123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644 |
- """
- ==================================================
- Laguerre Series (:mod:`numpy.polynomial.laguerre`)
- ==================================================
- This module provides a number of objects (mostly functions) useful for
- dealing with Laguerre series, including a `Laguerre` class that
- encapsulates the usual arithmetic operations. (General information
- on how this module represents and works with such polynomials is in the
- docstring for its "parent" sub-package, `numpy.polynomial`).
- Classes
- -------
- .. autosummary::
- :toctree: generated/
- Laguerre
- Constants
- ---------
- .. autosummary::
- :toctree: generated/
- lagdomain
- lagzero
- lagone
- lagx
- Arithmetic
- ----------
- .. autosummary::
- :toctree: generated/
- lagadd
- lagsub
- lagmulx
- lagmul
- lagdiv
- lagpow
- lagval
- lagval2d
- lagval3d
- laggrid2d
- laggrid3d
- Calculus
- --------
- .. autosummary::
- :toctree: generated/
- lagder
- lagint
- Misc Functions
- --------------
- .. autosummary::
- :toctree: generated/
- lagfromroots
- lagroots
- lagvander
- lagvander2d
- lagvander3d
- laggauss
- lagweight
- lagcompanion
- lagfit
- lagtrim
- lagline
- lag2poly
- poly2lag
- See also
- --------
- `numpy.polynomial`
- """
- import numpy as np
- import numpy.linalg as la
- from numpy.core.multiarray import normalize_axis_index
- from . import polyutils as pu
- from ._polybase import ABCPolyBase
- __all__ = [
- 'lagzero', 'lagone', 'lagx', 'lagdomain', 'lagline', 'lagadd',
- 'lagsub', 'lagmulx', 'lagmul', 'lagdiv', 'lagpow', 'lagval', 'lagder',
- 'lagint', 'lag2poly', 'poly2lag', 'lagfromroots', 'lagvander',
- 'lagfit', 'lagtrim', 'lagroots', 'Laguerre', 'lagval2d', 'lagval3d',
- 'laggrid2d', 'laggrid3d', 'lagvander2d', 'lagvander3d', 'lagcompanion',
- 'laggauss', 'lagweight']
- lagtrim = pu.trimcoef
- def poly2lag(pol):
- """
- poly2lag(pol)
- Convert a polynomial to a Laguerre series.
- Convert an array representing the coefficients of a polynomial (relative
- to the "standard" basis) ordered from lowest degree to highest, to an
- array of the coefficients of the equivalent Laguerre series, ordered
- from lowest to highest degree.
- Parameters
- ----------
- pol : array_like
- 1-D array containing the polynomial coefficients
- Returns
- -------
- c : ndarray
- 1-D array containing the coefficients of the equivalent Laguerre
- series.
- See Also
- --------
- lag2poly
- Notes
- -----
- The easy way to do conversions between polynomial basis sets
- is to use the convert method of a class instance.
- Examples
- --------
- >>> from numpy.polynomial.laguerre import poly2lag
- >>> poly2lag(np.arange(4))
- array([ 23., -63., 58., -18.])
- """
- [pol] = pu.as_series([pol])
- res = 0
- for p in pol[::-1]:
- res = lagadd(lagmulx(res), p)
- return res
- def lag2poly(c):
- """
- Convert a Laguerre series to a polynomial.
- Convert an array representing the coefficients of a Laguerre series,
- ordered from lowest degree to highest, to an array of the coefficients
- of the equivalent polynomial (relative to the "standard" basis) ordered
- from lowest to highest degree.
- Parameters
- ----------
- c : array_like
- 1-D array containing the Laguerre series coefficients, ordered
- from lowest order term to highest.
- Returns
- -------
- pol : ndarray
- 1-D array containing the coefficients of the equivalent polynomial
- (relative to the "standard" basis) ordered from lowest order term
- to highest.
- See Also
- --------
- poly2lag
- Notes
- -----
- The easy way to do conversions between polynomial basis sets
- is to use the convert method of a class instance.
- Examples
- --------
- >>> from numpy.polynomial.laguerre import lag2poly
- >>> lag2poly([ 23., -63., 58., -18.])
- array([0., 1., 2., 3.])
- """
- from .polynomial import polyadd, polysub, polymulx
- [c] = pu.as_series([c])
- n = len(c)
- if n == 1:
- return c
- else:
- c0 = c[-2]
- c1 = c[-1]
- # i is the current degree of c1
- for i in range(n - 1, 1, -1):
- tmp = c0
- c0 = polysub(c[i - 2], (c1*(i - 1))/i)
- c1 = polyadd(tmp, polysub((2*i - 1)*c1, polymulx(c1))/i)
- return polyadd(c0, polysub(c1, polymulx(c1)))
- #
- # These are constant arrays are of integer type so as to be compatible
- # with the widest range of other types, such as Decimal.
- #
- # Laguerre
- lagdomain = np.array([0, 1])
- # Laguerre coefficients representing zero.
- lagzero = np.array([0])
- # Laguerre coefficients representing one.
- lagone = np.array([1])
- # Laguerre coefficients representing the identity x.
- lagx = np.array([1, -1])
- def lagline(off, scl):
- """
- Laguerre series whose graph is a straight line.
- Parameters
- ----------
- off, scl : scalars
- The specified line is given by ``off + scl*x``.
- Returns
- -------
- y : ndarray
- This module's representation of the Laguerre series for
- ``off + scl*x``.
- See Also
- --------
- numpy.polynomial.polynomial.polyline
- numpy.polynomial.chebyshev.chebline
- numpy.polynomial.legendre.legline
- numpy.polynomial.hermite.hermline
- numpy.polynomial.hermite_e.hermeline
- Examples
- --------
- >>> from numpy.polynomial.laguerre import lagline, lagval
- >>> lagval(0,lagline(3, 2))
- 3.0
- >>> lagval(1,lagline(3, 2))
- 5.0
- """
- if scl != 0:
- return np.array([off + scl, -scl])
- else:
- return np.array([off])
- def lagfromroots(roots):
- """
- Generate a Laguerre series with given roots.
- The function returns the coefficients of the polynomial
- .. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),
- in Laguerre form, where the `r_n` are the roots specified in `roots`.
- If a zero has multiplicity n, then it must appear in `roots` n times.
