123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193 |
- from __future__ import annotations
- import numpy as np
- import pandas as pd
- class TablePlotter:
- """
- Layout some DataFrames in vertical/horizontal layout for explanation.
- Used in merging.rst
- """
- def __init__(
- self,
- cell_width: float = 0.37,
- cell_height: float = 0.25,
- font_size: float = 7.5,
- ):
- self.cell_width = cell_width
- self.cell_height = cell_height
- self.font_size = font_size
- def _shape(self, df: pd.DataFrame) -> tuple[int, int]:
- """
- Calculate table shape considering index levels.
- """
- row, col = df.shape
- return row + df.columns.nlevels, col + df.index.nlevels
- def _get_cells(self, left, right, vertical) -> tuple[int, int]:
- """
- Calculate appropriate figure size based on left and right data.
- """
- if vertical:
- # calculate required number of cells
- vcells = max(sum(self._shape(df)[0] for df in left), self._shape(right)[0])
- hcells = max(self._shape(df)[1] for df in left) + self._shape(right)[1]
- else:
- vcells = max([self._shape(df)[0] for df in left] + [self._shape(right)[0]])
- hcells = sum([self._shape(df)[1] for df in left] + [self._shape(right)[1]])
- return hcells, vcells
- def plot(self, left, right, labels=None, vertical: bool = True):
- """
- Plot left / right DataFrames in specified layout.
- Parameters
- ----------
- left : list of DataFrames before operation is applied
- right : DataFrame of operation result
- labels : list of str to be drawn as titles of left DataFrames
- vertical : bool, default True
- If True, use vertical layout. If False, use horizontal layout.
- """
- import matplotlib.gridspec as gridspec
- import matplotlib.pyplot as plt
- if not isinstance(left, list):
- left = [left]
- left = [self._conv(df) for df in left]
- right = self._conv(right)
- hcells, vcells = self._get_cells(left, right, vertical)
- if vertical:
- figsize = self.cell_width * hcells, self.cell_height * vcells
- else:
- # include margin for titles
- figsize = self.cell_width * hcells, self.cell_height * vcells
- fig = plt.figure(figsize=figsize)
- if vertical:
- gs = gridspec.GridSpec(len(left), hcells)
- # left
- max_left_cols = max(self._shape(df)[1] for df in left)
- max_left_rows = max(self._shape(df)[0] for df in left)
- for i, (l, label) in enumerate(zip(left, labels)):
- ax = fig.add_subplot(gs[i, 0:max_left_cols])
- self._make_table(ax, l, title=label, height=1.0 / max_left_rows)
- # right
- ax = plt.subplot(gs[:, max_left_cols:])
- self._make_table(ax, right, title="Result", height=1.05 / vcells)
- fig.subplots_adjust(top=0.9, bottom=0.05, left=0.05, right=0.95)
- else:
- max_rows = max(self._shape(df)[0] for df in left + [right])
- height = 1.0 / np.max(max_rows)
- gs = gridspec.GridSpec(1, hcells)
- # left
- i = 0
- for df, label in zip(left, labels):
- sp = self._shape(df)
- ax = fig.add_subplot(gs[0, i : i + sp[1]])
- self._make_table(ax, df, title=label, height=height)
- i += sp[1]
- # right
- ax = plt.subplot(gs[0, i:])
- self._make_table(ax, right, title="Result", height=height)
- fig.subplots_adjust(top=0.85, bottom=0.05, left=0.05, right=0.95)
- return fig
- def _conv(self, data):
- """
- Convert each input to appropriate for table outplot.
- """
- if isinstance(data, pd.Series):
- if data.name is None:
- data = data.to_frame(name="")
- else:
- data = data.to_frame()
- data = data.fillna("NaN")
- return data
- def _insert_index(self, data):
- # insert is destructive
- data = data.copy()
- idx_nlevels = data.index.nlevels
- if idx_nlevels == 1:
- data.insert(0, "Index", data.index)
- else:
- for i in range(idx_nlevels):
- data.insert(i, f"Index{i}", data.index._get_level_values(i))
- col_nlevels = data.columns.nlevels
- if col_nlevels > 1:
- col = data.columns._get_level_values(0)
- values = [
- data.columns._get_level_values(i)._values for i in range(1, col_nlevels)
- ]
- col_df = pd.DataFrame(values)
- data.columns = col_df.columns
- data = pd.concat([col_df, data])
- data.columns = col
- return data
- def _make_table(self, ax, df, title: str, height: float | None = None):
- if df is None:
- ax.set_visible(False)
- return
- import pandas.plotting as plotting
- idx_nlevels = df.index.nlevels
- col_nlevels = df.columns.nlevels
- # must be convert here to get index levels for colorization
- df = self._insert_index(df)
- tb = plotting.table(ax, df, loc=9)
- tb.set_fontsize(self.font_size)
- if height is None:
- height = 1.0 / (len(df) + 1)
- props = tb.properties()
- for (r, c), cell in props["celld"].items():
- if c == -1:
- cell.set_visible(False)
- elif r < col_nlevels and c < idx_nlevels:
- cell.set_visible(False)
- elif r < col_nlevels or c < idx_nlevels:
- cell.set_facecolor("#AAAAAA")
- cell.set_height(height)
- ax.set_title(title, size=self.font_size)
- ax.axis("off")
- if __name__ == "__main__":
- import matplotlib.pyplot as plt
- p = TablePlotter()
- df1 = pd.DataFrame({"A": [10, 11, 12], "B": [20, 21, 22], "C": [30, 31, 32]})
- df2 = pd.DataFrame({"A": [10, 12], "C": [30, 32]})
- p.plot([df1, df2], pd.concat([df1, df2]), labels=["df1", "df2"], vertical=True)
- plt.show()
- df3 = pd.DataFrame({"X": [10, 12], "Z": [30, 32]})
- p.plot(
- [df1, df3], pd.concat([df1, df3], axis=1), labels=["df1", "df2"], vertical=False
- )
- plt.show()
- idx = pd.MultiIndex.from_tuples(
- [(1, "A"), (1, "B"), (1, "C"), (2, "A"), (2, "B"), (2, "C")]
- )
- col = pd.MultiIndex.from_tuples([(1, "A"), (1, "B")])
- df3 = pd.DataFrame({"v1": [1, 2, 3, 4, 5, 6], "v2": [5, 6, 7, 8, 9, 10]}, index=idx)
- df3.columns = col
- p.plot(df3, df3, labels=["df3"])
- plt.show()
|