123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206 |
- """Implementation of :class:`FiniteField` class. """
- from sympy.polys.domains.field import Field
- from sympy.polys.domains.modularinteger import ModularIntegerFactory
- from sympy.polys.domains.simpledomain import SimpleDomain
- from sympy.polys.polyerrors import CoercionFailed
- from sympy.utilities import public
- from sympy.polys.domains.groundtypes import SymPyInteger
- @public
- class FiniteField(Field, SimpleDomain):
- r"""Finite field of prime order :ref:`GF(p)`
- A :ref:`GF(p)` domain represents a `finite field`_ `\mathbb{F}_p` of prime
- order as :py:class:`~.Domain` in the domain system (see
- :ref:`polys-domainsintro`).
- A :py:class:`~.Poly` created from an expression with integer
- coefficients will have the domain :ref:`ZZ`. However, if the ``modulus=p``
- option is given then the domain will be a finite field instead.
- >>> from sympy import Poly, Symbol
- >>> x = Symbol('x')
- >>> p = Poly(x**2 + 1)
- >>> p
- Poly(x**2 + 1, x, domain='ZZ')
- >>> p.domain
- ZZ
- >>> p2 = Poly(x**2 + 1, modulus=2)
- >>> p2
- Poly(x**2 + 1, x, modulus=2)
- >>> p2.domain
- GF(2)
- It is possible to factorise a polynomial over :ref:`GF(p)` using the
- modulus argument to :py:func:`~.factor` or by specifying the domain
- explicitly. The domain can also be given as a string.
- >>> from sympy import factor, GF
- >>> factor(x**2 + 1)
- x**2 + 1
- >>> factor(x**2 + 1, modulus=2)
- (x + 1)**2
- >>> factor(x**2 + 1, domain=GF(2))
- (x + 1)**2
- >>> factor(x**2 + 1, domain='GF(2)')
- (x + 1)**2
- It is also possible to use :ref:`GF(p)` with the :py:func:`~.cancel`
- and :py:func:`~.gcd` functions.
- >>> from sympy import cancel, gcd
- >>> cancel((x**2 + 1)/(x + 1))
- (x**2 + 1)/(x + 1)
- >>> cancel((x**2 + 1)/(x + 1), domain=GF(2))
- x + 1
- >>> gcd(x**2 + 1, x + 1)
- 1
- >>> gcd(x**2 + 1, x + 1, domain=GF(2))
- x + 1
- When using the domain directly :ref:`GF(p)` can be used as a constructor
- to create instances which then support the operations ``+,-,*,**,/``
- >>> from sympy import GF
- >>> K = GF(5)
- >>> K
- GF(5)
- >>> x = K(3)
- >>> y = K(2)
- >>> x
- 3 mod 5
- >>> y
- 2 mod 5
- >>> x * y
- 1 mod 5
- >>> x / y
- 4 mod 5
- Notes
- =====
- It is also possible to create a :ref:`GF(p)` domain of **non-prime**
- order but the resulting ring is **not** a field: it is just the ring of
- the integers modulo ``n``.
- >>> K = GF(9)
- >>> z = K(3)
- >>> z
- 3 mod 9
- >>> z**2
- 0 mod 9
- It would be good to have a proper implementation of prime power fields
- (``GF(p**n)``) but these are not yet implemented in SymPY.
- .. _finite field: https://en.wikipedia.org/wiki/Finite_field
- """
- rep = 'FF'
- alias = 'FF'
- is_FiniteField = is_FF = True
- is_Numerical = True
- has_assoc_Ring = False
- has_assoc_Field = True
- dom = None
- mod = None
- def __init__(self, mod, symmetric=True):
- from sympy.polys.domains import ZZ
- dom = ZZ
- if mod <= 0:
- raise ValueError('modulus must be a positive integer, got %s' % mod)
- self.dtype = ModularIntegerFactory(mod, dom, symmetric, self)
- self.zero = self.dtype(0)
- self.one = self.dtype(1)
- self.dom = dom
- self.mod = mod
- def __str__(self):
- return 'GF(%s)' % self.mod
- def __hash__(self):
- return hash((self.__class__.__name__, self.dtype, self.mod, self.dom))
- def __eq__(self, other):
- """Returns ``True`` if two domains are equivalent. """
- return isinstance(other, FiniteField) and \
- self.mod == other.mod and self.dom == other.dom
- def characteristic(self):
- """Return the characteristic of this domain. """
- return self.mod
- def get_field(self):
- """Returns a field associated with ``self``. """
- return self
- def to_sympy(self, a):
- """Convert ``a`` to a SymPy object. """
- return SymPyInteger(int(a))
- def from_sympy(self, a):
- """Convert SymPy's Integer to SymPy's ``Integer``. """
- if a.is_Integer:
- return self.dtype(self.dom.dtype(int(a)))
- elif a.is_Float and int(a) == a:
- return self.dtype(self.dom.dtype(int(a)))
- else:
- raise CoercionFailed("expected an integer, got %s" % a)
- def from_FF(K1, a, K0=None):
- """Convert ``ModularInteger(int)`` to ``dtype``. """
- return K1.dtype(K1.dom.from_ZZ(a.val, K0.dom))
- def from_FF_python(K1, a, K0=None):
- """Convert ``ModularInteger(int)`` to ``dtype``. """
- return K1.dtype(K1.dom.from_ZZ_python(a.val, K0.dom))
- def from_ZZ(K1, a, K0=None):
- """Convert Python's ``int`` to ``dtype``. """
- return K1.dtype(K1.dom.from_ZZ_python(a, K0))
- def from_ZZ_python(K1, a, K0=None):
- """Convert Python's ``int`` to ``dtype``. """
- return K1.dtype(K1.dom.from_ZZ_python(a, K0))
- def from_QQ(K1, a, K0=None):
- """Convert Python's ``Fraction`` to ``dtype``. """
- if a.denominator == 1:
- return K1.from_ZZ_python(a.numerator)
- def from_QQ_python(K1, a, K0=None):
- """Convert Python's ``Fraction`` to ``dtype``. """
- if a.denominator == 1:
- return K1.from_ZZ_python(a.numerator)
- def from_FF_gmpy(K1, a, K0=None):
- """Convert ``ModularInteger(mpz)`` to ``dtype``. """
- return K1.dtype(K1.dom.from_ZZ_gmpy(a.val, K0.dom))
- def from_ZZ_gmpy(K1, a, K0=None):
- """Convert GMPY's ``mpz`` to ``dtype``. """
- return K1.dtype(K1.dom.from_ZZ_gmpy(a, K0))
- def from_QQ_gmpy(K1, a, K0=None):
- """Convert GMPY's ``mpq`` to ``dtype``. """
- if a.denominator == 1:
- return K1.from_ZZ_gmpy(a.numerator)
- def from_RealField(K1, a, K0):
- """Convert mpmath's ``mpf`` to ``dtype``. """
- p, q = K0.to_rational(a)
- if q == 1:
- return K1.dtype(K1.dom.dtype(p))
- FF = GF = FiniteField
|