12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091 |
- import pytest
- from mpmath import *
- from mpmath.calculus.optimization import Secant, Muller, Bisection, Illinois, \
- Pegasus, Anderson, Ridder, ANewton, Newton, MNewton, MDNewton
- def test_findroot():
- # old tests, assuming secant
- mp.dps = 15
- assert findroot(lambda x: 4*x-3, mpf(5)).ae(0.75)
- assert findroot(sin, mpf(3)).ae(pi)
- assert findroot(sin, (mpf(3), mpf(3.14))).ae(pi)
- assert findroot(lambda x: x*x+1, mpc(2+2j)).ae(1j)
- # test all solvers with 1 starting point
- f = lambda x: cos(x)
- for solver in [Newton, Secant, MNewton, Muller, ANewton]:
- x = findroot(f, 2., solver=solver)
- assert abs(f(x)) < eps
- # test all solvers with interval of 2 points
- for solver in [Secant, Muller, Bisection, Illinois, Pegasus, Anderson,
- Ridder]:
- x = findroot(f, (1., 2.), solver=solver)
- assert abs(f(x)) < eps
- # test types
- f = lambda x: (x - 2)**2
- assert isinstance(findroot(f, 1, tol=1e-10), mpf)
- assert isinstance(iv.findroot(f, 1., tol=1e-10), iv.mpf)
- assert isinstance(fp.findroot(f, 1, tol=1e-10), float)
- assert isinstance(fp.findroot(f, 1+0j, tol=1e-10), complex)
- # issue 401
- with pytest.raises(ValueError):
- with workprec(2):
- findroot(lambda x: x**2 - 4456178*x + 60372201703370,
- mpc(real='5.278e+13', imag='-5.278e+13'))
- # issue 192
- with pytest.raises(ValueError):
- findroot(lambda x: -1, 0)
- # issue 387
- with pytest.raises(ValueError):
- findroot(lambda p: (1 - p)**30 - 1, 0.9)
- def test_bisection():
- # issue 273
- assert findroot(lambda x: x**2-1,(0,2),solver='bisect') == 1
- def test_mnewton():
- f = lambda x: polyval([1,3,3,1],x)
- x = findroot(f, -0.9, solver='mnewton')
- assert abs(f(x)) < eps
- def test_anewton():
- f = lambda x: (x - 2)**100
- x = findroot(f, 1., solver=ANewton)
- assert abs(f(x)) < eps
- def test_muller():
- f = lambda x: (2 + x)**3 + 2
- x = findroot(f, 1., solver=Muller)
- assert abs(f(x)) < eps
- def test_multiplicity():
- for i in range(1, 5):
- assert multiplicity(lambda x: (x - 1)**i, 1) == i
- assert multiplicity(lambda x: x**2, 1) == 0
- def test_multidimensional():
- def f(*x):
- return [3*x[0]**2-2*x[1]**2-1, x[0]**2-2*x[0]+x[1]**2+2*x[1]-8]
- assert mnorm(jacobian(f, (1,-2)) - matrix([[6,8],[0,-2]]),1) < 1.e-7
- for x, error in MDNewton(mp, f, (1,-2), verbose=0,
- norm=lambda x: norm(x, inf)):
- pass
- assert norm(f(*x), 2) < 1e-14
- # The Chinese mathematician Zhu Shijie was the very first to solve this
- # nonlinear system 700 years ago
- f1 = lambda x, y: -x + 2*y
- f2 = lambda x, y: (x**2 + x*(y**2 - 2) - 4*y) / (x + 4)
- f3 = lambda x, y: sqrt(x**2 + y**2)
- def f(x, y):
- f1x = f1(x, y)
- return (f2(x, y) - f1x, f3(x, y) - f1x)
- x = findroot(f, (10, 10))
- assert [int(round(i)) for i in x] == [3, 4]
- def test_trivial():
- assert findroot(lambda x: 0, 1) == 1
- assert findroot(lambda x: x, 0) == 0
- #assert findroot(lambda x, y: x + y, (1, -1)) == (1, -1)
|