123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762 |
- import random
- from sympy.core.basic import Basic
- from sympy.core.singleton import S
- from sympy.core.symbol import Symbol
- from sympy.core.sympify import sympify
- from sympy.functions.elementary.trigonometric import cos, sin
- from sympy.simplify.simplify import simplify as _simplify
- from sympy.utilities.decorator import doctest_depends_on
- from sympy.utilities.exceptions import sympy_deprecation_warning
- from sympy.utilities.iterables import is_sequence
- from .common import ShapeError
- from .decompositions import _cholesky, _LDLdecomposition
- from .matrices import MatrixBase
- from .repmatrix import MutableRepMatrix, RepMatrix
- from .solvers import _lower_triangular_solve, _upper_triangular_solve
- def _iszero(x):
- """Returns True if x is zero."""
- return x.is_zero
- class DenseMatrix(RepMatrix):
- """Matrix implementation based on DomainMatrix as the internal representation"""
- #
- # DenseMatrix is a superclass for both MutableDenseMatrix and
- # ImmutableDenseMatrix. Methods shared by both classes but not for the
- # Sparse classes should be implemented here.
- #
- is_MatrixExpr = False # type: bool
- _op_priority = 10.01
- _class_priority = 4
- @property
- def _mat(self):
- sympy_deprecation_warning(
- """
- The private _mat attribute of Matrix is deprecated. Use the
- .flat() method instead.
- """,
- deprecated_since_version="1.9",
- active_deprecations_target="deprecated-private-matrix-attributes"
- )
- return self.flat()
- def _eval_inverse(self, **kwargs):
- return self.inv(method=kwargs.get('method', 'GE'),
- iszerofunc=kwargs.get('iszerofunc', _iszero),
- try_block_diag=kwargs.get('try_block_diag', False))
- def as_immutable(self):
- """Returns an Immutable version of this Matrix
- """
- from .immutable import ImmutableDenseMatrix as cls
- return cls._fromrep(self._rep.copy())
- def as_mutable(self):
- """Returns a mutable version of this matrix
- Examples
- ========
- >>> from sympy import ImmutableMatrix
- >>> X = ImmutableMatrix([[1, 2], [3, 4]])
- >>> Y = X.as_mutable()
- >>> Y[1, 1] = 5 # Can set values in Y
- >>> Y
- Matrix([
- [1, 2],
- [3, 5]])
- """
- return Matrix(self)
- def cholesky(self, hermitian=True):
- return _cholesky(self, hermitian=hermitian)
- def LDLdecomposition(self, hermitian=True):
- return _LDLdecomposition(self, hermitian=hermitian)
- def lower_triangular_solve(self, rhs):
- return _lower_triangular_solve(self, rhs)
- def upper_triangular_solve(self, rhs):
- return _upper_triangular_solve(self, rhs)
- cholesky.__doc__ = _cholesky.__doc__
- LDLdecomposition.__doc__ = _LDLdecomposition.__doc__
- lower_triangular_solve.__doc__ = _lower_triangular_solve.__doc__
- upper_triangular_solve.__doc__ = _upper_triangular_solve.__doc__
- def _force_mutable(x):
- """Return a matrix as a Matrix, otherwise return x."""
- if getattr(x, 'is_Matrix', False):
- return x.as_mutable()
- elif isinstance(x, Basic):
- return x
- elif hasattr(x, '__array__'):
- a = x.__array__()
- if len(a.shape) == 0:
- return sympify(a)
- return Matrix(x)
- return x
- class MutableDenseMatrix(DenseMatrix, MutableRepMatrix):
- def simplify(self, **kwargs):
- """Applies simplify to the elements of a matrix in place.
- This is a shortcut for M.applyfunc(lambda x: simplify(x, ratio, measure))
- See Also
- ========
- sympy.simplify.simplify.simplify
- """
- for (i, j), element in self.todok().items():
- self[i, j] = _simplify(element, **kwargs)
- MutableMatrix = Matrix = MutableDenseMatrix
- ###########
- # Numpy Utility Functions:
- # list2numpy, matrix2numpy, symmarray, rot_axis[123]
- ###########
- def list2numpy(l, dtype=object): # pragma: no cover
- """Converts Python list of SymPy expressions to a NumPy array.
