123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188 |
- """ common utilities """
- import itertools
- import numpy as np
- from pandas import (
- DataFrame,
- Float64Index,
- MultiIndex,
- Series,
- UInt64Index,
- date_range,
- )
- import pandas._testing as tm
- def _mklbl(prefix, n):
- return [f"{prefix}{i}" for i in range(n)]
- def _axify(obj, key, axis):
- # create a tuple accessor
- axes = [slice(None)] * obj.ndim
- axes[axis] = key
- return tuple(axes)
- class Base:
- """indexing comprehensive base class"""
- _kinds = {"series", "frame"}
- _typs = {
- "ints",
- "uints",
- "labels",
- "mixed",
- "ts",
- "floats",
- "empty",
- "ts_rev",
- "multi",
- }
- def setup_method(self, method):
- self.series_ints = Series(np.random.rand(4), index=np.arange(0, 8, 2))
- self.frame_ints = DataFrame(
- np.random.randn(4, 4), index=np.arange(0, 8, 2), columns=np.arange(0, 12, 3)
- )
- self.series_uints = Series(
- np.random.rand(4), index=UInt64Index(np.arange(0, 8, 2))
- )
- self.frame_uints = DataFrame(
- np.random.randn(4, 4),
- index=UInt64Index(range(0, 8, 2)),
- columns=UInt64Index(range(0, 12, 3)),
- )
- self.series_floats = Series(
- np.random.rand(4), index=Float64Index(range(0, 8, 2))
- )
- self.frame_floats = DataFrame(
- np.random.randn(4, 4),
- index=Float64Index(range(0, 8, 2)),
- columns=Float64Index(range(0, 12, 3)),
- )
- m_idces = [
- MultiIndex.from_product([[1, 2], [3, 4]]),
- MultiIndex.from_product([[5, 6], [7, 8]]),
- MultiIndex.from_product([[9, 10], [11, 12]]),
- ]
- self.series_multi = Series(np.random.rand(4), index=m_idces[0])
- self.frame_multi = DataFrame(
- np.random.randn(4, 4), index=m_idces[0], columns=m_idces[1]
- )
- self.series_labels = Series(np.random.randn(4), index=list("abcd"))
- self.frame_labels = DataFrame(
- np.random.randn(4, 4), index=list("abcd"), columns=list("ABCD")
- )
- self.series_mixed = Series(np.random.randn(4), index=[2, 4, "null", 8])
- self.frame_mixed = DataFrame(np.random.randn(4, 4), index=[2, 4, "null", 8])
- self.series_ts = Series(
- np.random.randn(4), index=date_range("20130101", periods=4)
- )
- self.frame_ts = DataFrame(
- np.random.randn(4, 4), index=date_range("20130101", periods=4)
- )
- dates_rev = date_range("20130101", periods=4).sort_values(ascending=False)
- self.series_ts_rev = Series(np.random.randn(4), index=dates_rev)
- self.frame_ts_rev = DataFrame(np.random.randn(4, 4), index=dates_rev)
- self.frame_empty = DataFrame()
- self.series_empty = Series(dtype=object)
- # form agglomerates
- for kind in self._kinds:
- d = {}
- for typ in self._typs:
- d[typ] = getattr(self, f"{kind}_{typ}")
- setattr(self, kind, d)
- def generate_indices(self, f, values=False):
- """
- generate the indices
- if values is True , use the axis values
- is False, use the range
- """
- axes = f.axes
- if values:
- axes = (list(range(len(ax))) for ax in axes)
- return itertools.product(*axes)
- def get_value(self, name, f, i, values=False):
- """return the value for the location i"""
- # check against values
- if values:
- return f.values[i]
- elif name == "iat":
- return f.iloc[i]
- else:
- assert name == "at"
- return f.loc[i]
- def check_values(self, f, func, values=False):
- if f is None:
- return
- axes = f.axes
- indices = itertools.product(*axes)
- for i in indices:
- result = getattr(f, func)[i]
- # check against values
- if values:
- expected = f.values[i]
- else:
- expected = f
- for a in reversed(i):
- expected = expected.__getitem__(a)
- tm.assert_almost_equal(result, expected)
- def check_result(self, method, key, typs=None, axes=None, fails=None):
- def _eq(axis, obj, key):
- """compare equal for these 2 keys"""
- axified = _axify(obj, key, axis)
- try:
- getattr(obj, method).__getitem__(axified)
- except (IndexError, TypeError, KeyError) as detail:
- # if we are in fails, the ok, otherwise raise it
- if fails is not None:
- if isinstance(detail, fails):
- return
- raise
- if typs is None:
- typs = self._typs
- if axes is None:
- axes = [0, 1]
- else:
- assert axes in [0, 1]
- axes = [axes]
- # check
- for kind in self._kinds:
- d = getattr(self, kind)
- for ax in axes:
- for typ in typs:
- assert typ in self._typs
- obj = d[typ]
- if ax < obj.ndim:
- _eq(axis=ax, obj=obj, key=key)
|