123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153 |
- #!/usr/bin/python
- # -*- coding: utf-8 -*-
- from mpmath import mp
- from mpmath import libmp
- xrange = libmp.backend.xrange
- # Attention:
- # These tests run with 15-20 decimal digits precision. For higher precision the
- # working precision must be raised.
- def test_levin_0():
- mp.dps = 17
- eps = mp.mpf(mp.eps)
- with mp.extraprec(2 * mp.prec):
- L = mp.levin(method = "levin", variant = "u")
- S, s, n = [], 0, 1
- while 1:
- s += mp.one / (n * n)
- n += 1
- S.append(s)
- v, e = L.update_psum(S)
- if e < eps:
- break
- if n > 1000: raise RuntimeError("iteration limit exceeded")
- eps = mp.exp(0.9 * mp.log(eps))
- err = abs(v - mp.pi ** 2 / 6)
- assert err < eps
- w = mp.nsum(lambda n: 1/(n * n), [1, mp.inf], method = "levin", levin_variant = "u")
- err = abs(v - w)
- assert err < eps
- def test_levin_1():
- mp.dps = 17
- eps = mp.mpf(mp.eps)
- with mp.extraprec(2 * mp.prec):
- L = mp.levin(method = "levin", variant = "v")
- A, n = [], 1
- while 1:
- s = mp.mpf(n) ** (2 + 3j)
- n += 1
- A.append(s)
- v, e = L.update(A)
- if e < eps:
- break
- if n > 1000: raise RuntimeError("iteration limit exceeded")
- eps = mp.exp(0.9 * mp.log(eps))
- err = abs(v - mp.zeta(-2-3j))
- assert err < eps
- w = mp.nsum(lambda n: n ** (2 + 3j), [1, mp.inf], method = "levin", levin_variant = "v")
- err = abs(v - w)
- assert err < eps
- def test_levin_2():
- # [2] A. Sidi - "Pratical Extrapolation Methods" p.373
- mp.dps = 17
- z=mp.mpf(10)
- eps = mp.mpf(mp.eps)
- with mp.extraprec(2 * mp.prec):
- L = mp.levin(method = "sidi", variant = "t")
- n = 0
- while 1:
- s = (-1)**n * mp.fac(n) * z ** (-n)
- v, e = L.step(s)
- n += 1
- if e < eps:
- break
- if n > 1000: raise RuntimeError("iteration limit exceeded")
- eps = mp.exp(0.9 * mp.log(eps))
- exact = mp.quad(lambda x: mp.exp(-x)/(1+x/z),[0,mp.inf])
- # there is also a symbolic expression for the integral:
- # exact = z * mp.exp(z) * mp.expint(1,z)
- err = abs(v - exact)
- assert err < eps
- w = mp.nsum(lambda n: (-1) ** n * mp.fac(n) * z ** (-n), [0, mp.inf], method = "sidi", levin_variant = "t")
- assert err < eps
- def test_levin_3():
- mp.dps = 17
- z=mp.mpf(2)
- eps = mp.mpf(mp.eps)
- with mp.extraprec(7*mp.prec): # we need copious amount of precision to sum this highly divergent series
- L = mp.levin(method = "levin", variant = "t")
- n, s = 0, 0
- while 1:
- s += (-z)**n * mp.fac(4 * n) / (mp.fac(n) * mp.fac(2 * n) * (4 ** n))
- n += 1
- v, e = L.step_psum(s)
- if e < eps:
- break
- if n > 1000: raise RuntimeError("iteration limit exceeded")
- eps = mp.exp(0.8 * mp.log(eps))
- exact = mp.quad(lambda x: mp.exp( -x * x / 2 - z * x ** 4), [0,mp.inf]) * 2 / mp.sqrt(2 * mp.pi)
- # there is also a symbolic expression for the integral:
- # exact = mp.exp(mp.one / (32 * z)) * mp.besselk(mp.one / 4, mp.one / (32 * z)) / (4 * mp.sqrt(z * mp.pi))
- err = abs(v - exact)
- assert err < eps
- w = mp.nsum(lambda n: (-z)**n * mp.fac(4 * n) / (mp.fac(n) * mp.fac(2 * n) * (4 ** n)), [0, mp.inf], method = "levin", levin_variant = "t", workprec = 8*mp.prec, steps = [2] + [1 for x in xrange(1000)])
- err = abs(v - w)
- assert err < eps
- def test_levin_nsum():
- mp.dps = 17
- with mp.extraprec(mp.prec):
- z = mp.mpf(10) ** (-10)
- a = mp.nsum(lambda n: n**(-(1+z)), [1, mp.inf], method = "l") - 1 / z
- assert abs(a - mp.euler) < 1e-10
- eps = mp.exp(0.8 * mp.log(mp.eps))
- a = mp.nsum(lambda n: (-1)**(n-1) / n, [1, mp.inf], method = "sidi")
- assert abs(a - mp.log(2)) < eps
- z = 2 + 1j
- f = lambda n: mp.rf(2 / mp.mpf(3), n) * mp.rf(4 / mp.mpf(3), n) * z**n / (mp.rf(1 / mp.mpf(3), n) * mp.fac(n))
- v = mp.nsum(f, [0, mp.inf], method = "levin", steps = [10 for x in xrange(1000)])
- exact = mp.hyp2f1(2 / mp.mpf(3), 4 / mp.mpf(3), 1 / mp.mpf(3), z)
- assert abs(exact - v) < eps
- def test_cohen_alt_0():
- mp.dps = 17
- AC = mp.cohen_alt()
- S, s, n = [], 0, 1
- while 1:
- s += -((-1) ** n) * mp.one / (n * n)
- n += 1
- S.append(s)
- v, e = AC.update_psum(S)
- if e < mp.eps:
- break
- if n > 1000: raise RuntimeError("iteration limit exceeded")
- eps = mp.exp(0.9 * mp.log(mp.eps))
- err = abs(v - mp.pi ** 2 / 12)
- assert err < eps
- def test_cohen_alt_1():
- mp.dps = 17
- A = []
- AC = mp.cohen_alt()
- n = 1
- while 1:
- A.append( mp.loggamma(1 + mp.one / (2 * n - 1)))
- A.append(-mp.loggamma(1 + mp.one / (2 * n)))
- n += 1
- v, e = AC.update(A)
- if e < mp.eps:
- break
- if n > 1000: raise RuntimeError("iteration limit exceeded")
- v = mp.exp(v)
- err = abs(v - 1.06215090557106)
- assert err < 1e-12
|