1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309 |
- """Advanced tools for dense recursive polynomials in ``K[x]`` or ``K[X]``. """
- from sympy.polys.densearith import (
- dup_add_term, dmp_add_term,
- dup_lshift,
- dup_add, dmp_add,
- dup_sub, dmp_sub,
- dup_mul, dmp_mul,
- dup_sqr,
- dup_div,
- dup_rem, dmp_rem,
- dmp_expand,
- dup_mul_ground, dmp_mul_ground,
- dup_quo_ground, dmp_quo_ground,
- dup_exquo_ground, dmp_exquo_ground,
- )
- from sympy.polys.densebasic import (
- dup_strip, dmp_strip,
- dup_convert, dmp_convert,
- dup_degree, dmp_degree,
- dmp_to_dict,
- dmp_from_dict,
- dup_LC, dmp_LC, dmp_ground_LC,
- dup_TC, dmp_TC,
- dmp_zero, dmp_ground,
- dmp_zero_p,
- dup_to_raw_dict, dup_from_raw_dict,
- dmp_zeros
- )
- from sympy.polys.polyerrors import (
- MultivariatePolynomialError,
- DomainError
- )
- from sympy.utilities import variations
- from math import ceil as _ceil, log as _log
- def dup_integrate(f, m, K):
- """
- Computes the indefinite integral of ``f`` in ``K[x]``.
- Examples
- ========
- >>> from sympy.polys import ring, QQ
- >>> R, x = ring("x", QQ)
- >>> R.dup_integrate(x**2 + 2*x, 1)
- 1/3*x**3 + x**2
- >>> R.dup_integrate(x**2 + 2*x, 2)
- 1/12*x**4 + 1/3*x**3
- """
- if m <= 0 or not f:
- return f
- g = [K.zero]*m
- for i, c in enumerate(reversed(f)):
- n = i + 1
- for j in range(1, m):
- n *= i + j + 1
- g.insert(0, K.exquo(c, K(n)))
- return g
- def dmp_integrate(f, m, u, K):
- """
- Computes the indefinite integral of ``f`` in ``x_0`` in ``K[X]``.
- Examples
- ========
- >>> from sympy.polys import ring, QQ
- >>> R, x,y = ring("x,y", QQ)
- >>> R.dmp_integrate(x + 2*y, 1)
- 1/2*x**2 + 2*x*y
- >>> R.dmp_integrate(x + 2*y, 2)
- 1/6*x**3 + x**2*y
- """
- if not u:
- return dup_integrate(f, m, K)
- if m <= 0 or dmp_zero_p(f, u):
- return f
- g, v = dmp_zeros(m, u - 1, K), u - 1
- for i, c in enumerate(reversed(f)):
- n = i + 1
- for j in range(1, m):
- n *= i + j + 1
- g.insert(0, dmp_quo_ground(c, K(n), v, K))
- return g
- def _rec_integrate_in(g, m, v, i, j, K):
- """Recursive helper for :func:`dmp_integrate_in`."""
- if i == j:
- return dmp_integrate(g, m, v, K)
- w, i = v - 1, i + 1
- return dmp_strip([ _rec_integrate_in(c, m, w, i, j, K) for c in g ], v)
- def dmp_integrate_in(f, m, j, u, K):
- """
- Computes the indefinite integral of ``f`` in ``x_j`` in ``K[X]``.
