123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332 |
- # TODO: don't use round
- from __future__ import division
- import pytest
- from mpmath import *
- xrange = libmp.backend.xrange
- # XXX: these shouldn't be visible(?)
- LU_decomp = mp.LU_decomp
- L_solve = mp.L_solve
- U_solve = mp.U_solve
- householder = mp.householder
- improve_solution = mp.improve_solution
- A1 = matrix([[3, 1, 6],
- [2, 1, 3],
- [1, 1, 1]])
- b1 = [2, 7, 4]
- A2 = matrix([[ 2, -1, -1, 2],
- [ 6, -2, 3, -1],
- [-4, 2, 3, -2],
- [ 2, 0, 4, -3]])
- b2 = [3, -3, -2, -1]
- A3 = matrix([[ 1, 0, -1, -1, 0],
- [ 0, 1, 1, 0, -1],
- [ 4, -5, 2, 0, 0],
- [ 0, 0, -2, 9,-12],
- [ 0, 5, 0, 0, 12]])
- b3 = [0, 0, 0, 0, 50]
- A4 = matrix([[10.235, -4.56, 0., -0.035, 5.67],
- [-2.463, 1.27, 3.97, -8.63, 1.08],
- [-6.58, 0.86, -0.257, 9.32, -43.6 ],
- [ 9.83, 7.39, -17.25, 0.036, 24.86],
- [-9.31, 34.9, 78.56, 1.07, 65.8 ]])
- b4 = [8.95, 20.54, 7.42, 5.60, 58.43]
- A5 = matrix([[ 1, 2, -4],
- [-2, -3, 5],
- [ 3, 5, -8]])
- A6 = matrix([[ 1.377360, 2.481400, 5.359190],
- [ 2.679280, -1.229560, 25.560210],
- [-1.225280+1.e6, 9.910180, -35.049900-1.e6]])
- b6 = [23.500000, -15.760000, 2.340000]
- A7 = matrix([[1, -0.5],
- [2, 1],
- [-2, 6]])
- b7 = [3, 2, -4]
- A8 = matrix([[1, 2, 3],
- [-1, 0, 1],
- [-1, -2, -1],
- [1, 0, -1]])
- b8 = [1, 2, 3, 4]
- A9 = matrix([[ 4, 2, -2],
- [ 2, 5, -4],
- [-2, -4, 5.5]])
- b9 = [10, 16, -15.5]
- A10 = matrix([[1.0 + 1.0j, 2.0, 2.0],
- [4.0, 5.0, 6.0],
- [7.0, 8.0, 9.0]])
- b10 = [1.0, 1.0 + 1.0j, 1.0]
- def test_LU_decomp():
- A = A3.copy()
- b = b3
- A, p = LU_decomp(A)
- y = L_solve(A, b, p)
- x = U_solve(A, y)
- assert p == [2, 1, 2, 3]
- assert [round(i, 14) for i in x] == [3.78953107960742, 2.9989094874591098,
- -0.081788440567070006, 3.8713195201744801, 2.9171210468920399]
- A = A4.copy()
- b = b4
- A, p = LU_decomp(A)
- y = L_solve(A, b, p)
- x = U_solve(A, y)
- assert p == [0, 3, 4, 3]
- assert [round(i, 14) for i in x] == [2.6383625899619201, 2.6643834462368399,
- 0.79208015947958998, -2.5088376454101899, -1.0567657691375001]
- A = randmatrix(3)
- bak = A.copy()
- LU_decomp(A, overwrite=1)
- assert A != bak
- def test_inverse():
- for A in [A1, A2, A5]:
- inv = inverse(A)
- assert mnorm(A*inv - eye(A.rows), 1) < 1.e-14
- def test_householder():
- mp.dps = 15
- A, b = A8, b8
- H, p, x, r = householder(extend(A, b))
- assert H == matrix(
- [[mpf('3.0'), mpf('-2.0'), mpf('-1.0'), 0],
- [-1.0,mpf('3.333333333333333'),mpf('-2.9999999999999991'),mpf('2.0')],
- [-1.0, mpf('-0.66666666666666674'),mpf('2.8142135623730948'),
- mpf('-2.8284271247461898')],
- [1.0, mpf('-1.3333333333333333'),mpf('-0.20000000000000018'),
- mpf('4.2426406871192857')]])
- assert p == [-2, -2, mpf('-1.4142135623730949')]
- assert round(norm(r, 2), 10) == 4.2426406870999998
- y = [102.102, 58.344, 36.463, 24.310, 17.017, 12.376, 9.282, 7.140, 5.610,
- 4.488, 3.6465, 3.003]
- def coeff(n):
- # similiar to Hilbert matrix
- A = []
- for i in range(1, 13):
- A.append([1. / (i + j - 1) for j in range(1, n + 1)])