- For instance, if 2 is a root of multiplicity three and 3 is a root of
- multiplicity 2, then `roots` looks something like [2, 2, 2, 3, 3]. The
- roots can appear in any order.
- If the returned coefficients are `c`, then
- .. math:: p(x) = c_0 + c_1 * L_1(x) + ... + c_n * L_n(x)
- The coefficient of the last term is not generally 1 for monic
- polynomials in Laguerre form.
- Parameters
- ----------
- roots : array_like
- Sequence containing the roots.
- Returns
- -------
- out : ndarray
- 1-D array of coefficients. If all roots are real then `out` is a
- real array, if some of the roots are complex, then `out` is complex
- even if all the coefficients in the result are real (see Examples
- below).
- See Also
- --------
- numpy.polynomial.polynomial.polyfromroots
- numpy.polynomial.legendre.legfromroots
- numpy.polynomial.chebyshev.chebfromroots
- numpy.polynomial.hermite.hermfromroots
- numpy.polynomial.hermite_e.hermefromroots
- Examples
- --------
- >>> from numpy.polynomial.laguerre import lagfromroots, lagval
- >>> coef = lagfromroots((-1, 0, 1))
- >>> lagval((-1, 0, 1), coef)
- array([0., 0., 0.])
- >>> coef = lagfromroots((-1j, 1j))
- >>> lagval((-1j, 1j), coef)
- array([0.+0.j, 0.+0.j])
- """
- return pu._fromroots(lagline, lagmul, roots)
- def lagadd(c1, c2):
- """
- Add one Laguerre series to another.
- Returns the sum of two Laguerre series `c1` + `c2`. The arguments
- are sequences of coefficients ordered from lowest order term to
- highest, i.e., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.
- Parameters
- ----------
- c1, c2 : array_like
- 1-D arrays of Laguerre series coefficients ordered from low to
- high.
- Returns
- -------
- out : ndarray
- Array representing the Laguerre series of their sum.
- See Also
- --------
- lagsub, lagmulx, lagmul, lagdiv, lagpow
- Notes
- -----
- Unlike multiplication, division, etc., the sum of two Laguerre series
- is a Laguerre series (without having to "reproject" the result onto
- the basis set) so addition, just like that of "standard" polynomials,
- is simply "component-wise."
- Examples
- --------
- >>> from numpy.polynomial.laguerre import lagadd
- >>> lagadd([1, 2, 3], [1, 2, 3, 4])
- array([2., 4., 6., 4.])
- """
- return pu._add(c1, c2)
- def lagsub(c1, c2):
- """
- Subtract one Laguerre series from another.
- Returns the difference of two Laguerre series `c1` - `c2`. The
- sequences of coefficients are from lowest order term to highest, i.e.,
- [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.
- Parameters
- ----------
- c1, c2 : array_like
- 1-D arrays of Laguerre series coefficients ordered from low to
- high.
- Returns
- -------
- out : ndarray
- Of Laguerre series coefficients representing their difference.
- See Also
- --------
- lagadd, lagmulx, lagmul, lagdiv, lagpow
- Notes
- -----
- Unlike multiplication, division, etc., the difference of two Laguerre
- series is a Laguerre series (without having to "reproject" the result
- onto the basis set) so subtraction, just like that of "standard"
- polynomials, is simply "component-wise."
- Examples
- --------
- >>> from numpy.polynomial.laguerre import lagsub
- >>> lagsub([1, 2, 3, 4], [1, 2, 3])
- array([0., 0., 0., 4.])
- """
- return pu._sub(c1, c2)
- def lagmulx(c):
- """Multiply a Laguerre series by x.
- Multiply the Laguerre series `c` by x, where x is the independent
- variable.
- Parameters
- ----------
- c : array_like
- 1-D array of Laguerre series coefficients ordered from low to
- high.
- Returns
- -------
- out : ndarray
- Array representing the result of the multiplication.
- See Also
- --------
- lagadd, lagsub, lagmul, lagdiv, lagpow
- Notes
- -----
- The multiplication uses the recursion relationship for Laguerre
- polynomials in the form
- .. math::
- xP_i(x) = (-(i + 1)*P_{i + 1}(x) + (2i + 1)P_{i}(x) - iP_{i - 1}(x))
- Examples
- --------
- >>> from numpy.polynomial.laguerre import lagmulx
- >>> lagmulx([1, 2, 3])
- array([-1., -1., 11., -9.])
- """
- # c is a trimmed copy
- [c] = pu.as_series([c])
- # The zero series needs special treatment
- if len(c) == 1 and c[0] == 0:
- return c
- prd = np.empty(len(c) + 1, dtype=c.dtype)
- prd[0] = c[0]
- prd[1] = -c[0]
- for i in range(1, len(c)):
- prd[i + 1] = -c[i]*(i + 1)
- prd[i] += c[i]*(2*i + 1)
- prd[i - 1] -= c[i]*i
- return prd
- def lagmul(c1, c2):
- """
- Multiply one Laguerre series by another.
- Returns the product of two Laguerre series `c1` * `c2`. The arguments
- are sequences of coefficients, from lowest order "term" to highest,
- e.g., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.
- Parameters
- ----------
- c1, c2 : array_like
- 1-D arrays of Laguerre series coefficients ordered from low to
- high.
- Returns
- -------
- out : ndarray
- Of Laguerre series coefficients representing their product.
- See Also
- --------
- lagadd, lagsub, lagmulx, lagdiv, lagpow
- Notes
- -----
- In general, the (polynomial) product of two C-series results in terms
- that are not in the Laguerre polynomial basis set. Thus, to express
- the product as a Laguerre series, it is necessary to "reproject" the
- product onto said basis set, which may produce "unintuitive" (but
- correct) results; see Examples section below.
- Examples
- --------
- >>> from numpy.polynomial.laguerre import lagmul
- >>> lagmul([1, 2, 3], [0, 1, 2])
- array([ 8., -13., 38., -51., 36.])