- Examples
- ========
- >>> from sympy.polys import ring, QQ
- >>> R, x,y = ring("x,y", QQ)
- >>> R.dmp_integrate_in(x + 2*y, 1, 0)
- 1/2*x**2 + 2*x*y
- >>> R.dmp_integrate_in(x + 2*y, 1, 1)
- x*y + y**2
- """
- if j < 0 or j > u:
- raise IndexError("0 <= j <= u expected, got u = %d, j = %d" % (u, j))
- return _rec_integrate_in(f, m, u, 0, j, K)
- def dup_diff(f, m, K):
- """
- ``m``-th order derivative of a polynomial in ``K[x]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x = ring("x", ZZ)
- >>> R.dup_diff(x**3 + 2*x**2 + 3*x + 4, 1)
- 3*x**2 + 4*x + 3
- >>> R.dup_diff(x**3 + 2*x**2 + 3*x + 4, 2)
- 6*x + 4
- """
- if m <= 0:
- return f
- n = dup_degree(f)
- if n < m:
- return []
- deriv = []
- if m == 1:
- for coeff in f[:-m]:
- deriv.append(K(n)*coeff)
- n -= 1
- else:
- for coeff in f[:-m]:
- k = n
- for i in range(n - 1, n - m, -1):
- k *= i
- deriv.append(K(k)*coeff)
- n -= 1
- return dup_strip(deriv)
- def dmp_diff(f, m, u, K):
- """
- ``m``-th order derivative in ``x_0`` of a polynomial in ``K[X]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x,y = ring("x,y", ZZ)
- >>> f = x*y**2 + 2*x*y + 3*x + 2*y**2 + 3*y + 1
- >>> R.dmp_diff(f, 1)
- y**2 + 2*y + 3
- >>> R.dmp_diff(f, 2)
- 0
- """
- if not u:
- return dup_diff(f, m, K)
- if m <= 0:
- return f
- n = dmp_degree(f, u)
- if n < m:
- return dmp_zero(u)
- deriv, v = [], u - 1
- if m == 1:
- for coeff in f[:-m]:
- deriv.append(dmp_mul_ground(coeff, K(n), v, K))
- n -= 1
- else:
- for coeff in f[:-m]:
- k = n
- for i in range(n - 1, n - m, -1):
- k *= i
- deriv.append(dmp_mul_ground(coeff, K(k), v, K))
- n -= 1
- return dmp_strip(deriv, u)
- def _rec_diff_in(g, m, v, i, j, K):
- """Recursive helper for :func:`dmp_diff_in`."""
- if i == j:
- return dmp_diff(g, m, v, K)
- w, i = v - 1, i + 1
- return dmp_strip([ _rec_diff_in(c, m, w, i, j, K) for c in g ], v)
- def dmp_diff_in(f, m, j, u, K):
- """
- ``m``-th order derivative in ``x_j`` of a polynomial in ``K[X]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x,y = ring("x,y", ZZ)
- >>> f = x*y**2 + 2*x*y + 3*x + 2*y**2 + 3*y + 1
- >>> R.dmp_diff_in(f, 1, 0)
- y**2 + 2*y + 3
- >>> R.dmp_diff_in(f, 1, 1)
- 2*x*y + 2*x + 4*y + 3
- """
- if j < 0 or j > u:
- raise IndexError("0 <= j <= %s expected, got %s" % (u, j))
- return _rec_diff_in(f, m, u, 0, j, K)
- def dup_eval(f, a, K):
- """
- Evaluate a polynomial at ``x = a`` in ``K[x]`` using Horner scheme.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x = ring("x", ZZ)
- >>> R.dup_eval(x**2 + 2*x + 3, 2)
- 11
- """
- if not a:
- return dup_TC(f, K)
- result = K.zero
- for c in f:
- result *= a
- result += c
- return result
- def dmp_eval(f, a, u, K):
- """
- Evaluate a polynomial at ``x_0 = a`` in ``K[X]`` using the Horner scheme.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x,y = ring("x,y", ZZ)
- >>> R.dmp_eval(2*x*y + 3*x + y + 2, 2)
- 5*y + 8
- """
- if not u:
- return dup_eval(f, a, K)
- if not a:
- return dmp_TC(f, K)
- result, v = dmp_LC(f, K), u - 1
- for coeff in f[1:]:
- result = dmp_mul_ground(result, a, v, K)
- result = dmp_add(result, coeff, v, K)
- return result
- def _rec_eval_in(g, a, v, i, j, K):
- """Recursive helper for :func:`dmp_eval_in`."""
