123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232 |
- from typing import (
- Any,
- Hashable,
- Literal,
- )
- import numpy as np
- def unique_label_indices(
- labels: np.ndarray, # const int64_t[:]
- ) -> np.ndarray: ...
- class Factorizer:
- count: int
- def __init__(self, size_hint: int): ...
- def get_count(self) -> int: ...
- class ObjectFactorizer(Factorizer):
- table: PyObjectHashTable
- uniques: ObjectVector
- def factorize(
- self,
- values: np.ndarray, # ndarray[object]
- sort: bool = ...,
- na_sentinel=...,
- na_value=...,
- ) -> np.ndarray: ... # np.ndarray[intp]
- class Int64Factorizer(Factorizer):
- table: Int64HashTable
- uniques: Int64Vector
- def factorize(
- self,
- values: np.ndarray, # const int64_t[:]
- sort: bool = ...,
- na_sentinel=...,
- na_value=...,
- ) -> np.ndarray: ... # np.ndarray[intp]
- class Int64Vector:
- def __init__(self): ...
- def __len__(self) -> int: ...
- def to_array(self) -> np.ndarray: ... # np.ndarray[np.int64]
- class Int32Vector:
- def __init__(self): ...
- def __len__(self) -> int: ...
- def to_array(self) -> np.ndarray: ... # np.ndarray[np.int32]
- class Int16Vector:
- def __init__(self): ...
- def __len__(self) -> int: ...
- def to_array(self) -> np.ndarray: ... # np.ndarray[np.int16]
- class Int8Vector:
- def __init__(self): ...
- def __len__(self) -> int: ...
- def to_array(self) -> np.ndarray: ... # np.ndarray[np.int8]
- class UInt64Vector:
- def __init__(self): ...
- def __len__(self) -> int: ...
- def to_array(self) -> np.ndarray: ... # np.ndarray[np.uint64]
- class UInt32Vector:
- def __init__(self): ...
- def __len__(self) -> int: ...
- def to_array(self) -> np.ndarray: ... # np.ndarray[np.uint32]
- class UInt16Vector:
- def __init__(self): ...
- def __len__(self) -> int: ...
- def to_array(self) -> np.ndarray: ... # np.ndarray[np.uint16]
- class UInt8Vector:
- def __init__(self): ...
- def __len__(self) -> int: ...
- def to_array(self) -> np.ndarray: ... # np.ndarray[np.uint8]
- class Float64Vector:
- def __init__(self): ...
- def __len__(self) -> int: ...
- def to_array(self) -> np.ndarray: ... # np.ndarray[np.float64]
- class Float32Vector:
- def __init__(self): ...
- def __len__(self) -> int: ...
- def to_array(self) -> np.ndarray: ... # np.ndarray[np.float32]
- class Complex128Vector:
- def __init__(self): ...
- def __len__(self) -> int: ...
- def to_array(self) -> np.ndarray: ... # np.ndarray[np.complex128]
- class Complex64Vector:
- def __init__(self): ...
- def __len__(self) -> int: ...
- def to_array(self) -> np.ndarray: ... # np.ndarray[np.complex64]
- class StringVector:
- def __init__(self): ...
- def __len__(self) -> int: ...
- def to_array(self) -> np.ndarray: ... # np.ndarray[object]
- class ObjectVector:
- def __init__(self): ...
- def __len__(self) -> int: ...
- def to_array(self) -> np.ndarray: ... # np.ndarray[object]
- class HashTable:
- # NB: The base HashTable class does _not_ actually have these methods;
- # we are putting the here for the sake of mypy to avoid
- # reproducing them in each subclass below.
- def __init__(self, size_hint: int = ...): ...
- def __len__(self) -> int: ...
- def __contains__(self, key: Hashable) -> bool: ...
- def sizeof(self, deep: bool = ...) -> int: ...
- def get_state(self) -> dict[str, int]: ...
- # TODO: `item` type is subclass-specific
- def get_item(self, item): ... # TODO: return type?
- def set_item(self, item) -> None: ...
- # FIXME: we don't actually have this for StringHashTable or ObjectHashTable?
