123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313 |
- """
- Plotting (requires matplotlib)
- """
- from colorsys import hsv_to_rgb, hls_to_rgb
- from .libmp import NoConvergence
- from .libmp.backend import xrange
- class VisualizationMethods(object):
- plot_ignore = (ValueError, ArithmeticError, ZeroDivisionError, NoConvergence)
- def plot(ctx, f, xlim=[-5,5], ylim=None, points=200, file=None, dpi=None,
- singularities=[], axes=None):
- r"""
- Shows a simple 2D plot of a function `f(x)` or list of functions
- `[f_0(x), f_1(x), \ldots, f_n(x)]` over a given interval
- specified by *xlim*. Some examples::
- plot(lambda x: exp(x)*li(x), [1, 4])
- plot([cos, sin], [-4, 4])
- plot([fresnels, fresnelc], [-4, 4])
- plot([sqrt, cbrt], [-4, 4])
- plot(lambda t: zeta(0.5+t*j), [-20, 20])
- plot([floor, ceil, abs, sign], [-5, 5])
- Points where the function raises a numerical exception or
- returns an infinite value are removed from the graph.
- Singularities can also be excluded explicitly
- as follows (useful for removing erroneous vertical lines)::
- plot(cot, ylim=[-5, 5]) # bad
- plot(cot, ylim=[-5, 5], singularities=[-pi, 0, pi]) # good
- For parts where the function assumes complex values, the
- real part is plotted with dashes and the imaginary part
- is plotted with dots.
- .. note :: This function requires matplotlib (pylab).
- """
- if file:
- axes = None
- fig = None
- if not axes:
- import pylab
- fig = pylab.figure()
- axes = fig.add_subplot(111)
- if not isinstance(f, (tuple, list)):
- f = [f]
- a, b = xlim
- colors = ['b', 'r', 'g', 'm', 'k']
- for n, func in enumerate(f):
- x = ctx.arange(a, b, (b-a)/float(points))
- segments = []
- segment = []
- in_complex = False
- for i in xrange(len(x)):
- try:
- if i != 0:
- for sing in singularities:
- if x[i-1] <= sing and x[i] >= sing:
- raise ValueError
- v = func(x[i])
- if ctx.isnan(v) or abs(v) > 1e300:
- raise ValueError
- if hasattr(v, "imag") and v.imag:
- re = float(v.real)
- im = float(v.imag)
- if not in_complex:
- in_complex = True
- segments.append(segment)
- segment = []
- segment.append((float(x[i]), re, im))
- else:
- if in_complex:
- in_complex = False
- segments.append(segment)
- segment = []
- if hasattr(v, "real"):
- v = v.real
- segment.append((float(x[i]), v))
- except ctx.plot_ignore:
- if segment:
- segments.append(segment)
- segment = []
- if segment:
- segments.append(segment)
- for segment in segments:
- x = [s[0] for s in segment]
- y = [s[1] for s in segment]
- if not x:
- continue
- c = colors[n % len(colors)]
- if len(segment[0]) == 3:
- z = [s[2] for s in segment]
- axes.plot(x, y, '--'+c, linewidth=3)
- axes.plot(x, z, ':'+c, linewidth=3)
- else:
- axes.plot(x, y, c, linewidth=3)
- axes.set_xlim([float(_) for _ in xlim])
- if ylim:
- axes.set_ylim([float(_) for _ in ylim])
- axes.set_xlabel('x')
- axes.set_ylabel('f(x)')
- axes.grid(True)
- if fig:
- if file:
- pylab.savefig(file, dpi=dpi)