- if i == j:
- return dmp_eval(g, a, v, K)
- v, i = v - 1, i + 1
- return dmp_strip([ _rec_eval_in(c, a, v, i, j, K) for c in g ], v)
- def dmp_eval_in(f, a, j, u, K):
- """
- Evaluate a polynomial at ``x_j = a`` in ``K[X]`` using the Horner scheme.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x,y = ring("x,y", ZZ)
- >>> f = 2*x*y + 3*x + y + 2
- >>> R.dmp_eval_in(f, 2, 0)
- 5*y + 8
- >>> R.dmp_eval_in(f, 2, 1)
- 7*x + 4
- """
- if j < 0 or j > u:
- raise IndexError("0 <= j <= %s expected, got %s" % (u, j))
- return _rec_eval_in(f, a, u, 0, j, K)
- def _rec_eval_tail(g, i, A, u, K):
- """Recursive helper for :func:`dmp_eval_tail`."""
- if i == u:
- return dup_eval(g, A[-1], K)
- else:
- h = [ _rec_eval_tail(c, i + 1, A, u, K) for c in g ]
- if i < u - len(A) + 1:
- return h
- else:
- return dup_eval(h, A[-u + i - 1], K)
- def dmp_eval_tail(f, A, u, K):
- """
- Evaluate a polynomial at ``x_j = a_j, ...`` in ``K[X]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x,y = ring("x,y", ZZ)
- >>> f = 2*x*y + 3*x + y + 2
- >>> R.dmp_eval_tail(f, [2])
- 7*x + 4
- >>> R.dmp_eval_tail(f, [2, 2])
- 18
- """
- if not A:
- return f
- if dmp_zero_p(f, u):
- return dmp_zero(u - len(A))
- e = _rec_eval_tail(f, 0, A, u, K)
- if u == len(A) - 1:
- return e
- else:
- return dmp_strip(e, u - len(A))
- def _rec_diff_eval(g, m, a, v, i, j, K):
- """Recursive helper for :func:`dmp_diff_eval`."""
- if i == j:
- return dmp_eval(dmp_diff(g, m, v, K), a, v, K)
- v, i = v - 1, i + 1
- return dmp_strip([ _rec_diff_eval(c, m, a, v, i, j, K) for c in g ], v)
- def dmp_diff_eval_in(f, m, a, j, u, K):
- """
- Differentiate and evaluate a polynomial in ``x_j`` at ``a`` in ``K[X]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x,y = ring("x,y", ZZ)
- >>> f = x*y**2 + 2*x*y + 3*x + 2*y**2 + 3*y + 1
- >>> R.dmp_diff_eval_in(f, 1, 2, 0)
- y**2 + 2*y + 3
- >>> R.dmp_diff_eval_in(f, 1, 2, 1)
- 6*x + 11
- """
- if j > u:
- raise IndexError("-%s <= j < %s expected, got %s" % (u, u, j))
- if not j:
- return dmp_eval(dmp_diff(f, m, u, K), a, u, K)
- return _rec_diff_eval(f, m, a, u, 0, j, K)
- def dup_trunc(f, p, K):
- """
- Reduce a ``K[x]`` polynomial modulo a constant ``p`` in ``K``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x = ring("x", ZZ)
- >>> R.dup_trunc(2*x**3 + 3*x**2 + 5*x + 7, ZZ(3))
- -x**3 - x + 1
- """
- if K.is_ZZ:
- g = []
- for c in f:
- c = c % p
- if c > p // 2:
- g.append(c - p)
- else:
- g.append(c)
- else:
- g = [ c % p for c in f ]
- return dup_strip(g)
- def dmp_trunc(f, p, u, K):
- """
- Reduce a ``K[X]`` polynomial modulo a polynomial ``p`` in ``K[Y]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x,y = ring("x,y", ZZ)
- >>> f = 3*x**2*y + 8*x**2 + 5*x*y + 6*x + 2*y + 3