- See Also
- ========
- matrix2numpy
- """
- from numpy import empty
- a = empty(len(l), dtype)
- for i, s in enumerate(l):
- a[i] = s
- return a
- def matrix2numpy(m, dtype=object): # pragma: no cover
- """Converts SymPy's matrix to a NumPy array.
- See Also
- ========
- list2numpy
- """
- from numpy import empty
- a = empty(m.shape, dtype)
- for i in range(m.rows):
- for j in range(m.cols):
- a[i, j] = m[i, j]
- return a
- def rot_axis3(theta):
- """Returns a rotation matrix for a rotation of theta (in radians) about
- the 3-axis.
- Examples
- ========
- >>> from sympy import pi, rot_axis3
- A rotation of pi/3 (60 degrees):
- >>> theta = pi/3
- >>> rot_axis3(theta)
- Matrix([
- [ 1/2, sqrt(3)/2, 0],
- [-sqrt(3)/2, 1/2, 0],
- [ 0, 0, 1]])
- If we rotate by pi/2 (90 degrees):
- >>> rot_axis3(pi/2)
- Matrix([
- [ 0, 1, 0],
- [-1, 0, 0],
- [ 0, 0, 1]])
- See Also
- ========
- rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
- about the 1-axis
- rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
- about the 2-axis
- """
- ct = cos(theta)
- st = sin(theta)
- lil = ((ct, st, 0),
- (-st, ct, 0),
- (0, 0, 1))
- return Matrix(lil)
- def rot_axis2(theta):
- """Returns a rotation matrix for a rotation of theta (in radians) about
- the 2-axis.
- Examples
- ========
- >>> from sympy import pi, rot_axis2
- A rotation of pi/3 (60 degrees):
- >>> theta = pi/3
- >>> rot_axis2(theta)
- Matrix([
- [ 1/2, 0, -sqrt(3)/2],
- [ 0, 1, 0],
- [sqrt(3)/2, 0, 1/2]])
- If we rotate by pi/2 (90 degrees):
- >>> rot_axis2(pi/2)
- Matrix([
- [0, 0, -1],
- [0, 1, 0],
- [1, 0, 0]])
- See Also
- ========
- rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
- about the 1-axis
- rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
- about the 3-axis
- """
- ct = cos(theta)
- st = sin(theta)
- lil = ((ct, 0, -st),
- (0, 1, 0),
- (st, 0, ct))
- return Matrix(lil)
- def rot_axis1(theta):
- """Returns a rotation matrix for a rotation of theta (in radians) about
- the 1-axis.
- Examples
- ========
- >>> from sympy import pi, rot_axis1
- A rotation of pi/3 (60 degrees):
- >>> theta = pi/3
- >>> rot_axis1(theta)
- Matrix([
- [1, 0, 0],
- [0, 1/2, sqrt(3)/2],
- [0, -sqrt(3)/2, 1/2]])
- If we rotate by pi/2 (90 degrees):
- >>> rot_axis1(pi/2)
- Matrix([
- [1, 0, 0],
- [0, 0, 1],
- [0, -1, 0]])
- See Also
- ========
- rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
- about the 2-axis
- rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
- about the 3-axis
- """
- ct = cos(theta)
- st = sin(theta)
- lil = ((1, 0, 0),
- (0, ct, st),
- (0, -st, ct))
- return Matrix(lil)
- @doctest_depends_on(modules=('numpy',))
- def symarray(prefix, shape, **kwargs): # pragma: no cover
- r"""Create a numpy ndarray of symbols (as an object array).
- The created symbols are named ``prefix_i1_i2_``... You should thus provide a
- non-empty prefix if you want your symbols to be unique for different output
- arrays, as SymPy symbols with identical names are the same object.
- Parameters
- ----------
- prefix : string
- A prefix prepended to the name of every symbol.
- shape : int or tuple
- Shape of the created array. If an int, the array is one-dimensional; for
- more than one dimension the shape must be a tuple.
- \*\*kwargs : dict
- keyword arguments passed on to Symbol
- Examples
- ========
- These doctests require numpy.