- def map(
- self,
- keys: np.ndarray, # np.ndarray[subclass-specific]
- values: np.ndarray, # const int64_t[:]
- ) -> None: ...
- def map_locations(
- self,
- values: np.ndarray, # np.ndarray[subclass-specific]
- ) -> None: ...
- def lookup(
- self,
- values: np.ndarray, # np.ndarray[subclass-specific]
- ) -> np.ndarray: ... # np.ndarray[np.intp]
- def get_labels(
- self,
- values: np.ndarray, # np.ndarray[subclass-specific]
- uniques, # SubclassTypeVector
- count_prior: int = ...,
- na_sentinel: int = ...,
- na_value: object = ...,
- ) -> np.ndarray: ... # np.ndarray[intp_t]
- def unique(
- self,
- values: np.ndarray, # np.ndarray[subclass-specific]
- return_inverse: bool = ...,
- ) -> tuple[
- np.ndarray, # np.ndarray[subclass-specific]
- np.ndarray, # np.ndarray[np.intp],
- ] | np.ndarray: ... # np.ndarray[subclass-specific]
- def _unique(
- self,
- values: np.ndarray, # np.ndarray[subclass-specific]
- uniques, # FooVector
- count_prior: int = ...,
- na_sentinel: int = ...,
- na_value: object = ...,
- ignore_na: bool = ...,
- return_inverse: bool = ...,
- ) -> tuple[
- np.ndarray, # np.ndarray[subclass-specific]
- np.ndarray, # np.ndarray[np.intp],
- ] | np.ndarray: ... # np.ndarray[subclass-specific]
- def factorize(
- self,
- values: np.ndarray, # np.ndarray[subclass-specific]
- na_sentinel: int = ...,
- na_value: object = ...,
- mask=...,
- ) -> tuple[
- np.ndarray, # np.ndarray[subclass-specific]
- np.ndarray, # np.ndarray[np.intp],
- ]: ...
- class Complex128HashTable(HashTable): ...
- class Complex64HashTable(HashTable): ...
- class Float64HashTable(HashTable): ...
- class Float32HashTable(HashTable): ...
- class Int64HashTable(HashTable):
- # Only Int64HashTable has get_labels_groupby
- def get_labels_groupby(
- self,
- values: np.ndarray, # const int64_t[:]
- ) -> tuple[
- np.ndarray, # np.ndarray[np.intp]
- np.ndarray, # np.ndarray[np.int64]
- ]: ...
- class Int32HashTable(HashTable): ...
- class Int16HashTable(HashTable): ...
- class Int8HashTable(HashTable): ...
- class UInt64HashTable(HashTable): ...
- class UInt32HashTable(HashTable): ...
- class UInt16HashTable(HashTable): ...
- class UInt8HashTable(HashTable): ...
- class StringHashTable(HashTable): ...
- class PyObjectHashTable(HashTable): ...
- def duplicated_int64(
- values: np.ndarray, # const int64_t[:] values
- keep: Literal["last", "first", False] = ...,
- ) -> np.ndarray: ... # np.ndarray[bool]
- # TODO: Is it actually bool or is it uint8?
- def mode_int64(
- values: np.ndarray, # const int64_t[:] values
- dropna: bool,
- ) -> np.ndarray: ... # np.ndarray[np.int64]
- def value_count_int64(
- values: np.ndarray, # const int64_t[:]
- dropna: bool,
- ) -> tuple[np.ndarray, np.ndarray,]: ... # np.ndarray[np.int64] # np.ndarray[np.int64]
- def duplicated(
- values: np.ndarray,
- keep: Literal["last", "first", False] = ...,
- ) -> np.ndarray: ... # np.ndarray[bool]
- def mode(values: np.ndarray, dropna: bool) -> np.ndarray: ...
- def value_count(
- values: np.ndarray,
- dropna: bool,
- ) -> tuple[np.ndarray, np.ndarray,]: ... # np.ndarray[np.int64]
- # arr and values should have same dtype
- def ismember(
- arr: np.ndarray,
- values: np.ndarray,
- ) -> np.ndarray: ... # np.ndarray[bool]
- def object_hash(obj) -> int: ...
- def objects_are_equal(a, b) -> bool: ...
|