- >>> g = (y - 1).drop(x)
- >>> R.dmp_trunc(f, g)
- 11*x**2 + 11*x + 5
- """
- return dmp_strip([ dmp_rem(c, p, u - 1, K) for c in f ], u)
- def dmp_ground_trunc(f, p, u, K):
- """
- Reduce a ``K[X]`` polynomial modulo a constant ``p`` in ``K``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x,y = ring("x,y", ZZ)
- >>> f = 3*x**2*y + 8*x**2 + 5*x*y + 6*x + 2*y + 3
- >>> R.dmp_ground_trunc(f, ZZ(3))
- -x**2 - x*y - y
- """
- if not u:
- return dup_trunc(f, p, K)
- v = u - 1
- return dmp_strip([ dmp_ground_trunc(c, p, v, K) for c in f ], u)
- def dup_monic(f, K):
- """
- Divide all coefficients by ``LC(f)`` in ``K[x]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ, QQ
- >>> R, x = ring("x", ZZ)
- >>> R.dup_monic(3*x**2 + 6*x + 9)
- x**2 + 2*x + 3
- >>> R, x = ring("x", QQ)
- >>> R.dup_monic(3*x**2 + 4*x + 2)
- x**2 + 4/3*x + 2/3
- """
- if not f:
- return f
- lc = dup_LC(f, K)
- if K.is_one(lc):
- return f
- else:
- return dup_exquo_ground(f, lc, K)
- def dmp_ground_monic(f, u, K):
- """
- Divide all coefficients by ``LC(f)`` in ``K[X]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ, QQ
- >>> R, x,y = ring("x,y", ZZ)
- >>> f = 3*x**2*y + 6*x**2 + 3*x*y + 9*y + 3
- >>> R.dmp_ground_monic(f)
- x**2*y + 2*x**2 + x*y + 3*y + 1
- >>> R, x,y = ring("x,y", QQ)
- >>> f = 3*x**2*y + 8*x**2 + 5*x*y + 6*x + 2*y + 3
- >>> R.dmp_ground_monic(f)
- x**2*y + 8/3*x**2 + 5/3*x*y + 2*x + 2/3*y + 1
- """
- if not u:
- return dup_monic(f, K)
- if dmp_zero_p(f, u):
- return f
- lc = dmp_ground_LC(f, u, K)
- if K.is_one(lc):
- return f
- else:
- return dmp_exquo_ground(f, lc, u, K)
- def dup_content(f, K):
- """
- Compute the GCD of coefficients of ``f`` in ``K[x]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ, QQ
- >>> R, x = ring("x", ZZ)
- >>> f = 6*x**2 + 8*x + 12
- >>> R.dup_content(f)
- 2
- >>> R, x = ring("x", QQ)
- >>> f = 6*x**2 + 8*x + 12
- >>> R.dup_content(f)
- 2
- """
- from sympy.polys.domains import QQ
- if not f:
- return K.zero
- cont = K.zero
- if K == QQ:
- for c in f:
- cont = K.gcd(cont, c)
- else:
- for c in f:
- cont = K.gcd(cont, c)
- if K.is_one(cont):
- break
- return cont
- def dmp_ground_content(f, u, K):
- """
- Compute the GCD of coefficients of ``f`` in ``K[X]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ, QQ
- >>> R, x,y = ring("x,y", ZZ)
- >>> f = 2*x*y + 6*x + 4*y + 12
- >>> R.dmp_ground_content(f)
- 2
- >>> R, x,y = ring("x,y", QQ)
- >>> f = 2*x*y + 6*x + 4*y + 12
- >>> R.dmp_ground_content(f)
- 2
- """
- from sympy.polys.domains import QQ
- if not u:
- return dup_content(f, K)
- if dmp_zero_p(f, u):
- return K.zero
- cont, v = K.zero, u - 1
- if K == QQ:
- for c in f:
- cont = K.gcd(cont, dmp_ground_content(c, v, K))
- else:
- for c in f:
- cont = K.gcd(cont, dmp_ground_content(c, v, K))
- if K.is_one(cont):
- break
- return cont
- def dup_primitive(f, K):
- """
- Compute content and the primitive form of ``f`` in ``K[x]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ, QQ
- >>> R, x = ring("x", ZZ)
- >>> f = 6*x**2 + 8*x + 12
- >>> R.dup_primitive(f)
- (2, 3*x**2 + 4*x + 6)
- >>> R, x = ring("x", QQ)
- >>> f = 6*x**2 + 8*x + 12
- >>> R.dup_primitive(f)
- (2, 3*x**2 + 4*x + 6)
- """
- if not f:
- return K.zero, f
- cont = dup_content(f, K)
- if K.is_one(cont):
- return cont, f
- else:
- return cont, dup_quo_ground(f, cont, K)
- def dmp_ground_primitive(f, u, K):
- """
- Compute content and the primitive form of ``f`` in ``K[X]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ, QQ
- >>> R, x,y = ring("x,y", ZZ)
- >>> f = 2*x*y + 6*x + 4*y + 12
- >>> R.dmp_ground_primitive(f)
- (2, x*y + 3*x + 2*y + 6)
- >>> R, x,y = ring("x,y", QQ)
- >>> f = 2*x*y + 6*x + 4*y + 12
- >>> R.dmp_ground_primitive(f)
- (2, x*y + 3*x + 2*y + 6)
- """
- if not u:
- return dup_primitive(f, K)
- if dmp_zero_p(f, u):
- return K.zero, f
- cont = dmp_ground_content(f, u, K)
- if K.is_one(cont):
- return cont, f
- else:
- return cont, dmp_quo_ground(f, cont, u, K)
- def dup_extract(f, g, K):
- """
- Extract common content from a pair of polynomials in ``K[x]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x = ring("x", ZZ)
- >>> R.dup_extract(6*x**2 + 12*x + 18, 4*x**2 + 8*x + 12)
- (2, 3*x**2 + 6*x + 9, 2*x**2 + 4*x + 6)
- """
- fc = dup_content(f, K)
- gc = dup_content(g, K)
- gcd = K.gcd(fc, gc)
- if not K.is_one(gcd):
- f = dup_quo_ground(f, gcd, K)
- g = dup_quo_ground(g, gcd, K)
- return gcd, f, g
- def dmp_ground_extract(f, g, u, K):
- """
- Extract common content from a pair of polynomials in ``K[X]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x,y = ring("x,y", ZZ)
- >>> R.dmp_ground_extract(6*x*y + 12*x + 18, 4*x*y + 8*x + 12)
- (2, 3*x*y + 6*x + 9, 2*x*y + 4*x + 6)
- """
- fc = dmp_ground_content(f, u, K)
- gc = dmp_ground_content(g, u, K)
- gcd = K.gcd(fc, gc)
- if not K.is_one(gcd):
- f = dmp_quo_ground(f, gcd, u, K)
- g = dmp_quo_ground(g, gcd, u, K)
- return gcd, f, g
- def dup_real_imag(f, K):
- """
- Return bivariate polynomials ``f1`` and ``f2``, such that ``f = f1 + f2*I``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x,y = ring("x,y", ZZ)
- >>> R.dup_real_imag(x**3 + x**2 + x + 1)
- (x**3 + x**2 - 3*x*y**2 + x - y**2 + 1, 3*x**2*y + 2*x*y - y**3 + y)
- """
- if not K.is_ZZ and not K.is_QQ:
- raise DomainError("computing real and imaginary parts is not supported over %s" % K)
- f1 = dmp_zero(1)
- f2 = dmp_zero(1)
- if not f:
- return f1, f2
- g = [[[K.one, K.zero]], [[K.one], []]]
- h = dmp_ground(f[0], 2)