- """
- # s1, s2 are trimmed copies
- [c1, c2] = pu.as_series([c1, c2])
- if len(c1) > len(c2):
- c = c2
- xs = c1
- else:
- c = c1
- xs = c2
- if len(c) == 1:
- c0 = c[0]*xs
- c1 = 0
- elif len(c) == 2:
- c0 = c[0]*xs
- c1 = c[1]*xs
- else:
- nd = len(c)
- c0 = c[-2]*xs
- c1 = c[-1]*xs
- for i in range(3, len(c) + 1):
- tmp = c0
- nd = nd - 1
- c0 = lagsub(c[-i]*xs, (c1*(nd - 1))/nd)
- c1 = lagadd(tmp, lagsub((2*nd - 1)*c1, lagmulx(c1))/nd)
- return lagadd(c0, lagsub(c1, lagmulx(c1)))
- def lagdiv(c1, c2):
- """
- Divide one Laguerre series by another.
- Returns the quotient-with-remainder of two Laguerre series
- `c1` / `c2`. The arguments are sequences of coefficients from lowest
- order "term" to highest, e.g., [1,2,3] represents the series
- ``P_0 + 2*P_1 + 3*P_2``.
- Parameters
- ----------
- c1, c2 : array_like
- 1-D arrays of Laguerre series coefficients ordered from low to
- high.
- Returns
- -------
- [quo, rem] : ndarrays
- Of Laguerre series coefficients representing the quotient and
- remainder.
- See Also
- --------
- lagadd, lagsub, lagmulx, lagmul, lagpow
- Notes
- -----
- In general, the (polynomial) division of one Laguerre series by another
- results in quotient and remainder terms that are not in the Laguerre
- polynomial basis set. Thus, to express these results as a Laguerre
- series, it is necessary to "reproject" the results onto the Laguerre
- basis set, which may produce "unintuitive" (but correct) results; see
- Examples section below.
- Examples
- --------
- >>> from numpy.polynomial.laguerre import lagdiv
- >>> lagdiv([ 8., -13., 38., -51., 36.], [0, 1, 2])
- (array([1., 2., 3.]), array([0.]))
- >>> lagdiv([ 9., -12., 38., -51., 36.], [0, 1, 2])
- (array([1., 2., 3.]), array([1., 1.]))
- """
- return pu._div(lagmul, c1, c2)
- def lagpow(c, pow, maxpower=16):
- """Raise a Laguerre series to a power.
- Returns the Laguerre series `c` raised to the power `pow`. The
- argument `c` is a sequence of coefficients ordered from low to high.
- i.e., [1,2,3] is the series ``P_0 + 2*P_1 + 3*P_2.``
- Parameters
- ----------
- c : array_like
- 1-D array of Laguerre series coefficients ordered from low to
- high.
- pow : integer
- Power to which the series will be raised
- maxpower : integer, optional
- Maximum power allowed. This is mainly to limit growth of the series
- to unmanageable size. Default is 16
- Returns
- -------
- coef : ndarray
- Laguerre series of power.
- See Also
- --------
- lagadd, lagsub, lagmulx, lagmul, lagdiv
- Examples
- --------
- >>> from numpy.polynomial.laguerre import lagpow
- >>> lagpow([1, 2, 3], 2)
- array([ 14., -16., 56., -72., 54.])
- """
- return pu._pow(lagmul, c, pow, maxpower)
- def lagder(c, m=1, scl=1, axis=0):
- """
- Differentiate a Laguerre series.
- Returns the Laguerre series coefficients `c` differentiated `m` times
- along `axis`. At each iteration the result is multiplied by `scl` (the
- scaling factor is for use in a linear change of variable). The argument
- `c` is an array of coefficients from low to high degree along each
- axis, e.g., [1,2,3] represents the series ``1*L_0 + 2*L_1 + 3*L_2``
- while [[1,2],[1,2]] represents ``1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) +
- 2*L_0(x)*L_1(y) + 2*L_1(x)*L_1(y)`` if axis=0 is ``x`` and axis=1 is
- ``y``.
- Parameters
- ----------
- c : array_like
- Array of Laguerre series coefficients. If `c` is multidimensional
- the different axis correspond to different variables with the
- degree in each axis given by the corresponding index.
- m : int, optional
- Number of derivatives taken, must be non-negative. (Default: 1)
- scl : scalar, optional
- Each differentiation is multiplied by `scl`. The end result is
- multiplication by ``scl**m``. This is for use in a linear change of
- variable. (Default: 1)
- axis : int, optional
- Axis over which the derivative is taken. (Default: 0).
- .. versionadded:: 1.7.0
- Returns
- -------
- der : ndarray
- Laguerre series of the derivative.
- See Also
- --------
- lagint
- Notes
- -----
- In general, the result of differentiating a Laguerre series does not
- resemble the same operation on a power series. Thus the result of this
- function may be "unintuitive," albeit correct; see Examples section
- below.
- Examples
- --------
- >>> from numpy.polynomial.laguerre import lagder
- >>> lagder([ 1., 1., 1., -3.])
- array([1., 2., 3.])
- >>> lagder([ 1., 0., 0., -4., 3.], m=2)
- array([1., 2., 3.])
- """
- c = np.array(c, ndmin=1, copy=True)
- if c.dtype.char in '?bBhHiIlLqQpP':
- c = c.astype(np.double)
- cnt = pu._deprecate_as_int(m, "the order of derivation")
- iaxis = pu._deprecate_as_int(axis, "the axis")
- if cnt < 0:
- raise ValueError("The order of derivation must be non-negative")
- iaxis = normalize_axis_index(iaxis, c.ndim)
- if cnt == 0:
- return c
- c = np.moveaxis(c, iaxis, 0)
- n = len(c)
- if cnt >= n:
- c = c[:1]*0
- else:
- for i in range(cnt):
- n = n - 1
- c *= scl
- der = np.empty((n,) + c.shape[1:], dtype=c.dtype)
- for j in range(n, 1, -1):
- der[j - 1] = -c[j]
- c[j - 1] += c[j]
- der[0] = -c[1]
- c = der
- c = np.moveaxis(c, 0, iaxis)
- return c
- def lagint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
- """
- Integrate a Laguerre series.
- Returns the Laguerre series coefficients `c` integrated `m` times from
- `lbnd` along `axis`. At each iteration the resulting series is
- **multiplied** by `scl` and an integration constant, `k`, is added.
- The scaling factor is for use in a linear change of variable. ("Buyer
- beware": note that, depending on what one is doing, one may want `scl`
- to be the reciprocal of what one might expect; for more information,
- see the Notes section below.) The argument `c` is an array of
- coefficients from low to high degree along each axis, e.g., [1,2,3]
- represents the series ``L_0 + 2*L_1 + 3*L_2`` while [[1,2],[1,2]]
- represents ``1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) + 2*L_0(x)*L_1(y) +
- 2*L_1(x)*L_1(y)`` if axis=0 is ``x`` and axis=1 is ``y``.