- >>> from sympy import symarray
- >>> symarray('', 3)
- [_0 _1 _2]
- If you want multiple symarrays to contain distinct symbols, you *must*
- provide unique prefixes:
- >>> a = symarray('', 3)
- >>> b = symarray('', 3)
- >>> a[0] == b[0]
- True
- >>> a = symarray('a', 3)
- >>> b = symarray('b', 3)
- >>> a[0] == b[0]
- False
- Creating symarrays with a prefix:
- >>> symarray('a', 3)
- [a_0 a_1 a_2]
- For more than one dimension, the shape must be given as a tuple:
- >>> symarray('a', (2, 3))
- [[a_0_0 a_0_1 a_0_2]
- [a_1_0 a_1_1 a_1_2]]
- >>> symarray('a', (2, 3, 2))
- [[[a_0_0_0 a_0_0_1]
- [a_0_1_0 a_0_1_1]
- [a_0_2_0 a_0_2_1]]
- <BLANKLINE>
- [[a_1_0_0 a_1_0_1]
- [a_1_1_0 a_1_1_1]
- [a_1_2_0 a_1_2_1]]]
- For setting assumptions of the underlying Symbols:
- >>> [s.is_real for s in symarray('a', 2, real=True)]
- [True, True]
- """
- from numpy import empty, ndindex
- arr = empty(shape, dtype=object)
- for index in ndindex(shape):
- arr[index] = Symbol('%s_%s' % (prefix, '_'.join(map(str, index))),
- **kwargs)
- return arr
- ###############
- # Functions
- ###############
- def casoratian(seqs, n, zero=True):
- """Given linear difference operator L of order 'k' and homogeneous
- equation Ly = 0 we want to compute kernel of L, which is a set
- of 'k' sequences: a(n), b(n), ... z(n).
- Solutions of L are linearly independent iff their Casoratian,
- denoted as C(a, b, ..., z), do not vanish for n = 0.
- Casoratian is defined by k x k determinant::
- + a(n) b(n) . . . z(n) +
- | a(n+1) b(n+1) . . . z(n+1) |
- | . . . . |
- | . . . . |
- | . . . . |
- + a(n+k-1) b(n+k-1) . . . z(n+k-1) +
- It proves very useful in rsolve_hyper() where it is applied
- to a generating set of a recurrence to factor out linearly
- dependent solutions and return a basis:
- >>> from sympy import Symbol, casoratian, factorial
- >>> n = Symbol('n', integer=True)
- Exponential and factorial are linearly independent:
- >>> casoratian([2**n, factorial(n)], n) != 0
- True
- """
- seqs = list(map(sympify, seqs))
- if not zero:
- f = lambda i, j: seqs[j].subs(n, n + i)
- else:
- f = lambda i, j: seqs[j].subs(n, i)
- k = len(seqs)
- return Matrix(k, k, f).det()
- def eye(*args, **kwargs):
- """Create square identity matrix n x n
- See Also
- ========
- diag
- zeros
- ones
- """
- return Matrix.eye(*args, **kwargs)
- def diag(*values, strict=True, unpack=False, **kwargs):
- """Returns a matrix with the provided values placed on the
- diagonal. If non-square matrices are included, they will
- produce a block-diagonal matrix.
- Examples
- ========
- This version of diag is a thin wrapper to Matrix.diag that differs
- in that it treats all lists like matrices -- even when a single list
- is given. If this is not desired, either put a `*` before the list or
- set `unpack=True`.
- >>> from sympy import diag
- >>> diag([1, 2, 3], unpack=True) # = diag(1,2,3) or diag(*[1,2,3])
- Matrix([
- [1, 0, 0],
- [0, 2, 0],
- [0, 0, 3]])
- >>> diag([1, 2, 3]) # a column vector
- Matrix([
- [1],
- [2],
- [3]])
- See Also
- ========
- .common.MatrixCommon.eye
- .common.MatrixCommon.diagonal - to extract a diagonal
- .common.MatrixCommon.diag
- .expressions.blockmatrix.BlockMatrix
- """
- return Matrix.diag(*values, strict=strict, unpack=unpack, **kwargs)
- def GramSchmidt(vlist, orthonormal=False):
- """Apply the Gram-Schmidt process to a set of vectors.