- for c in f[1:]:
- h = dmp_mul(h, g, 2, K)
- h = dmp_add_term(h, dmp_ground(c, 1), 0, 2, K)
- H = dup_to_raw_dict(h)
- for k, h in H.items():
- m = k % 4
- if not m:
- f1 = dmp_add(f1, h, 1, K)
- elif m == 1:
- f2 = dmp_add(f2, h, 1, K)
- elif m == 2:
- f1 = dmp_sub(f1, h, 1, K)
- else:
- f2 = dmp_sub(f2, h, 1, K)
- return f1, f2
- def dup_mirror(f, K):
- """
- Evaluate efficiently the composition ``f(-x)`` in ``K[x]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x = ring("x", ZZ)
- >>> R.dup_mirror(x**3 + 2*x**2 - 4*x + 2)
- -x**3 + 2*x**2 + 4*x + 2
- """
- f = list(f)
- for i in range(len(f) - 2, -1, -2):
- f[i] = -f[i]
- return f
- def dup_scale(f, a, K):
- """
- Evaluate efficiently composition ``f(a*x)`` in ``K[x]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x = ring("x", ZZ)
- >>> R.dup_scale(x**2 - 2*x + 1, ZZ(2))
- 4*x**2 - 4*x + 1
- """
- f, n, b = list(f), len(f) - 1, a
- for i in range(n - 1, -1, -1):
- f[i], b = b*f[i], b*a
- return f
- def dup_shift(f, a, K):
- """
- Evaluate efficiently Taylor shift ``f(x + a)`` in ``K[x]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x = ring("x", ZZ)
- >>> R.dup_shift(x**2 - 2*x + 1, ZZ(2))
- x**2 + 2*x + 1
- """
- f, n = list(f), len(f) - 1
- for i in range(n, 0, -1):
- for j in range(0, i):
- f[j + 1] += a*f[j]
- return f
- def dup_transform(f, p, q, K):
- """
- Evaluate functional transformation ``q**n * f(p/q)`` in ``K[x]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x = ring("x", ZZ)
- >>> R.dup_transform(x**2 - 2*x + 1, x**2 + 1, x - 1)
- x**4 - 2*x**3 + 5*x**2 - 4*x + 4
- """
- if not f:
- return []
- n = len(f) - 1
- h, Q = [f[0]], [[K.one]]
- for i in range(0, n):
- Q.append(dup_mul(Q[-1], q, K))
- for c, q in zip(f[1:], Q[1:]):
- h = dup_mul(h, p, K)
- q = dup_mul_ground(q, c, K)
- h = dup_add(h, q, K)
- return h
- def dup_compose(f, g, K):
- """
- Evaluate functional composition ``f(g)`` in ``K[x]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x = ring("x", ZZ)
- >>> R.dup_compose(x**2 + x, x - 1)
- x**2 - x
- """
- if len(g) <= 1:
- return dup_strip([dup_eval(f, dup_LC(g, K), K)])
- if not f:
- return []
- h = [f[0]]
- for c in f[1:]:
- h = dup_mul(h, g, K)
- h = dup_add_term(h, c, 0, K)
- return h
- def dmp_compose(f, g, u, K):
- """
- Evaluate functional composition ``f(g)`` in ``K[X]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x,y = ring("x,y", ZZ)
- >>> R.dmp_compose(x*y + 2*x + y, y)
- y**2 + 3*y
- """
- if not u:
- return dup_compose(f, g, K)
- if dmp_zero_p(f, u):
- return f
- h = [f[0]]
- for c in f[1:]:
- h = dmp_mul(h, g, u, K)
- h = dmp_add_term(h, c, 0, u, K)
- return h
- def _dup_right_decompose(f, s, K):
- """Helper function for :func:`_dup_decompose`."""