- else:
- pylab.show()
- def default_color_function(ctx, z):
- if ctx.isinf(z):
- return (1.0, 1.0, 1.0)
- if ctx.isnan(z):
- return (0.5, 0.5, 0.5)
- pi = 3.1415926535898
- a = (float(ctx.arg(z)) + ctx.pi) / (2*ctx.pi)
- a = (a + 0.5) % 1.0
- b = 1.0 - float(1/(1.0+abs(z)**0.3))
- return hls_to_rgb(a, b, 0.8)
- blue_orange_colors = [
- (-1.0, (0.0, 0.0, 0.0)),
- (-0.95, (0.1, 0.2, 0.5)), # dark blue
- (-0.5, (0.0, 0.5, 1.0)), # blueish
- (-0.05, (0.4, 0.8, 0.8)), # cyanish
- ( 0.0, (1.0, 1.0, 1.0)),
- ( 0.05, (1.0, 0.9, 0.3)), # yellowish
- ( 0.5, (0.9, 0.5, 0.0)), # orangeish
- ( 0.95, (0.7, 0.1, 0.0)), # redish
- ( 1.0, (0.0, 0.0, 0.0)),
- ( 2.0, (0.0, 0.0, 0.0)),
- ]
- def phase_color_function(ctx, z):
- if ctx.isinf(z):
- return (1.0, 1.0, 1.0)
- if ctx.isnan(z):
- return (0.5, 0.5, 0.5)
- pi = 3.1415926535898
- w = float(ctx.arg(z)) / pi
- w = max(min(w, 1.0), -1.0)
- for i in range(1,len(blue_orange_colors)):
- if blue_orange_colors[i][0] > w:
- a, (ra, ga, ba) = blue_orange_colors[i-1]
- b, (rb, gb, bb) = blue_orange_colors[i]
- s = (w-a) / (b-a)
- return ra+(rb-ra)*s, ga+(gb-ga)*s, ba+(bb-ba)*s
- def cplot(ctx, f, re=[-5,5], im=[-5,5], points=2000, color=None,
- verbose=False, file=None, dpi=None, axes=None):
- """
- Plots the given complex-valued function *f* over a rectangular part
- of the complex plane specified by the pairs of intervals *re* and *im*.
- For example::
- cplot(lambda z: z, [-2, 2], [-10, 10])
- cplot(exp)
- cplot(zeta, [0, 1], [0, 50])
- By default, the complex argument (phase) is shown as color (hue) and
- the magnitude is show as brightness. You can also supply a
- custom color function (*color*). This function should take a
- complex number as input and return an RGB 3-tuple containing
- floats in the range 0.0-1.0.
- Alternatively, you can select a builtin color function by passing
- a string as *color*:
- * "default" - default color scheme
- * "phase" - a color scheme that only renders the phase of the function,
- with white for positive reals, black for negative reals, gold in the
- upper half plane, and blue in the lower half plane.
- To obtain a sharp image, the number of points may need to be
- increased to 100,000 or thereabout. Since evaluating the
- function that many times is likely to be slow, the 'verbose'
- option is useful to display progress.
- .. note :: This function requires matplotlib (pylab).
- """
- if color is None or color == "default":
- color = ctx.default_color_function
- if color == "phase":
- color = ctx.phase_color_function
- import pylab
- if file:
- axes = None
- fig = None
- if not axes:
- fig = pylab.figure()
- axes = fig.add_subplot(111)
- rea, reb = re
- ima, imb = im
- dre = reb - rea
- dim = imb - ima
- M = int(ctx.sqrt(points*dre/dim)+1)
- N = int(ctx.sqrt(points*dim/dre)+1)
- x = pylab.linspace(rea, reb, M)
- y = pylab.linspace(ima, imb, N)
- # Note: we have to be careful to get the right rotation.