- return matrix(A)
- residuals = []
- refres = []
- for n in range(2, 7):
- A = coeff(n)
- H, p, x, r = householder(extend(A, y))
- x = matrix(x)
- y = matrix(y)
- residuals.append(norm(r, 2))
- refres.append(norm(residual(A, x, y), 2))
- assert [round(res, 10) for res in residuals] == [15.1733888877,
- 0.82378073210000002, 0.302645887, 0.0260109244,
- 0.00058653999999999998]
- assert norm(matrix(residuals) - matrix(refres), inf) < 1.e-13
- def hilbert_cmplx(n):
- # Complexified Hilbert matrix
- A = hilbert(2*n,n)
- v = randmatrix(2*n, 2, min=-1, max=1)
- v = v.apply(lambda x: exp(1J*pi()*x))
- A = diag(v[:,0])*A*diag(v[:n,1])
- return A
- residuals_cmplx = []
- refres_cmplx = []
- for n in range(2, 10):
- A = hilbert_cmplx(n)
- H, p, x, r = householder(A.copy())
- residuals_cmplx.append(norm(r, 2))
- refres_cmplx.append(norm(residual(A[:,:n-1], x, A[:,n-1]), 2))
- assert norm(matrix(residuals_cmplx) - matrix(refres_cmplx), inf) < 1.e-13
- def test_factorization():
- A = randmatrix(5)
- P, L, U = lu(A)
- assert mnorm(P*A - L*U, 1) < 1.e-15
- def test_solve():
- assert norm(residual(A6, lu_solve(A6, b6), b6), inf) < 1.e-10
- assert norm(residual(A7, lu_solve(A7, b7), b7), inf) < 1.5
- assert norm(residual(A8, lu_solve(A8, b8), b8), inf) <= 3 + 1.e-10
- assert norm(residual(A6, qr_solve(A6, b6)[0], b6), inf) < 1.e-10
- assert norm(residual(A7, qr_solve(A7, b7)[0], b7), inf) < 1.5
- assert norm(residual(A8, qr_solve(A8, b8)[0], b8), 2) <= 4.3
- assert norm(residual(A10, lu_solve(A10, b10), b10), 2) < 1.e-10
- assert norm(residual(A10, qr_solve(A10, b10)[0], b10), 2) < 1.e-10
- def test_solve_overdet_complex():
- A = matrix([[1, 2j], [3, 4j], [5, 6]])
- b = matrix([1 + j, 2, -j])
- assert norm(residual(A, lu_solve(A, b), b)) < 1.0208
- def test_singular():
- mp.dps = 15
- A = [[5.6, 1.2], [7./15, .1]]
- B = repr(zeros(2))
- b = [1, 2]
- for i in ['lu_solve(%s, %s)' % (A, b), 'lu_solve(%s, %s)' % (B, b),
- 'qr_solve(%s, %s)' % (A, b), 'qr_solve(%s, %s)' % (B, b)]:
- pytest.raises((ZeroDivisionError, ValueError), lambda: eval(i))
- def test_cholesky():
- assert fp.cholesky(fp.matrix(A9)) == fp.matrix([[2, 0, 0], [1, 2, 0], [-1, -3/2, 3/2]])
- x = fp.cholesky_solve(A9, b9)
- assert fp.norm(fp.residual(A9, x, b9), fp.inf) == 0
- def test_det():
- assert det(A1) == 1
- assert round(det(A2), 14) == 8
- assert round(det(A3)) == 1834
- assert round(det(A4)) == 4443376
- assert det(A5) == 1
- assert round(det(A6)) == 78356463
- assert det(zeros(3)) == 0
- def test_cond():
- mp.dps = 15
- A = matrix([[1.2969, 0.8648], [0.2161, 0.1441]])
- assert cond(A, lambda x: mnorm(x,1)) == mpf('327065209.73817754')
- assert cond(A, lambda x: mnorm(x,inf)) == mpf('327065209.73817754')
- assert cond(A, lambda x: mnorm(x,'F')) == mpf('249729266.80008656')
- @extradps(50)
- def test_precision():
- A = randmatrix(10, 10)
- assert mnorm(inverse(inverse(A)) - A, 1) < 1.e-45
- def test_interval_matrix():
- mp.dps = 15
- iv.dps = 15
- a = iv.matrix([['0.1','0.3','1.0'],['7.1','5.5','4.8'],['3.2','4.4','5.6']])