- n = len(f) - 1
- lc = dup_LC(f, K)
- f = dup_to_raw_dict(f)
- g = { s: K.one }
- r = n // s
- for i in range(1, s):
- coeff = K.zero
- for j in range(0, i):
- if not n + j - i in f:
- continue
- if not s - j in g:
- continue
- fc, gc = f[n + j - i], g[s - j]
- coeff += (i - r*j)*fc*gc
- g[s - i] = K.quo(coeff, i*r*lc)
- return dup_from_raw_dict(g, K)
- def _dup_left_decompose(f, h, K):
- """Helper function for :func:`_dup_decompose`."""
- g, i = {}, 0
- while f:
- q, r = dup_div(f, h, K)
- if dup_degree(r) > 0:
- return None
- else:
- g[i] = dup_LC(r, K)
- f, i = q, i + 1
- return dup_from_raw_dict(g, K)
- def _dup_decompose(f, K):
- """Helper function for :func:`dup_decompose`."""
- df = len(f) - 1
- for s in range(2, df):
- if df % s != 0:
- continue
- h = _dup_right_decompose(f, s, K)
- if h is not None:
- g = _dup_left_decompose(f, h, K)
- if g is not None:
- return g, h
- return None
- def dup_decompose(f, K):
- """
- Computes functional decomposition of ``f`` in ``K[x]``.
- Given a univariate polynomial ``f`` with coefficients in a field of
- characteristic zero, returns list ``[f_1, f_2, ..., f_n]``, where::
- f = f_1 o f_2 o ... f_n = f_1(f_2(... f_n))
- and ``f_2, ..., f_n`` are monic and homogeneous polynomials of at
- least second degree.
- Unlike factorization, complete functional decompositions of
- polynomials are not unique, consider examples:
- 1. ``f o g = f(x + b) o (g - b)``
- 2. ``x**n o x**m = x**m o x**n``
- 3. ``T_n o T_m = T_m o T_n``
- where ``T_n`` and ``T_m`` are Chebyshev polynomials.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x = ring("x", ZZ)
- >>> R.dup_decompose(x**4 - 2*x**3 + x**2)
- [x**2, x**2 - x]
- References
- ==========
- .. [1] [Kozen89]_
- """
- F = []
- while True:
- result = _dup_decompose(f, K)
- if result is not None:
- f, h = result
- F = [h] + F
- else:
- break
- return [f] + F
- def dmp_lift(f, u, K):
- """
- Convert algebraic coefficients to integers in ``K[X]``.
- Examples
- ========
- >>> from sympy.polys import ring, QQ
- >>> from sympy import I
- >>> K = QQ.algebraic_field(I)
- >>> R, x = ring("x", K)
- >>> f = x**2 + K([QQ(1), QQ(0)])*x + K([QQ(2), QQ(0)])
- >>> R.dmp_lift(f)
- x**8 + 2*x**6 + 9*x**4 - 8*x**2 + 16
- """
- if K.is_GaussianField:
- K1 = K.as_AlgebraicField()
- f = dmp_convert(f, u, K, K1)
- K = K1
- if not K.is_Algebraic:
- raise DomainError(
- 'computation can be done only in an algebraic domain')
- F, monoms, polys = dmp_to_dict(f, u), [], []
- for monom, coeff in F.items():
- if not coeff.is_ground:
- monoms.append(monom)
- perms = variations([-1, 1], len(monoms), repetition=True)
- for perm in perms:
- G = dict(F)
- for sign, monom in zip(perm, monoms):
- if sign == -1:
- G[monom] = -G[monom]
- polys.append(dmp_from_dict(G, u, K))
- return dmp_convert(dmp_expand(polys, u, K), u, K, K.dom)
- def dup_sign_variations(f, K):
- """
- Compute the number of sign variations of ``f`` in ``K[x]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x = ring("x", ZZ)
- >>> R.dup_sign_variations(x**4 - x**2 - x + 1)
- 2
- """
- prev, k = K.zero, 0
- for coeff in f:
- if K.is_negative(coeff*prev):
- k += 1
- if coeff:
- prev = coeff
- return k
- def dup_clear_denoms(f, K0, K1=None, convert=False):
- """
- Clear denominators, i.e. transform ``K_0`` to ``K_1``.