- Parameters
- ----------
- c : array_like
- Array of Laguerre series coefficients. If `c` is multidimensional
- the different axis correspond to different variables with the
- degree in each axis given by the corresponding index.
- m : int, optional
- Order of integration, must be positive. (Default: 1)
- k : {[], list, scalar}, optional
- Integration constant(s). The value of the first integral at
- ``lbnd`` is the first value in the list, the value of the second
- integral at ``lbnd`` is the second value, etc. If ``k == []`` (the
- default), all constants are set to zero. If ``m == 1``, a single
- scalar can be given instead of a list.
- lbnd : scalar, optional
- The lower bound of the integral. (Default: 0)
- scl : scalar, optional
- Following each integration the result is *multiplied* by `scl`
- before the integration constant is added. (Default: 1)
- axis : int, optional
- Axis over which the integral is taken. (Default: 0).
- .. versionadded:: 1.7.0
- Returns
- -------
- S : ndarray
- Laguerre series coefficients of the integral.
- Raises
- ------
- ValueError
- If ``m < 0``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or
- ``np.ndim(scl) != 0``.
- See Also
- --------
- lagder
- Notes
- -----
- Note that the result of each integration is *multiplied* by `scl`.
- Why is this important to note? Say one is making a linear change of
- variable :math:`u = ax + b` in an integral relative to `x`. Then
- :math:`dx = du/a`, so one will need to set `scl` equal to
- :math:`1/a` - perhaps not what one would have first thought.
- Also note that, in general, the result of integrating a C-series needs
- to be "reprojected" onto the C-series basis set. Thus, typically,
- the result of this function is "unintuitive," albeit correct; see
- Examples section below.
- Examples
- --------
- >>> from numpy.polynomial.laguerre import lagint
- >>> lagint([1,2,3])
- array([ 1., 1., 1., -3.])
- >>> lagint([1,2,3], m=2)
- array([ 1., 0., 0., -4., 3.])
- >>> lagint([1,2,3], k=1)
- array([ 2., 1., 1., -3.])
- >>> lagint([1,2,3], lbnd=-1)
- array([11.5, 1. , 1. , -3. ])
- >>> lagint([1,2], m=2, k=[1,2], lbnd=-1)
- array([ 11.16666667, -5. , -3. , 2. ]) # may vary
- """
- c = np.array(c, ndmin=1, copy=True)
- if c.dtype.char in '?bBhHiIlLqQpP':
- c = c.astype(np.double)
- if not np.iterable(k):
- k = [k]
- cnt = pu._deprecate_as_int(m, "the order of integration")
- iaxis = pu._deprecate_as_int(axis, "the axis")
- if cnt < 0:
- raise ValueError("The order of integration must be non-negative")
- if len(k) > cnt:
- raise ValueError("Too many integration constants")
- if np.ndim(lbnd) != 0:
- raise ValueError("lbnd must be a scalar.")
- if np.ndim(scl) != 0:
- raise ValueError("scl must be a scalar.")
- iaxis = normalize_axis_index(iaxis, c.ndim)
- if cnt == 0:
- return c
- c = np.moveaxis(c, iaxis, 0)
- k = list(k) + [0]*(cnt - len(k))
- for i in range(cnt):
- n = len(c)
- c *= scl
- if n == 1 and np.all(c[0] == 0):
- c[0] += k[i]
- else:
- tmp = np.empty((n + 1,) + c.shape[1:], dtype=c.dtype)
- tmp[0] = c[0]
- tmp[1] = -c[0]
- for j in range(1, n):
- tmp[j] += c[j]
- tmp[j + 1] = -c[j]
- tmp[0] += k[i] - lagval(lbnd, tmp)
- c = tmp
- c = np.moveaxis(c, 0, iaxis)
- return c
- def lagval(x, c, tensor=True):
- """
- Evaluate a Laguerre series at points x.
- If `c` is of length `n + 1`, this function returns the value:
- .. math:: p(x) = c_0 * L_0(x) + c_1 * L_1(x) + ... + c_n * L_n(x)
- The parameter `x` is converted to an array only if it is a tuple or a
- list, otherwise it is treated as a scalar. In either case, either `x`
- or its elements must support multiplication and addition both with
- themselves and with the elements of `c`.
- If `c` is a 1-D array, then `p(x)` will have the same shape as `x`. If
- `c` is multidimensional, then the shape of the result depends on the
- value of `tensor`. If `tensor` is true the shape will be c.shape[1:] +
- x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that
- scalars have shape (,).
- Trailing zeros in the coefficients will be used in the evaluation, so
- they should be avoided if efficiency is a concern.
- Parameters
- ----------
- x : array_like, compatible object
- If `x` is a list or tuple, it is converted to an ndarray, otherwise
- it is left unchanged and treated as a scalar. In either case, `x`
- or its elements must support addition and multiplication with
- with themselves and with the elements of `c`.
- c : array_like
- Array of coefficients ordered so that the coefficients for terms of
- degree n are contained in c[n]. If `c` is multidimensional the
- remaining indices enumerate multiple polynomials. In the two
- dimensional case the coefficients may be thought of as stored in
- the columns of `c`.
- tensor : boolean, optional
- If True, the shape of the coefficient array is extended with ones
- on the right, one for each dimension of `x`. Scalars have dimension 0
- for this action. The result is that every column of coefficients in
- `c` is evaluated for every element of `x`. If False, `x` is broadcast
- over the columns of `c` for the evaluation. This keyword is useful
- when `c` is multidimensional. The default value is True.
- .. versionadded:: 1.7.0
- Returns
- -------
- values : ndarray, algebra_like
- The shape of the return value is described above.
- See Also
- --------
- lagval2d, laggrid2d, lagval3d, laggrid3d
- Notes
- -----
- The evaluation uses Clenshaw recursion, aka synthetic division.
