123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166 |
- """
- Recurrences
- """
- from sympy.core import S, sympify
- from sympy.utilities.iterables import iterable
- from sympy.utilities.misc import as_int
- def linrec(coeffs, init, n):
- r"""
- Evaluation of univariate linear recurrences of homogeneous type
- having coefficients independent of the recurrence variable.
- Parameters
- ==========
- coeffs : iterable
- Coefficients of the recurrence
- init : iterable
- Initial values of the recurrence
- n : Integer
- Point of evaluation for the recurrence
- Notes
- =====
- Let `y(n)` be the recurrence of given type, ``c`` be the sequence
- of coefficients, ``b`` be the sequence of initial/base values of the
- recurrence and ``k`` (equal to ``len(c)``) be the order of recurrence.
- Then,
- .. math :: y(n) = \begin{cases} b_n & 0 \le n < k \\
- c_0 y(n-1) + c_1 y(n-2) + \cdots + c_{k-1} y(n-k) & n \ge k
- \end{cases}
- Let `x_0, x_1, \ldots, x_n` be a sequence and consider the transformation
- that maps each polynomial `f(x)` to `T(f(x))` where each power `x^i` is
- replaced by the corresponding value `x_i`. The sequence is then a solution
- of the recurrence if and only if `T(x^i p(x)) = 0` for each `i \ge 0` where
- `p(x) = x^k - c_0 x^(k-1) - \cdots - c_{k-1}` is the characteristic
- polynomial.
- Then `T(f(x)p(x)) = 0` for each polynomial `f(x)` (as it is a linear
- combination of powers `x^i`). Now, if `x^n` is congruent to
- `g(x) = a_0 x^0 + a_1 x^1 + \cdots + a_{k-1} x^{k-1}` modulo `p(x)`, then
- `T(x^n) = x_n` is equal to
- `T(g(x)) = a_0 x_0 + a_1 x_1 + \cdots + a_{k-1} x_{k-1}`.
- Computation of `x^n`,
- given `x^k = c_0 x^{k-1} + c_1 x^{k-2} + \cdots + c_{k-1}`
- is performed using exponentiation by squaring (refer to [1_]) with
- an additional reduction step performed to retain only first `k` powers
- of `x` in the representation of `x^n`.
- Examples
- ========
- >>> from sympy.discrete.recurrences import linrec
- >>> from sympy.abc import x, y, z
- >>> linrec(coeffs=[1, 1], init=[0, 1], n=10)
- 55
- >>> linrec(coeffs=[1, 1], init=[x, y], n=10)
- 34*x + 55*y
- >>> linrec(coeffs=[x, y], init=[0, 1], n=5)
- x**2*y + x*(x**3 + 2*x*y) + y**2
- >>> linrec(coeffs=[1, 2, 3, 0, 0, 4], init=[x, y, z], n=16)
- 13576*x + 5676*y + 2356*z
- References
- ==========
- .. [1] https://en.wikipedia.org/wiki/Exponentiation_by_squaring
- .. [2] https://en.wikipedia.org/w/index.php?title=Modular_exponentiation§ion=6#Matrices
- See Also
- ========
- sympy.polys.agca.extensions.ExtensionElement.__pow__
- """
- if not coeffs:
- return S.Zero
- if not iterable(coeffs):
- raise TypeError("Expected a sequence of coefficients for"
- " the recurrence")
- if not iterable(init):
- raise TypeError("Expected a sequence of values for the initialization"
- " of the recurrence")
- n = as_int(n)
- if n < 0:
- raise ValueError("Point of evaluation of recurrence must be a "
- "non-negative integer")
- c = [sympify(arg) for arg in coeffs]
- b = [sympify(arg) for arg in init]
- k = len(c)
- if len(b) > k:
- raise TypeError("Count of initial values should not exceed the "
- "order of the recurrence")
- else:
- b += [S.Zero]*(k - len(b)) # remaining initial values default to zero
- if n < k:
- return b[n]
- terms = [u*v for u, v in zip(linrec_coeffs(c, n), b)]
- return sum(terms[:-1], terms[-1])
- def linrec_coeffs(c, n):
- r"""
- Compute the coefficients of n'th term in linear recursion
- sequence defined by c.
- `x^k = c_0 x^{k-1} + c_1 x^{k-2} + \cdots + c_{k-1}`.
- It computes the coefficients by using binary exponentiation.
- This function is used by `linrec` and `_eval_pow_by_cayley`.
- Parameters
- ==========
- c = coefficients of the divisor polynomial
- n = exponent of x, so dividend is x^n
- """
- k = len(c)
- def _square_and_reduce(u, offset):
- # squares `(u_0 + u_1 x + u_2 x^2 + \cdots + u_{k-1} x^k)` (and
- # multiplies by `x` if offset is 1) and reduces the above result of
- # length upto `2k` to `k` using the characteristic equation of the
- # recurrence given by, `x^k = c_0 x^{k-1} + c_1 x^{k-2} + \cdots + c_{k-1}`
- w = [S.Zero]*(2*len(u) - 1 + offset)
- for i, p in enumerate(u):
- for j, q in enumerate(u):
- w[offset + i + j] += p*q
- for j in range(len(w) - 1, k - 1, -1):
- for i in range(k):
- w[j - i - 1] += w[j]*c[i]
- return w[:k]
- def _final_coeffs(n):
- # computes the final coefficient list - `cf` corresponding to the
- # point at which recurrence is to be evalauted - `n`, such that,
- # `y(n) = cf_0 y(k-1) + cf_1 y(k-2) + \cdots + cf_{k-1} y(0)`
- if n < k:
- return [S.Zero]*n + [S.One] + [S.Zero]*(k - n - 1)
- else:
- return _square_and_reduce(_final_coeffs(n // 2), n % 2)
- return _final_coeffs(n)
|