- Examples
- ========
- >>> from sympy.polys import ring, QQ
- >>> R, x = ring("x", QQ)
- >>> f = QQ(1,2)*x + QQ(1,3)
- >>> R.dup_clear_denoms(f, convert=False)
- (6, 3*x + 2)
- >>> R.dup_clear_denoms(f, convert=True)
- (6, 3*x + 2)
- """
- if K1 is None:
- if K0.has_assoc_Ring:
- K1 = K0.get_ring()
- else:
- K1 = K0
- common = K1.one
- for c in f:
- common = K1.lcm(common, K0.denom(c))
- if not K1.is_one(common):
- f = dup_mul_ground(f, common, K0)
- if not convert:
- return common, f
- else:
- return common, dup_convert(f, K0, K1)
- def _rec_clear_denoms(g, v, K0, K1):
- """Recursive helper for :func:`dmp_clear_denoms`."""
- common = K1.one
- if not v:
- for c in g:
- common = K1.lcm(common, K0.denom(c))
- else:
- w = v - 1
- for c in g:
- common = K1.lcm(common, _rec_clear_denoms(c, w, K0, K1))
- return common
- def dmp_clear_denoms(f, u, K0, K1=None, convert=False):
- """
- Clear denominators, i.e. transform ``K_0`` to ``K_1``.
- Examples
- ========
- >>> from sympy.polys import ring, QQ
- >>> R, x,y = ring("x,y", QQ)
- >>> f = QQ(1,2)*x + QQ(1,3)*y + 1
- >>> R.dmp_clear_denoms(f, convert=False)
- (6, 3*x + 2*y + 6)
- >>> R.dmp_clear_denoms(f, convert=True)
- (6, 3*x + 2*y + 6)
- """
- if not u:
- return dup_clear_denoms(f, K0, K1, convert=convert)
- if K1 is None:
- if K0.has_assoc_Ring:
- K1 = K0.get_ring()
- else:
- K1 = K0
- common = _rec_clear_denoms(f, u, K0, K1)
- if not K1.is_one(common):
- f = dmp_mul_ground(f, common, u, K0)
- if not convert:
- return common, f
- else:
- return common, dmp_convert(f, u, K0, K1)
- def dup_revert(f, n, K):
- """
- Compute ``f**(-1)`` mod ``x**n`` using Newton iteration.
- This function computes first ``2**n`` terms of a polynomial that
- is a result of inversion of a polynomial modulo ``x**n``. This is
- useful to efficiently compute series expansion of ``1/f``.
- Examples
- ========
- >>> from sympy.polys import ring, QQ
- >>> R, x = ring("x", QQ)
- >>> f = -QQ(1,720)*x**6 + QQ(1,24)*x**4 - QQ(1,2)*x**2 + 1
- >>> R.dup_revert(f, 8)
- 61/720*x**6 + 5/24*x**4 + 1/2*x**2 + 1
- """
- g = [K.revert(dup_TC(f, K))]
- h = [K.one, K.zero, K.zero]
- N = int(_ceil(_log(n, 2)))
- for i in range(1, N + 1):
- a = dup_mul_ground(g, K(2), K)
- b = dup_mul(f, dup_sqr(g, K), K)
- g = dup_rem(dup_sub(a, b, K), h, K)
- h = dup_lshift(h, dup_degree(h), K)
- return g
- def dmp_revert(f, g, u, K):
- """
- Compute ``f**(-1)`` mod ``x**n`` using Newton iteration.
- Examples
- ========
- >>> from sympy.polys import ring, QQ
- >>> R, x,y = ring("x,y", QQ)
- """
- if not u:
- return dup_revert(f, g, K)
- else:
- raise MultivariatePolynomialError(f, g)
|