- Examples
- --------
- >>> from numpy.polynomial.laguerre import lagval
- >>> coef = [1,2,3]
- >>> lagval(1, coef)
- -0.5
- >>> lagval([[1,2],[3,4]], coef)
- array([[-0.5, -4. ],
- [-4.5, -2. ]])
- """
- c = np.array(c, ndmin=1, copy=False)
- if c.dtype.char in '?bBhHiIlLqQpP':
- c = c.astype(np.double)
- if isinstance(x, (tuple, list)):
- x = np.asarray(x)
- if isinstance(x, np.ndarray) and tensor:
- c = c.reshape(c.shape + (1,)*x.ndim)
- if len(c) == 1:
- c0 = c[0]
- c1 = 0
- elif len(c) == 2:
- c0 = c[0]
- c1 = c[1]
- else:
- nd = len(c)
- c0 = c[-2]
- c1 = c[-1]
- for i in range(3, len(c) + 1):
- tmp = c0
- nd = nd - 1
- c0 = c[-i] - (c1*(nd - 1))/nd
- c1 = tmp + (c1*((2*nd - 1) - x))/nd
- return c0 + c1*(1 - x)
- def lagval2d(x, y, c):
- """
- Evaluate a 2-D Laguerre series at points (x, y).
- This function returns the values:
- .. math:: p(x,y) = \\sum_{i,j} c_{i,j} * L_i(x) * L_j(y)
- The parameters `x` and `y` are converted to arrays only if they are
- tuples or a lists, otherwise they are treated as a scalars and they
- must have the same shape after conversion. In either case, either `x`
- and `y` or their elements must support multiplication and addition both
- with themselves and with the elements of `c`.
- If `c` is a 1-D array a one is implicitly appended to its shape to make
- it 2-D. The shape of the result will be c.shape[2:] + x.shape.
- Parameters
- ----------
- x, y : array_like, compatible objects
- The two dimensional series is evaluated at the points `(x, y)`,
- where `x` and `y` must have the same shape. If `x` or `y` is a list
- or tuple, it is first converted to an ndarray, otherwise it is left
- unchanged and if it isn't an ndarray it is treated as a scalar.
- c : array_like
- Array of coefficients ordered so that the coefficient of the term
- of multi-degree i,j is contained in ``c[i,j]``. If `c` has
- dimension greater than two the remaining indices enumerate multiple
- sets of coefficients.
- Returns
- -------
- values : ndarray, compatible object
- The values of the two dimensional polynomial at points formed with
- pairs of corresponding values from `x` and `y`.
- See Also
- --------
- lagval, laggrid2d, lagval3d, laggrid3d
- Notes
- -----
- .. versionadded:: 1.7.0
- """
- return pu._valnd(lagval, c, x, y)
- def laggrid2d(x, y, c):
- """
- Evaluate a 2-D Laguerre series on the Cartesian product of x and y.
- This function returns the values:
- .. math:: p(a,b) = \\sum_{i,j} c_{i,j} * L_i(a) * L_j(b)
- where the points `(a, b)` consist of all pairs formed by taking
- `a` from `x` and `b` from `y`. The resulting points form a grid with
- `x` in the first dimension and `y` in the second.
- The parameters `x` and `y` are converted to arrays only if they are
- tuples or a lists, otherwise they are treated as a scalars. In either
- case, either `x` and `y` or their elements must support multiplication
- and addition both with themselves and with the elements of `c`.
- If `c` has fewer than two dimensions, ones are implicitly appended to
- its shape to make it 2-D. The shape of the result will be c.shape[2:] +
- x.shape + y.shape.
- Parameters
- ----------
- x, y : array_like, compatible objects
- The two dimensional series is evaluated at the points in the
- Cartesian product of `x` and `y`. If `x` or `y` is a list or
- tuple, it is first converted to an ndarray, otherwise it is left
- unchanged and, if it isn't an ndarray, it is treated as a scalar.
- c : array_like
- Array of coefficients ordered so that the coefficient of the term of
- multi-degree i,j is contained in `c[i,j]`. If `c` has dimension
- greater than two the remaining indices enumerate multiple sets of
- coefficients.
- Returns
- -------
- values : ndarray, compatible object
- The values of the two dimensional Chebyshev series at points in the
- Cartesian product of `x` and `y`.
- See Also
- --------
- lagval, lagval2d, lagval3d, laggrid3d
- Notes
- -----
- .. versionadded:: 1.7.0
- """
- return pu._gridnd(lagval, c, x, y)
- def lagval3d(x, y, z, c):
- """
- Evaluate a 3-D Laguerre series at points (x, y, z).
- This function returns the values:
- .. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * L_i(x) * L_j(y) * L_k(z)
- The parameters `x`, `y`, and `z` are converted to arrays only if
- they are tuples or a lists, otherwise they are treated as a scalars and
- they must have the same shape after conversion. In either case, either
- `x`, `y`, and `z` or their elements must support multiplication and
- addition both with themselves and with the elements of `c`.
- If `c` has fewer than 3 dimensions, ones are implicitly appended to its
- shape to make it 3-D. The shape of the result will be c.shape[3:] +
- x.shape.
- Parameters
- ----------
- x, y, z : array_like, compatible object
- The three dimensional series is evaluated at the points
- `(x, y, z)`, where `x`, `y`, and `z` must have the same shape. If
- any of `x`, `y`, or `z` is a list or tuple, it is first converted
- to an ndarray, otherwise it is left unchanged and if it isn't an
- ndarray it is treated as a scalar.
- c : array_like
- Array of coefficients ordered so that the coefficient of the term of
- multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension
- greater than 3 the remaining indices enumerate multiple sets of
- coefficients.
- Returns
- -------
- values : ndarray, compatible object
- The values of the multidimension polynomial on points formed with
- triples of corresponding values from `x`, `y`, and `z`.
- See Also
- --------
- lagval, lagval2d, laggrid2d, laggrid3d
- Notes
- -----
- .. versionadded:: 1.7.0
- """
- return pu._valnd(lagval, c, x, y, z)
- def laggrid3d(x, y, z, c):
- """
- Evaluate a 3-D Laguerre series on the Cartesian product of x, y, and z.
- This function returns the values:
- .. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * L_i(a) * L_j(b) * L_k(c)
- where the points `(a, b, c)` consist of all triples formed by taking
- `a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form
- a grid with `x` in the first dimension, `y` in the second, and `z` in
- the third.
- The parameters `x`, `y`, and `z` are converted to arrays only if they
- are tuples or a lists, otherwise they are treated as a scalars. In
- either case, either `x`, `y`, and `z` or their elements must support
- multiplication and addition both with themselves and with the elements
- of `c`.
