123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143 |
- from mpmath.libmp import *
- from mpmath import mpf, mp
- from random import randint, choice, seed
- all_modes = [round_floor, round_ceiling, round_down, round_up, round_nearest]
- fb = from_bstr
- fi = from_int
- ff = from_float
- def test_div_1_3():
- a = fi(1)
- b = fi(3)
- c = fi(-1)
- # floor rounds down, ceiling rounds up
- assert mpf_div(a, b, 7, round_floor) == fb('0.01010101')
- assert mpf_div(a, b, 7, round_ceiling) == fb('0.01010110')
- assert mpf_div(a, b, 7, round_down) == fb('0.01010101')
- assert mpf_div(a, b, 7, round_up) == fb('0.01010110')
- assert mpf_div(a, b, 7, round_nearest) == fb('0.01010101')
- # floor rounds up, ceiling rounds down
- assert mpf_div(c, b, 7, round_floor) == fb('-0.01010110')
- assert mpf_div(c, b, 7, round_ceiling) == fb('-0.01010101')
- assert mpf_div(c, b, 7, round_down) == fb('-0.01010101')
- assert mpf_div(c, b, 7, round_up) == fb('-0.01010110')
- assert mpf_div(c, b, 7, round_nearest) == fb('-0.01010101')
- def test_mpf_divi_1_3():
- a = 1
- b = fi(3)
- c = -1
- assert mpf_rdiv_int(a, b, 7, round_floor) == fb('0.01010101')
- assert mpf_rdiv_int(a, b, 7, round_ceiling) == fb('0.01010110')
- assert mpf_rdiv_int(a, b, 7, round_down) == fb('0.01010101')
- assert mpf_rdiv_int(a, b, 7, round_up) == fb('0.01010110')
- assert mpf_rdiv_int(a, b, 7, round_nearest) == fb('0.01010101')
- assert mpf_rdiv_int(c, b, 7, round_floor) == fb('-0.01010110')
- assert mpf_rdiv_int(c, b, 7, round_ceiling) == fb('-0.01010101')
- assert mpf_rdiv_int(c, b, 7, round_down) == fb('-0.01010101')
- assert mpf_rdiv_int(c, b, 7, round_up) == fb('-0.01010110')
- assert mpf_rdiv_int(c, b, 7, round_nearest) == fb('-0.01010101')
- def test_div_300():
- q = fi(1000000)
- a = fi(300499999) # a/q is a little less than a half-integer
- b = fi(300500000) # b/q exactly a half-integer
- c = fi(300500001) # c/q is a little more than a half-integer
- # Check nearest integer rounding (prec=9 as 2**8 < 300 < 2**9)
- assert mpf_div(a, q, 9, round_down) == fi(300)
- assert mpf_div(b, q, 9, round_down) == fi(300)
- assert mpf_div(c, q, 9, round_down) == fi(300)
- assert mpf_div(a, q, 9, round_up) == fi(301)
- assert mpf_div(b, q, 9, round_up) == fi(301)
- assert mpf_div(c, q, 9, round_up) == fi(301)
- # Nearest even integer is down
- assert mpf_div(a, q, 9, round_nearest) == fi(300)
- assert mpf_div(b, q, 9, round_nearest) == fi(300)
- assert mpf_div(c, q, 9, round_nearest) == fi(301)
- # Nearest even integer is up
- a = fi(301499999)
- b = fi(301500000)
- c = fi(301500001)
- assert mpf_div(a, q, 9, round_nearest) == fi(301)
- assert mpf_div(b, q, 9, round_nearest) == fi(302)
- assert mpf_div(c, q, 9, round_nearest) == fi(302)
- def test_tight_integer_division():
- # Test that integer division at tightest possible precision is exact
- N = 100
- seed(1)
- for i in range(N):
- a = choice([1, -1]) * randint(1, 1<<randint(10, 100))
- b = choice([1, -1]) * randint(1, 1<<randint(10, 100))
- p = a * b
- width = bitcount(abs(b)) - trailing(b)
- a = fi(a); b = fi(b); p = fi(p)
- for mode in all_modes:
- assert mpf_div(p, a, width, mode) == b
- def test_epsilon_rounding():
- # Verify that mpf_div uses infinite precision; this result will
- # appear to be exactly 0.101 to a near-sighted algorithm
- a = fb('0.101' + ('0'*200) + '1')
- b = fb('1.10101')
- c = mpf_mul(a, b, 250, round_floor) # exact
- assert mpf_div(c, b, bitcount(a[1]), round_floor) == a # exact
- assert mpf_div(c, b, 2, round_down) == fb('0.10')
- assert mpf_div(c, b, 3, round_down) == fb('0.101')
- assert mpf_div(c, b, 2, round_up) == fb('0.11')
- assert mpf_div(c, b, 3, round_up) == fb('0.110')
- assert mpf_div(c, b, 2, round_floor) == fb('0.10')
- assert mpf_div(c, b, 3, round_floor) == fb('0.101')
- assert mpf_div(c, b, 2, round_ceiling) == fb('0.11')
- assert mpf_div(c, b, 3, round_ceiling) == fb('0.110')
- # The same for negative numbers
- a = fb('-0.101' + ('0'*200) + '1')
- b = fb('1.10101')
- c = mpf_mul(a, b, 250, round_floor)
- assert mpf_div(c, b, bitcount(a[1]), round_floor) == a
- assert mpf_div(c, b, 2, round_down) == fb('-0.10')
- assert mpf_div(c, b, 3, round_up) == fb('-0.110')
- # Floor goes up, ceiling goes down
- assert mpf_div(c, b, 2, round_floor) == fb('-0.11')
- assert mpf_div(c, b, 3, round_floor) == fb('-0.110')
- assert mpf_div(c, b, 2, round_ceiling) == fb('-0.10')
- assert mpf_div(c, b, 3, round_ceiling) == fb('-0.101')
- def test_mod():
- mp.dps = 15
- assert mpf(234) % 1 == 0
- assert mpf(-3) % 256 == 253
- assert mpf(0.25) % 23490.5 == 0.25
- assert mpf(0.25) % -23490.5 == -23490.25
- assert mpf(-0.25) % 23490.5 == 23490.25
- assert mpf(-0.25) % -23490.5 == -0.25
- # Check that these cases are handled efficiently
- assert mpf('1e10000000000') % 1 == 0
- assert mpf('1.23e-1000000000') % 1 == mpf('1.23e-1000000000')
- # test __rmod__
- assert 3 % mpf('1.75') == 1.25
- def test_div_negative_rnd_bug():
- mp.dps = 15
- assert (-3) / mpf('0.1531879017645047') == mpf('-19.583791966887116')
- assert mpf('-2.6342475750861301') / mpf('0.35126216427941814') == mpf('-7.4993775104985909')
|