [0.0833333333333333 0.0625 1.05]
- >>> logm(expm(X))
- [ 1.25 0.125 0.0833333333333333]
- [ 0.125 1.08333333333333 0.0625]
- [0.0833333333333333 0.0625 1.05]
- >>> expm(logm(X))
- [ 1.25 0.125 0.0833333333333333]
- [ 0.125 1.08333333333333 0.0625]
- [0.0833333333333333 0.0625 1.05]
- A logarithm of a rotation matrix, giving back the angle of
- the rotation::
- >>> t = 3.7
- >>> A = matrix([[cos(t),sin(t)],[-sin(t),cos(t)]])
- >>> chop(logm(A))
- [ 0.0 -2.58318530717959]
- [2.58318530717959 0.0]
- >>> (2*pi-t)
- 2.58318530717959
- For some matrices, a logarithm does not exist::
- >>> logm([[1,0], [0,0]])
- Traceback (most recent call last):
- ...
- ZeroDivisionError: matrix is numerically singular
- Logarithm of a matrix with large entries::
- >>> logm(hilbert(3) * 10**20).apply(re)
- [ 45.5597513593433 1.27721006042799 0.317662687717978]
- [ 1.27721006042799 42.5222778973542 2.24003708791604]
- [0.317662687717978 2.24003708791604 42.395212822267]
- """
- A = ctx.matrix(A)
- prec = ctx.prec
- try:
- ctx.prec += 10
- tol = ctx.eps * 128
- I = A**0
- B = A
- n = 0
- while 1:
- B = ctx.sqrtm(B)
- n += 1
- if ctx.mnorm(B-I, 'inf') < 0.125:
- break
- T = X = B-I
- L = X*0
- k = 1
- while 1:
- if k & 1:
- L += T / k
- else:
- L -= T / k
- T *= X
- if ctx.mnorm(T, 'inf') < tol:
- break
- k += 1
- if k > ctx.prec:
- raise ctx.NoConvergence
- finally:
- ctx.prec = prec
- L *= 2**n
- return L
- def powm(ctx, A, r):
- r"""
- Computes `A^r = \exp(A \log r)` for a matrix `A` and complex
- number `r`.
- **Examples**
- Powers and inverse powers of a matrix::
- >>> from mpmath import *
- >>> mp.dps = 15; mp.pretty = True
- >>> A = matrix([[4,1,4],[7,8,9],[10,2,11]])
- >>> powm(A, 2)
- [ 63.0 20.0 69.0]
- [174.0 89.0 199.0]
- [164.0 48.0 179.0]
- >>> chop(powm(powm(A, 4), 1/4.))
- [ 4.0 1.0 4.0]
- [ 7.0 8.0 9.0]
- [10.0 2.0 11.0]
- >>> powm(extraprec(20)(powm)(A, -4), -1/4.)
- [ 4.0 1.0 4.0]
- [ 7.0 8.0 9.0]
- [10.0 2.0 11.0]
- >>> chop(powm(powm(A, 1+0.5j), 1/(1+0.5j)))
- [ 4.0 1.0 4.0]
- [ 7.0 8.0 9.0]
- [10.0 2.0 11.0]
- >>> powm(extraprec(5)(powm)(A, -1.5), -1/(1.5))
- [ 4.0 1.0 4.0]
- [ 7.0 8.0 9.0]
- [10.0 2.0 11.0]
- A Fibonacci-generating matrix::
- >>> powm([[1,1],[1,0]], 10)
- [89.0 55.0]
- [55.0 34.0]
- >>> fib(10)
- 55.0
- >>> powm([[1,1],[1,0]], 6.5)
- [(16.5166626964253 - 0.0121089837381789j) (10.2078589271083 + 0.0195927472575932j)]
- [(10.2078589271083 + 0.0195927472575932j) (6.30880376931698 - 0.0317017309957721j)]
- >>> (phi**6.5 - (1-phi)**6.5)/sqrt(5)
- (10.2078589271083 - 0.0195927472575932j)
- >>> powm([[1,1],[1,0]], 6.2)
- [ (14.3076953002666 - 0.008222855781077j) (8.81733464837593 + 0.0133048601383712j)]
- [(8.81733464837593 + 0.0133048601383712j) (5.49036065189071 - 0.0215277159194482j)]
- >>> (phi**6.2 - (1-phi)**6.2)/sqrt(5)
- (8.81733464837593 - 0.0133048601383712j)
- """
- A = ctx.matrix(A)
- r = ctx.convert(r)
- prec = ctx.prec
- try:
- ctx.prec += 10
- if ctx.isint(r):
- v = A ** int(r)
- elif ctx.isint(r*2):
- y = int(r*2)
- v = ctx.sqrtm(A) ** y
- else:
- v = ctx.expm(r*ctx.logm(A))
- finally:
- ctx.prec = prec
- v *= 1
- return v
|