- If `c` has fewer than three dimensions, ones are implicitly appended to
- its shape to make it 3-D. The shape of the result will be c.shape[3:] +
- x.shape + y.shape + z.shape.
- Parameters
- ----------
- x, y, z : array_like, compatible objects
- The three dimensional series is evaluated at the points in the
- Cartesian product of `x`, `y`, and `z`. If `x`,`y`, or `z` is a
- list or tuple, it is first converted to an ndarray, otherwise it is
- left unchanged and, if it isn't an ndarray, it is treated as a
- scalar.
- c : array_like
- Array of coefficients ordered so that the coefficients for terms of
- degree i,j are contained in ``c[i,j]``. If `c` has dimension
- greater than two the remaining indices enumerate multiple sets of
- coefficients.
- Returns
- -------
- values : ndarray, compatible object
- The values of the two dimensional polynomial at points in the Cartesian
- product of `x` and `y`.
- See Also
- --------
- lagval, lagval2d, laggrid2d, lagval3d
- Notes
- -----
- .. versionadded:: 1.7.0
- """
- return pu._gridnd(lagval, c, x, y, z)
- def lagvander(x, deg):
- """Pseudo-Vandermonde matrix of given degree.
- Returns the pseudo-Vandermonde matrix of degree `deg` and sample points
- `x`. The pseudo-Vandermonde matrix is defined by
- .. math:: V[..., i] = L_i(x)
- where `0 <= i <= deg`. The leading indices of `V` index the elements of
- `x` and the last index is the degree of the Laguerre polynomial.
- If `c` is a 1-D array of coefficients of length `n + 1` and `V` is the
- array ``V = lagvander(x, n)``, then ``np.dot(V, c)`` and
- ``lagval(x, c)`` are the same up to roundoff. This equivalence is
- useful both for least squares fitting and for the evaluation of a large
- number of Laguerre series of the same degree and sample points.
- Parameters
- ----------
- x : array_like
- Array of points. The dtype is converted to float64 or complex128
- depending on whether any of the elements are complex. If `x` is
- scalar it is converted to a 1-D array.
- deg : int
- Degree of the resulting matrix.
- Returns
- -------
- vander : ndarray
- The pseudo-Vandermonde matrix. The shape of the returned matrix is
- ``x.shape + (deg + 1,)``, where The last index is the degree of the
- corresponding Laguerre polynomial. The dtype will be the same as
- the converted `x`.
- Examples
- --------
- >>> from numpy.polynomial.laguerre import lagvander
- >>> x = np.array([0, 1, 2])
- >>> lagvander(x, 3)
- array([[ 1. , 1. , 1. , 1. ],
- [ 1. , 0. , -0.5 , -0.66666667],
- [ 1. , -1. , -1. , -0.33333333]])
- """
- ideg = pu._deprecate_as_int(deg, "deg")
- if ideg < 0:
- raise ValueError("deg must be non-negative")
- x = np.array(x, copy=False, ndmin=1) + 0.0
- dims = (ideg + 1,) + x.shape
- dtyp = x.dtype
- v = np.empty(dims, dtype=dtyp)
- v[0] = x*0 + 1
- if ideg > 0:
- v[1] = 1 - x
- for i in range(2, ideg + 1):
- v[i] = (v[i-1]*(2*i - 1 - x) - v[i-2]*(i - 1))/i
- return np.moveaxis(v, 0, -1)
- def lagvander2d(x, y, deg):
- """Pseudo-Vandermonde matrix of given degrees.
- Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
- points `(x, y)`. The pseudo-Vandermonde matrix is defined by
- .. math:: V[..., (deg[1] + 1)*i + j] = L_i(x) * L_j(y),
- where `0 <= i <= deg[0]` and `0 <= j <= deg[1]`. The leading indices of
- `V` index the points `(x, y)` and the last index encodes the degrees of
- the Laguerre polynomials.
- If ``V = lagvander2d(x, y, [xdeg, ydeg])``, then the columns of `V`
- correspond to the elements of a 2-D coefficient array `c` of shape
- (xdeg + 1, ydeg + 1) in the order
- .. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...
- and ``np.dot(V, c.flat)`` and ``lagval2d(x, y, c)`` will be the same
- up to roundoff. This equivalence is useful both for least squares
- fitting and for the evaluation of a large number of 2-D Laguerre
- series of the same degrees and sample points.
- Parameters
- ----------
- x, y : array_like
- Arrays of point coordinates, all of the same shape. The dtypes
- will be converted to either float64 or complex128 depending on
- whether any of the elements are complex. Scalars are converted to
- 1-D arrays.
- deg : list of ints
- List of maximum degrees of the form [x_deg, y_deg].
- Returns
- -------
- vander2d : ndarray
- The shape of the returned matrix is ``x.shape + (order,)``, where
- :math:`order = (deg[0]+1)*(deg[1]+1)`. The dtype will be the same
- as the converted `x` and `y`.
- See Also
- --------
- lagvander, lagvander3d, lagval2d, lagval3d
- Notes
- -----
- .. versionadded:: 1.7.0
- """
- return pu._vander_nd_flat((lagvander, lagvander), (x, y), deg)
- def lagvander3d(x, y, z, deg):
- """Pseudo-Vandermonde matrix of given degrees.
- Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
- points `(x, y, z)`. If `l, m, n` are the given degrees in `x, y, z`,
- then The pseudo-Vandermonde matrix is defined by
- .. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = L_i(x)*L_j(y)*L_k(z),
- where `0 <= i <= l`, `0 <= j <= m`, and `0 <= j <= n`. The leading
- indices of `V` index the points `(x, y, z)` and the last index encodes
- the degrees of the Laguerre polynomials.
- If ``V = lagvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns
- of `V` correspond to the elements of a 3-D coefficient array `c` of
- shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order
- .. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...
- and ``np.dot(V, c.flat)`` and ``lagval3d(x, y, z, c)`` will be the
- same up to roundoff. This equivalence is useful both for least squares
- fitting and for the evaluation of a large number of 3-D Laguerre
- series of the same degrees and sample points.
- Parameters
- ----------
- x, y, z : array_like
- Arrays of point coordinates, all of the same shape. The dtypes will
- be converted to either float64 or complex128 depending on whether
- any of the elements are complex. Scalars are converted to 1-D
- arrays.