- Parameters
- ==========
- vlist : List of Matrix
- Vectors to be orthogonalized for.
- orthonormal : Bool, optional
- If true, return an orthonormal basis.
- Returns
- =======
- vlist : List of Matrix
- Orthogonalized vectors
- Notes
- =====
- This routine is mostly duplicate from ``Matrix.orthogonalize``,
- except for some difference that this always raises error when
- linearly dependent vectors are found, and the keyword ``normalize``
- has been named as ``orthonormal`` in this function.
- See Also
- ========
- .matrices.MatrixSubspaces.orthogonalize
- References
- ==========
- .. [1] https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process
- """
- return MutableDenseMatrix.orthogonalize(
- *vlist, normalize=orthonormal, rankcheck=True
- )
- def hessian(f, varlist, constraints=()):
- """Compute Hessian matrix for a function f wrt parameters in varlist
- which may be given as a sequence or a row/column vector. A list of
- constraints may optionally be given.
- Examples
- ========
- >>> from sympy import Function, hessian, pprint
- >>> from sympy.abc import x, y
- >>> f = Function('f')(x, y)
- >>> g1 = Function('g')(x, y)
- >>> g2 = x**2 + 3*y
- >>> pprint(hessian(f, (x, y), [g1, g2]))
- [ d d ]
- [ 0 0 --(g(x, y)) --(g(x, y)) ]
- [ dx dy ]
- [ ]
- [ 0 0 2*x 3 ]
- [ ]
- [ 2 2 ]
- [d d d ]
- [--(g(x, y)) 2*x ---(f(x, y)) -----(f(x, y))]
- [dx 2 dy dx ]
- [ dx ]
- [ ]
- [ 2 2 ]
- [d d d ]
- [--(g(x, y)) 3 -----(f(x, y)) ---(f(x, y)) ]
- [dy dy dx 2 ]
- [ dy ]
- References
- ==========
- .. [1] https://en.wikipedia.org/wiki/Hessian_matrix
- See Also
- ========
- sympy.matrices.matrices.MatrixCalculus.jacobian
- wronskian
- """
- # f is the expression representing a function f, return regular matrix
- if isinstance(varlist, MatrixBase):
- if 1 not in varlist.shape:
- raise ShapeError("`varlist` must be a column or row vector.")
- if varlist.cols == 1:
- varlist = varlist.T
- varlist = varlist.tolist()[0]
- if is_sequence(varlist):
- n = len(varlist)
- if not n:
- raise ShapeError("`len(varlist)` must not be zero.")
- else:
- raise ValueError("Improper variable list in hessian function")
- if not getattr(f, 'diff'):
- # check differentiability
- raise ValueError("Function `f` (%s) is not differentiable" % f)
- m = len(constraints)
- N = m + n
- out = zeros(N)
- for k, g in enumerate(constraints):
- if not getattr(g, 'diff'):
- # check differentiability
- raise ValueError("Function `f` (%s) is not differentiable" % f)
- for i in range(n):
- out[k, i + m] = g.diff(varlist[i])
- for i in range(n):
- for j in range(i, n):
- out[i + m, j + m] = f.diff(varlist[i]).diff(varlist[j])
- for i in range(N):
- for j in range(i + 1, N):
- out[j, i] = out[i, j]
- return out
- def jordan_cell(eigenval, n):
- """
- Create a Jordan block:
- Examples
- ========
- >>> from sympy import jordan_cell
- >>> from sympy.abc import x
- >>> jordan_cell(x, 4)
- Matrix([
- [x, 1, 0, 0],
- [0, x, 1, 0],
- [0, 0, x, 1],
- [0, 0, 0, x]])
- """
- return Matrix.jordan_block(size=n, eigenvalue=eigenval)
- def matrix_multiply_elementwise(A, B):
- """Return the Hadamard product (elementwise product) of A and B
- >>> from sympy import Matrix, matrix_multiply_elementwise
- >>> A = Matrix([[0, 1, 2], [3, 4, 5]])
- >>> B = Matrix([[1, 10, 100], [100, 10, 1]])
- >>> matrix_multiply_elementwise(A, B)
- Matrix([
- [ 0, 10, 200],
- [300, 40, 5]])
- See Also
- ========
- sympy.matrices.common.MatrixCommon.__mul__
- """
- return A.multiply_elementwise(B)
- def ones(*args, **kwargs):
- """Returns a matrix of ones with ``rows`` rows and ``cols`` columns;
- if ``cols`` is omitted a square matrix will be returned.
