123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100 |
- """Implementation of :class:`GMPYRationalField` class. """
- from sympy.polys.domains.groundtypes import (
- GMPYRational, SymPyRational,
- gmpy_numer, gmpy_denom, factorial as gmpy_factorial,
- )
- from sympy.polys.domains.rationalfield import RationalField
- from sympy.polys.polyerrors import CoercionFailed
- from sympy.utilities import public
- @public
- class GMPYRationalField(RationalField):
- """Rational field based on GMPY's ``mpq`` type.
- This will be the implementation of :ref:`QQ` if ``gmpy`` or ``gmpy2`` is
- installed. Elements will be of type ``gmpy.mpq``.
- """
- dtype = GMPYRational
- zero = dtype(0)
- one = dtype(1)
- tp = type(one)
- alias = 'QQ_gmpy'
- def __init__(self):
- pass
- def get_ring(self):
- """Returns ring associated with ``self``. """
- from sympy.polys.domains import GMPYIntegerRing
- return GMPYIntegerRing()
- def to_sympy(self, a):
- """Convert ``a`` to a SymPy object. """
- return SymPyRational(int(gmpy_numer(a)),
- int(gmpy_denom(a)))
- def from_sympy(self, a):
- """Convert SymPy's Integer to ``dtype``. """
- if a.is_Rational:
- return GMPYRational(a.p, a.q)
- elif a.is_Float:
- from sympy.polys.domains import RR
- return GMPYRational(*map(int, RR.to_rational(a)))
- else:
- raise CoercionFailed("expected ``Rational`` object, got %s" % a)
- def from_ZZ_python(K1, a, K0):
- """Convert a Python ``int`` object to ``dtype``. """
- return GMPYRational(a)
- def from_QQ_python(K1, a, K0):
- """Convert a Python ``Fraction`` object to ``dtype``. """
- return GMPYRational(a.numerator, a.denominator)
- def from_ZZ_gmpy(K1, a, K0):
- """Convert a GMPY ``mpz`` object to ``dtype``. """
- return GMPYRational(a)
- def from_QQ_gmpy(K1, a, K0):
- """Convert a GMPY ``mpq`` object to ``dtype``. """
- return a
- def from_GaussianRationalField(K1, a, K0):
- """Convert a ``GaussianElement`` object to ``dtype``. """
- if a.y == 0:
- return GMPYRational(a.x)
- def from_RealField(K1, a, K0):
- """Convert a mpmath ``mpf`` object to ``dtype``. """
- return GMPYRational(*map(int, K0.to_rational(a)))
- def exquo(self, a, b):
- """Exact quotient of ``a`` and ``b``, implies ``__truediv__``. """
- return GMPYRational(a) / GMPYRational(b)
- def quo(self, a, b):
- """Quotient of ``a`` and ``b``, implies ``__truediv__``. """
- return GMPYRational(a) / GMPYRational(b)
- def rem(self, a, b):
- """Remainder of ``a`` and ``b``, implies nothing. """
- return self.zero
- def div(self, a, b):
- """Division of ``a`` and ``b``, implies ``__truediv__``. """
- return GMPYRational(a) / GMPYRational(b), self.zero
- def numer(self, a):
- """Returns numerator of ``a``. """
- return a.numerator
- def denom(self, a):
- """Returns denominator of ``a``. """
- return a.denominator
- def factorial(self, a):
- """Returns factorial of ``a``. """
- return GMPYRational(gmpy_factorial(int(a)))
|