123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 |
- """Mixin classes for custom array types that don't inherit from ndarray."""
- from numpy.core import umath as um
- __all__ = ['NDArrayOperatorsMixin']
- def _disables_array_ufunc(obj):
- """True when __array_ufunc__ is set to None."""
- try:
- return obj.__array_ufunc__ is None
- except AttributeError:
- return False
- def _binary_method(ufunc, name):
- """Implement a forward binary method with a ufunc, e.g., __add__."""
- def func(self, other):
- if _disables_array_ufunc(other):
- return NotImplemented
- return ufunc(self, other)
- func.__name__ = '__{}__'.format(name)
- return func
- def _reflected_binary_method(ufunc, name):
- """Implement a reflected binary method with a ufunc, e.g., __radd__."""
- def func(self, other):
- if _disables_array_ufunc(other):
- return NotImplemented
- return ufunc(other, self)
- func.__name__ = '__r{}__'.format(name)
- return func
- def _inplace_binary_method(ufunc, name):
- """Implement an in-place binary method with a ufunc, e.g., __iadd__."""
- def func(self, other):
- return ufunc(self, other, out=(self,))
- func.__name__ = '__i{}__'.format(name)
- return func
- def _numeric_methods(ufunc, name):
- """Implement forward, reflected and inplace binary methods with a ufunc."""
- return (_binary_method(ufunc, name),
- _reflected_binary_method(ufunc, name),
- _inplace_binary_method(ufunc, name))
- def _unary_method(ufunc, name):
- """Implement a unary special method with a ufunc."""
- def func(self):
- return ufunc(self)
- func.__name__ = '__{}__'.format(name)
- return func
- class NDArrayOperatorsMixin:
- """Mixin defining all operator special methods using __array_ufunc__.
- This class implements the special methods for almost all of Python's
- builtin operators defined in the `operator` module, including comparisons
- (``==``, ``>``, etc.) and arithmetic (``+``, ``*``, ``-``, etc.), by
- deferring to the ``__array_ufunc__`` method, which subclasses must
- implement.
- It is useful for writing classes that do not inherit from `numpy.ndarray`,
- but that should support arithmetic and numpy universal functions like
- arrays as described in `A Mechanism for Overriding Ufuncs
- <https://numpy.org/neps/nep-0013-ufunc-overrides.html>`_.
- As an trivial example, consider this implementation of an ``ArrayLike``
- class that simply wraps a NumPy array and ensures that the result of any
- arithmetic operation is also an ``ArrayLike`` object::
- class ArrayLike(np.lib.mixins.NDArrayOperatorsMixin):
- def __init__(self, value):
- self.value = np.asarray(value)
- # One might also consider adding the built-in list type to this
- # list, to support operations like np.add(array_like, list)
- _HANDLED_TYPES = (np.ndarray, numbers.Number)
- def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
- out = kwargs.get('out', ())
- for x in inputs + out:
- # Only support operations with instances of _HANDLED_TYPES.
- # Use ArrayLike instead of type(self) for isinstance to
- # allow subclasses that don't override __array_ufunc__ to
- # handle ArrayLike objects.
- if not isinstance(x, self._HANDLED_TYPES + (ArrayLike,)):
- return NotImplemented
- # Defer to the implementation of the ufunc on unwrapped values.
- inputs = tuple(x.value if isinstance(x, ArrayLike) else x
- for x in inputs)
- if out:
- kwargs['out'] = tuple(
- x.value if isinstance(x, ArrayLike) else x
- for x in out)
- result = getattr(ufunc, method)(*inputs, **kwargs)
- if type(result) is tuple:
- # multiple return values
- return tuple(type(self)(x) for x in result)
- elif method == 'at':
- # no return value
- return None
- else:
- # one return value
- return type(self)(result)
- def __repr__(self):
- return '%s(%r)' % (type(self).__name__, self.value)
- In interactions between ``ArrayLike`` objects and numbers or numpy arrays,
- the result is always another ``ArrayLike``:
- >>> x = ArrayLike([1, 2, 3])
- >>> x - 1
- ArrayLike(array([0, 1, 2]))
- >>> 1 - x
- ArrayLike(array([ 0, -1, -2]))
- >>> np.arange(3) - x
- ArrayLike(array([-1, -1, -1]))
- >>> x - np.arange(3)
- ArrayLike(array([1, 1, 1]))
- Note that unlike ``numpy.ndarray``, ``ArrayLike`` does not allow operations
- with arbitrary, unrecognized types. This ensures that interactions with
- ArrayLike preserve a well-defined casting hierarchy.
- .. versionadded:: 1.13
- """
- # Like np.ndarray, this mixin class implements "Option 1" from the ufunc
- # overrides NEP.
- # comparisons don't have reflected and in-place versions
- __lt__ = _binary_method(um.less, 'lt')
- __le__ = _binary_method(um.less_equal, 'le')
- __eq__ = _binary_method(um.equal, 'eq')
- __ne__ = _binary_method(um.not_equal, 'ne')
- __gt__ = _binary_method(um.greater, 'gt')
- __ge__ = _binary_method(um.greater_equal, 'ge')
- # numeric methods
- __add__, __radd__, __iadd__ = _numeric_methods(um.add, 'add')
- __sub__, __rsub__, __isub__ = _numeric_methods(um.subtract, 'sub')
- __mul__, __rmul__, __imul__ = _numeric_methods(um.multiply, 'mul')
- __matmul__, __rmatmul__, __imatmul__ = _numeric_methods(
- um.matmul, 'matmul')
- # Python 3 does not use __div__, __rdiv__, or __idiv__
- __truediv__, __rtruediv__, __itruediv__ = _numeric_methods(
- um.true_divide, 'truediv')
- __floordiv__, __rfloordiv__, __ifloordiv__ = _numeric_methods(
- um.floor_divide, 'floordiv')
- __mod__, __rmod__, __imod__ = _numeric_methods(um.remainder, 'mod')
- __divmod__ = _binary_method(um.divmod, 'divmod')
- __rdivmod__ = _reflected_binary_method(um.divmod, 'divmod')
- # __idivmod__ does not exist
- # TODO: handle the optional third argument for __pow__?
- __pow__, __rpow__, __ipow__ = _numeric_methods(um.power, 'pow')
- __lshift__, __rlshift__, __ilshift__ = _numeric_methods(
- um.left_shift, 'lshift')
- __rshift__, __rrshift__, __irshift__ = _numeric_methods(
- um.right_shift, 'rshift')
- __and__, __rand__, __iand__ = _numeric_methods(um.bitwise_and, 'and')
- __xor__, __rxor__, __ixor__ = _numeric_methods(um.bitwise_xor, 'xor')
- __or__, __ror__, __ior__ = _numeric_methods(um.bitwise_or, 'or')
- # unary methods
- __neg__ = _unary_method(um.negative, 'neg')
- __pos__ = _unary_method(um.positive, 'pos')
- __abs__ = _unary_method(um.absolute, 'abs')
- __invert__ = _unary_method(um.invert, 'invert')
|