- See Also
- ========
- zeros
- eye
- diag
- """
- if 'c' in kwargs:
- kwargs['cols'] = kwargs.pop('c')
- return Matrix.ones(*args, **kwargs)
- def randMatrix(r, c=None, min=0, max=99, seed=None, symmetric=False,
- percent=100, prng=None):
- """Create random matrix with dimensions ``r`` x ``c``. If ``c`` is omitted
- the matrix will be square. If ``symmetric`` is True the matrix must be
- square. If ``percent`` is less than 100 then only approximately the given
- percentage of elements will be non-zero.
- The pseudo-random number generator used to generate matrix is chosen in the
- following way.
- * If ``prng`` is supplied, it will be used as random number generator.
- It should be an instance of ``random.Random``, or at least have
- ``randint`` and ``shuffle`` methods with same signatures.
- * if ``prng`` is not supplied but ``seed`` is supplied, then new
- ``random.Random`` with given ``seed`` will be created;
- * otherwise, a new ``random.Random`` with default seed will be used.
- Examples
- ========
- >>> from sympy import randMatrix
- >>> randMatrix(3) # doctest:+SKIP
- [25, 45, 27]
- [44, 54, 9]
- [23, 96, 46]
- >>> randMatrix(3, 2) # doctest:+SKIP
- [87, 29]
- [23, 37]
- [90, 26]
- >>> randMatrix(3, 3, 0, 2) # doctest:+SKIP
- [0, 2, 0]
- [2, 0, 1]
- [0, 0, 1]
- >>> randMatrix(3, symmetric=True) # doctest:+SKIP
- [85, 26, 29]
- [26, 71, 43]
- [29, 43, 57]
- >>> A = randMatrix(3, seed=1)
- >>> B = randMatrix(3, seed=2)
- >>> A == B
- False
- >>> A == randMatrix(3, seed=1)
- True
- >>> randMatrix(3, symmetric=True, percent=50) # doctest:+SKIP
- [77, 70, 0],
- [70, 0, 0],
- [ 0, 0, 88]
- """
- # Note that ``Random()`` is equivalent to ``Random(None)``
- prng = prng or random.Random(seed)
- if c is None:
- c = r
- if symmetric and r != c:
- raise ValueError('For symmetric matrices, r must equal c, but %i != %i' % (r, c))
- ij = range(r * c)
- if percent != 100:
- ij = prng.sample(ij, int(len(ij)*percent // 100))
- m = zeros(r, c)
- if not symmetric:
- for ijk in ij:
- i, j = divmod(ijk, c)
- m[i, j] = prng.randint(min, max)
- else:
- for ijk in ij:
- i, j = divmod(ijk, c)
- if i <= j:
- m[i, j] = m[j, i] = prng.randint(min, max)
- return m
- def wronskian(functions, var, method='bareiss'):
- """
- Compute Wronskian for [] of functions
- ::
- | f1 f2 ... fn |
- | f1' f2' ... fn' |
- | . . . . |
- W(f1, ..., fn) = | . . . . |
- | . . . . |
- | (n) (n) (n) |
- | D (f1) D (f2) ... D (fn) |
- see: https://en.wikipedia.org/wiki/Wronskian
- See Also
- ========
- sympy.matrices.matrices.MatrixCalculus.jacobian
- hessian
- """
- for index in range(0, len(functions)):
- functions[index] = sympify(functions[index])
- n = len(functions)
- if n == 0:
- return S.One
- W = Matrix(n, n, lambda i, j: functions[i].diff(var, j))
- return W.det(method)
- def zeros(*args, **kwargs):
- """Returns a matrix of zeros with ``rows`` rows and ``cols`` columns;
- if ``cols`` is omitted a square matrix will be returned.
- See Also
- ========
- ones
- eye
- diag
- """
- if 'c' in kwargs:
- kwargs['cols'] = kwargs.pop('c')
- return Matrix.zeros(*args, **kwargs)
|