- deg : list of ints
- List of maximum degrees of the form [x_deg, y_deg, z_deg].
- Returns
- -------
- vander3d : ndarray
- The shape of the returned matrix is ``x.shape + (order,)``, where
- :math:`order = (deg[0]+1)*(deg[1]+1)*(deg[2]+1)`. The dtype will
- be the same as the converted `x`, `y`, and `z`.
- See Also
- --------
- lagvander, lagvander3d, lagval2d, lagval3d
- Notes
- -----
- .. versionadded:: 1.7.0
- """
- return pu._vander_nd_flat((lagvander, lagvander, lagvander), (x, y, z), deg)
- def lagfit(x, y, deg, rcond=None, full=False, w=None):
- """
- Least squares fit of Laguerre series to data.
- Return the coefficients of a Laguerre series of degree `deg` that is the
- least squares fit to the data values `y` given at points `x`. If `y` is
- 1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple
- fits are done, one for each column of `y`, and the resulting
- coefficients are stored in the corresponding columns of a 2-D return.
- The fitted polynomial(s) are in the form
- .. math:: p(x) = c_0 + c_1 * L_1(x) + ... + c_n * L_n(x),
- where `n` is `deg`.
- Parameters
- ----------
- x : array_like, shape (M,)
- x-coordinates of the M sample points ``(x[i], y[i])``.
- y : array_like, shape (M,) or (M, K)
- y-coordinates of the sample points. Several data sets of sample
- points sharing the same x-coordinates can be fitted at once by
- passing in a 2D-array that contains one dataset per column.
- deg : int or 1-D array_like
- Degree(s) of the fitting polynomials. If `deg` is a single integer
- all terms up to and including the `deg`'th term are included in the
- fit. For NumPy versions >= 1.11.0 a list of integers specifying the
- degrees of the terms to include may be used instead.
- rcond : float, optional
- Relative condition number of the fit. Singular values smaller than
- this relative to the largest singular value will be ignored. The
- default value is len(x)*eps, where eps is the relative precision of
- the float type, about 2e-16 in most cases.
- full : bool, optional
- Switch determining nature of return value. When it is False (the
- default) just the coefficients are returned, when True diagnostic
- information from the singular value decomposition is also returned.
- w : array_like, shape (`M`,), optional
- Weights. If not None, the contribution of each point
- ``(x[i],y[i])`` to the fit is weighted by ``w[i]``. Ideally the
- weights are chosen so that the errors of the products ``w[i]*y[i]``
- all have the same variance. The default value is None.
- Returns
- -------
- coef : ndarray, shape (M,) or (M, K)
- Laguerre coefficients ordered from low to high. If `y` was 2-D,
- the coefficients for the data in column k of `y` are in column
- `k`.
- [residuals, rank, singular_values, rcond] : list
- These values are only returned if `full` = True
- resid -- sum of squared residuals of the least squares fit
- rank -- the numerical rank of the scaled Vandermonde matrix
- sv -- singular values of the scaled Vandermonde matrix
- rcond -- value of `rcond`.
- For more details, see `numpy.linalg.lstsq`.
- Warns
- -----
- RankWarning
- The rank of the coefficient matrix in the least-squares fit is
- deficient. The warning is only raised if `full` = False. The
- warnings can be turned off by
- >>> import warnings
- >>> warnings.simplefilter('ignore', np.RankWarning)
- See Also
- --------
- numpy.polynomial.polynomial.polyfit
- numpy.polynomial.legendre.legfit
- numpy.polynomial.chebyshev.chebfit
- numpy.polynomial.hermite.hermfit
- numpy.polynomial.hermite_e.hermefit
- lagval : Evaluates a Laguerre series.
- lagvander : pseudo Vandermonde matrix of Laguerre series.
- lagweight : Laguerre weight function.
- numpy.linalg.lstsq : Computes a least-squares fit from the matrix.
- scipy.interpolate.UnivariateSpline : Computes spline fits.
- Notes
- -----
- The solution is the coefficients of the Laguerre series `p` that
- minimizes the sum of the weighted squared errors
- .. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2,
- where the :math:`w_j` are the weights. This problem is solved by
- setting up as the (typically) overdetermined matrix equation
- .. math:: V(x) * c = w * y,
- where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the
- coefficients to be solved for, `w` are the weights, and `y` are the
- observed values. This equation is then solved using the singular value
- decomposition of `V`.
- If some of the singular values of `V` are so small that they are
- neglected, then a `RankWarning` will be issued. This means that the
- coefficient values may be poorly determined. Using a lower order fit
- will usually get rid of the warning. The `rcond` parameter can also be
- set to a value smaller than its default, but the resulting fit may be
- spurious and have large contributions from roundoff error.
- Fits using Laguerre series are probably most useful when the data can
- be approximated by ``sqrt(w(x)) * p(x)``, where `w(x)` is the Laguerre
- weight. In that case the weight ``sqrt(w(x[i]))`` should be used
- together with data values ``y[i]/sqrt(w(x[i]))``. The weight function is
- available as `lagweight`.
- References
- ----------
- .. [1] Wikipedia, "Curve fitting",
- https://en.wikipedia.org/wiki/Curve_fitting
- Examples
- --------
- >>> from numpy.polynomial.laguerre import lagfit, lagval
- >>> x = np.linspace(0, 10)
- >>> err = np.random.randn(len(x))/10
- >>> y = lagval(x, [1, 2, 3]) + err
- >>> lagfit(x, y, 2)
- array([ 0.96971004, 2.00193749, 3.00288744]) # may vary
- """
- return pu._fit(lagvander, x, y, deg, rcond, full, w)
- def lagcompanion(c):
- """
- Return the companion matrix of c.
- The usual companion matrix of the Laguerre polynomials is already
- symmetric when `c` is a basis Laguerre polynomial, so no scaling is
- applied.
- Parameters
- ----------
- c : array_like
- 1-D array of Laguerre series coefficients ordered from low to high
- degree.
- Returns
- -------
- mat : ndarray
- Companion matrix of dimensions (deg, deg).
- Notes
- -----
- .. versionadded:: 1.7.0
- """
- # c is a trimmed copy
- [c] = pu.as_series([c])
- if len(c) < 2:
- raise ValueError('Series must have maximum degree of at least 1.')