- # Test with these plots:
- # cplot(lambda z: z if z.real < 0 else 0)
- # cplot(lambda z: z if z.imag < 0 else 0)
- w = pylab.zeros((N, M, 3))
- for n in xrange(N):
- for m in xrange(M):
- z = ctx.mpc(x[m], y[n])
- try:
- v = color(f(z))
- except ctx.plot_ignore:
- v = (0.5, 0.5, 0.5)
- w[n,m] = v
- if verbose:
- print(str(n) + ' of ' + str(N))
- rea, reb, ima, imb = [float(_) for _ in [rea, reb, ima, imb]]
- axes.imshow(w, extent=(rea, reb, ima, imb), origin='lower')
- axes.set_xlabel('Re(z)')
- axes.set_ylabel('Im(z)')
- if fig:
- if file:
- pylab.savefig(file, dpi=dpi)
- else:
- pylab.show()
- def splot(ctx, f, u=[-5,5], v=[-5,5], points=100, keep_aspect=True, \
- wireframe=False, file=None, dpi=None, axes=None):
- """
- Plots the surface defined by `f`.
- If `f` returns a single component, then this plots the surface
- defined by `z = f(x,y)` over the rectangular domain with
- `x = u` and `y = v`.
- If `f` returns three components, then this plots the parametric
- surface `x, y, z = f(u,v)` over the pairs of intervals `u` and `v`.
- For example, to plot a simple function::
- >>> from mpmath import *
- >>> f = lambda x, y: sin(x+y)*cos(y)
- >>> splot(f, [-pi,pi], [-pi,pi]) # doctest: +SKIP
- Plotting a donut::
- >>> r, R = 1, 2.5
- >>> f = lambda u, v: [r*cos(u), (R+r*sin(u))*cos(v), (R+r*sin(u))*sin(v)]
- >>> splot(f, [0, 2*pi], [0, 2*pi]) # doctest: +SKIP
- .. note :: This function requires matplotlib (pylab) 0.98.5.3 or higher.
- """
- import pylab
- import mpl_toolkits.mplot3d as mplot3d
- if file:
- axes = None
- fig = None
- if not axes:
- fig = pylab.figure()
- axes = mplot3d.axes3d.Axes3D(fig)
- ua, ub = u
- va, vb = v
- du = ub - ua
- dv = vb - va
- if not isinstance(points, (list, tuple)):
- points = [points, points]
- M, N = points
- u = pylab.linspace(ua, ub, M)
- v = pylab.linspace(va, vb, N)
- x, y, z = [pylab.zeros((M, N)) for i in xrange(3)]
- xab, yab, zab = [[0, 0] for i in xrange(3)]
- for n in xrange(N):
- for m in xrange(M):
- fdata = f(ctx.convert(u[m]), ctx.convert(v[n]))
- try:
- x[m,n], y[m,n], z[m,n] = fdata
- except TypeError:
- x[m,n], y[m,n], z[m,n] = u[m], v[n], fdata
- for c, cab in [(x[m,n], xab), (y[m,n], yab), (z[m,n], zab)]:
- if c < cab[0]:
- cab[0] = c
- if c > cab[1]:
- cab[1] = c
- if wireframe:
- axes.plot_wireframe(x, y, z, rstride=4, cstride=4)
- else:
- axes.plot_surface(x, y, z, rstride=4, cstride=4)
- axes.set_xlabel('x')
- axes.set_ylabel('y')
- axes.set_zlabel('z')
- if keep_aspect:
- dx, dy, dz = [cab[1] - cab[0] for cab in [xab, yab, zab]]
- maxd = max(dx, dy, dz)
- if dx < maxd:
- delta = maxd - dx
- axes.set_xlim3d(xab[0] - delta / 2.0, xab[1] + delta / 2.0)
- if dy < maxd:
- delta = maxd - dy
- axes.set_ylim3d(yab[0] - delta / 2.0, yab[1] + delta / 2.0)
- if dz < maxd:
- delta = maxd - dz
- axes.set_zlim3d(zab[0] - delta / 2.0, zab[1] + delta / 2.0)
- if fig:
- if file:
- pylab.savefig(file, dpi=dpi)
- else:
- pylab.show()
- VisualizationMethods.plot = plot
- VisualizationMethods.default_color_function = default_color_function
- VisualizationMethods.phase_color_function = phase_color_function
- VisualizationMethods.cplot = cplot
- VisualizationMethods.splot = splot
|