- b = iv.matrix(['4','0.6','0.5'])
- c = iv.lu_solve(a, b)
- assert c[0].delta < 1e-13
- assert c[1].delta < 1e-13
- assert c[2].delta < 1e-13
- assert 5.25823271130625686059275 in c[0]
- assert -13.155049396267837541163 in c[1]
- assert 7.42069154774972557628979 in c[2]
- def test_LU_cache():
- A = randmatrix(3)
- LU = LU_decomp(A)
- assert A._LU == LU_decomp(A)
- A[0,0] = -1000
- assert A._LU is None
- def test_improve_solution():
- A = randmatrix(5, min=1e-20, max=1e20)
- b = randmatrix(5, 1, min=-1000, max=1000)
- x1 = lu_solve(A, b) + randmatrix(5, 1, min=-1e-5, max=1.e-5)
- x2 = improve_solution(A, x1, b)
- assert norm(residual(A, x2, b), 2) < norm(residual(A, x1, b), 2)
- def test_exp_pade():
- for i in range(3):
- dps = 15
- extra = 15
- mp.dps = dps + extra
- dm = 0
- N = 3
- dg = range(1,N+1)
- a = diag(dg)
- expa = diag([exp(x) for x in dg])
- # choose a random matrix not close to be singular
- # to avoid adding too much extra precision in computing
- # m**-1 * M * m
- while abs(dm) < 0.01:
- m = randmatrix(N)
- dm = det(m)
- m = m/dm
- a1 = m**-1 * a * m
- e2 = m**-1 * expa * m
- mp.dps = dps
- e1 = expm(a1, method='pade')
- mp.dps = dps + extra
- d = e2 - e1
- #print d
- mp.dps = dps
- assert norm(d, inf).ae(0)
- mp.dps = 15
- def test_qr():
- mp.dps = 15 # used default value for dps
- lowlimit = -9 # lower limit of matrix element value
- uplimit = 9 # uppter limit of matrix element value
- maxm = 4 # max matrix size
- flg = False # toggle to create real vs complex matrix
- zero = mpf('0.0')
- for k in xrange(0,10):
- exdps = 0
- mode = 'full'
- flg = bool(k % 2)
- # generate arbitrary matrix size (2 to maxm)
- num1 = nint(2 + (maxm-2)*rand())
- num2 = nint(2 + (maxm-2)*rand())
- m = int(max(num1, num2))
- n = int(min(num1, num2))
- # create matrix
- A = mp.matrix(m,n)
- # populate matrix values with arbitrary integers
- if flg:
- flg = False
- dtype = 'complex'
- for j in xrange(0,n):
- for i in xrange(0,m):
- val = nint(lowlimit + (uplimit-lowlimit)*rand())
- val2 = nint(lowlimit + (uplimit-lowlimit)*rand())
- A[i,j] = mpc(val, val2)
- else:
- flg = True
- dtype = 'real'
- for j in xrange(0,n):
- for i in xrange(0,m):
- val = nint(lowlimit + (uplimit-lowlimit)*rand())
- A[i,j] = mpf(val)
- # perform A -> QR decomposition
- Q, R = qr(A, mode, edps = exdps)
- #print('\n\n A = \n', nstr(A, 4))
- #print('\n Q = \n', nstr(Q, 4))
- #print('\n R = \n', nstr(R, 4))
- #print('\n Q*R = \n', nstr(Q*R, 4))
- maxnorm = mpf('1.0E-11')
- n1 = norm(A - Q * R)
- #print '\n Norm of A - Q * R = ', n1
- assert n1 <= maxnorm
- if dtype == 'real':
- n1 = norm(eye(m) - Q.T * Q)
- #print ' Norm of I - Q.T * Q = ', n1
- assert n1 <= maxnorm
- n1 = norm(eye(m) - Q * Q.T)
- #print ' Norm of I - Q * Q.T = ', n1
- assert n1 <= maxnorm
- if dtype == 'complex':
- n1 = norm(eye(m) - Q.T * Q.conjugate())
- #print ' Norm of I - Q.T * Q.conjugate() = ', n1
- assert n1 <= maxnorm
- n1 = norm(eye(m) - Q.conjugate() * Q.T)
- #print ' Norm of I - Q.conjugate() * Q.T = ', n1
- assert n1 <= maxnorm
|