- if len(c) == 2:
- return np.array([[1 + c[0]/c[1]]])
- n = len(c) - 1
- mat = np.zeros((n, n), dtype=c.dtype)
- top = mat.reshape(-1)[1::n+1]
- mid = mat.reshape(-1)[0::n+1]
- bot = mat.reshape(-1)[n::n+1]
- top[...] = -np.arange(1, n)
- mid[...] = 2.*np.arange(n) + 1.
- bot[...] = top
- mat[:, -1] += (c[:-1]/c[-1])*n
- return mat
- def lagroots(c):
- """
- Compute the roots of a Laguerre series.
- Return the roots (a.k.a. "zeros") of the polynomial
- .. math:: p(x) = \\sum_i c[i] * L_i(x).
- Parameters
- ----------
- c : 1-D array_like
- 1-D array of coefficients.
- Returns
- -------
- out : ndarray
- Array of the roots of the series. If all the roots are real,
- then `out` is also real, otherwise it is complex.
- See Also
- --------
- numpy.polynomial.polynomial.polyroots
- numpy.polynomial.legendre.legroots
- numpy.polynomial.chebyshev.chebroots
- numpy.polynomial.hermite.hermroots
- numpy.polynomial.hermite_e.hermeroots
- Notes
- -----
- The root estimates are obtained as the eigenvalues of the companion
- matrix, Roots far from the origin of the complex plane may have large
- errors due to the numerical instability of the series for such
- values. Roots with multiplicity greater than 1 will also show larger
- errors as the value of the series near such points is relatively
- insensitive to errors in the roots. Isolated roots near the origin can
- be improved by a few iterations of Newton's method.
- The Laguerre series basis polynomials aren't powers of `x` so the
- results of this function may seem unintuitive.
- Examples
- --------
- >>> from numpy.polynomial.laguerre import lagroots, lagfromroots
- >>> coef = lagfromroots([0, 1, 2])
- >>> coef
- array([ 2., -8., 12., -6.])
- >>> lagroots(coef)
- array([-4.4408921e-16, 1.0000000e+00, 2.0000000e+00])
- """
- # c is a trimmed copy
- [c] = pu.as_series([c])
- if len(c) <= 1:
- return np.array([], dtype=c.dtype)
- if len(c) == 2:
- return np.array([1 + c[0]/c[1]])
- # rotated companion matrix reduces error
- m = lagcompanion(c)[::-1,::-1]
- r = la.eigvals(m)
- r.sort()
- return r
- def laggauss(deg):
- """
- Gauss-Laguerre quadrature.
- Computes the sample points and weights for Gauss-Laguerre quadrature.
- These sample points and weights will correctly integrate polynomials of
- degree :math:`2*deg - 1` or less over the interval :math:`[0, \\inf]`
- with the weight function :math:`f(x) = \\exp(-x)`.
- Parameters
- ----------
- deg : int
- Number of sample points and weights. It must be >= 1.
- Returns
- -------
- x : ndarray
- 1-D ndarray containing the sample points.
- y : ndarray
- 1-D ndarray containing the weights.
- Notes
- -----
- .. versionadded:: 1.7.0
- The results have only been tested up to degree 100 higher degrees may
- be problematic. The weights are determined by using the fact that
- .. math:: w_k = c / (L'_n(x_k) * L_{n-1}(x_k))
- where :math:`c` is a constant independent of :math:`k` and :math:`x_k`
- is the k'th root of :math:`L_n`, and then scaling the results to get
- the right value when integrating 1.
- """
- ideg = pu._deprecate_as_int(deg, "deg")
- if ideg <= 0:
- raise ValueError("deg must be a positive integer")
- # first approximation of roots. We use the fact that the companion
- # matrix is symmetric in this case in order to obtain better zeros.
- c = np.array([0]*deg + [1])
- m = lagcompanion(c)
- x = la.eigvalsh(m)
- # improve roots by one application of Newton
- dy = lagval(x, c)
- df = lagval(x, lagder(c))
- x -= dy/df
- # compute the weights. We scale the factor to avoid possible numerical
- # overflow.
- fm = lagval(x, c[1:])
- fm /= np.abs(fm).max()
- df /= np.abs(df).max()
- w = 1/(fm * df)
- # scale w to get the right value, 1 in this case
- w /= w.sum()
- return x, w
- def lagweight(x):
- """Weight function of the Laguerre polynomials.
- The weight function is :math:`exp(-x)` and the interval of integration
- is :math:`[0, \\inf]`. The Laguerre polynomials are orthogonal, but not
- normalized, with respect to this weight function.
- Parameters
- ----------
- x : array_like
- Values at which the weight function will be computed.
- Returns
- -------
- w : ndarray
- The weight function at `x`.
- Notes
- -----
- .. versionadded:: 1.7.0
- """
- w = np.exp(-x)
- return w
- #
- # Laguerre series class
- #
- class Laguerre(ABCPolyBase):
- """A Laguerre series class.
- The Laguerre class provides the standard Python numerical methods
- '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the
- attributes and methods listed in the `ABCPolyBase` documentation.
- Parameters
- ----------
- coef : array_like
- Laguerre coefficients in order of increasing degree, i.e,
- ``(1, 2, 3)`` gives ``1*L_0(x) + 2*L_1(X) + 3*L_2(x)``.
- domain : (2,) array_like, optional
- Domain to use. The interval ``[domain[0], domain[1]]`` is mapped
- to the interval ``[window[0], window[1]]`` by shifting and scaling.
- The default value is [0, 1].
- window : (2,) array_like, optional
- Window, see `domain` for its use. The default value is [0, 1].
- .. versionadded:: 1.6.0
- """
- # Virtual Functions
- _add = staticmethod(lagadd)
- _sub = staticmethod(lagsub)
- _mul = staticmethod(lagmul)
- _div = staticmethod(lagdiv)
- _pow = staticmethod(lagpow)
- _val = staticmethod(lagval)
- _int = staticmethod(lagint)
- _der = staticmethod(lagder)
- _fit = staticmethod(lagfit)
- _line = staticmethod(lagline)
- _roots = staticmethod(lagroots)
- _fromroots = staticmethod(lagfromroots)
- # Virtual properties
- domain = np.array(lagdomain)
- window = np.array(lagdomain)
- basis_name = 'L'
|