123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199 |
- """Implementation of :class:`PolynomialRing` class. """
- from sympy.polys.domains.ring import Ring
- from sympy.polys.domains.compositedomain import CompositeDomain
- from sympy.polys.polyerrors import CoercionFailed, GeneratorsError
- from sympy.utilities import public
- @public
- class PolynomialRing(Ring, CompositeDomain):
- """A class for representing multivariate polynomial rings. """
- is_PolynomialRing = is_Poly = True
- has_assoc_Ring = True
- has_assoc_Field = True
- def __init__(self, domain_or_ring, symbols=None, order=None):
- from sympy.polys.rings import PolyRing
- if isinstance(domain_or_ring, PolyRing) and symbols is None and order is None:
- ring = domain_or_ring
- else:
- ring = PolyRing(symbols, domain_or_ring, order)
- self.ring = ring
- self.dtype = ring.dtype
- self.gens = ring.gens
- self.ngens = ring.ngens
- self.symbols = ring.symbols
- self.domain = ring.domain
- if symbols:
- if ring.domain.is_Field and ring.domain.is_Exact and len(symbols)==1:
- self.is_PID = True
- # TODO: remove this
- self.dom = self.domain
- def new(self, element):
- return self.ring.ring_new(element)
- @property
- def zero(self):
- return self.ring.zero
- @property
- def one(self):
- return self.ring.one
- @property
- def order(self):
- return self.ring.order
- def __str__(self):
- return str(self.domain) + '[' + ','.join(map(str, self.symbols)) + ']'
- def __hash__(self):
- return hash((self.__class__.__name__, self.dtype.ring, self.domain, self.symbols))
- def __eq__(self, other):
- """Returns `True` if two domains are equivalent. """
- return isinstance(other, PolynomialRing) and \
- (self.dtype.ring, self.domain, self.symbols) == \
- (other.dtype.ring, other.domain, other.symbols)
- def is_unit(self, a):
- """Returns ``True`` if ``a`` is a unit of ``self``"""
- if not a.is_ground:
- return False
- K = self.domain
- return K.is_unit(K.convert_from(a, self))
- def canonical_unit(self, a):
- u = self.domain.canonical_unit(a.LC)
- return self.ring.ground_new(u)
- def to_sympy(self, a):
- """Convert `a` to a SymPy object. """
- return a.as_expr()
- def from_sympy(self, a):
- """Convert SymPy's expression to `dtype`. """
- return self.ring.from_expr(a)
- def from_ZZ(K1, a, K0):
- """Convert a Python `int` object to `dtype`. """
- return K1(K1.domain.convert(a, K0))
- def from_ZZ_python(K1, a, K0):
- """Convert a Python `int` object to `dtype`. """
- return K1(K1.domain.convert(a, K0))
- def from_QQ(K1, a, K0):
- """Convert a Python `Fraction` object to `dtype`. """
- return K1(K1.domain.convert(a, K0))
- def from_QQ_python(K1, a, K0):
- """Convert a Python `Fraction` object to `dtype`. """
- return K1(K1.domain.convert(a, K0))
- def from_ZZ_gmpy(K1, a, K0):
- """Convert a GMPY `mpz` object to `dtype`. """
- return K1(K1.domain.convert(a, K0))
- def from_QQ_gmpy(K1, a, K0):
- """Convert a GMPY `mpq` object to `dtype`. """
- return K1(K1.domain.convert(a, K0))
- def from_GaussianIntegerRing(K1, a, K0):
- """Convert a `GaussianInteger` object to `dtype`. """
- return K1(K1.domain.convert(a, K0))
- def from_GaussianRationalField(K1, a, K0):
- """Convert a `GaussianRational` object to `dtype`. """
- return K1(K1.domain.convert(a, K0))
- def from_RealField(K1, a, K0):
- """Convert a mpmath `mpf` object to `dtype`. """
- return K1(K1.domain.convert(a, K0))
- def from_ComplexField(K1, a, K0):
- """Convert a mpmath `mpf` object to `dtype`. """
- return K1(K1.domain.convert(a, K0))
- def from_AlgebraicField(K1, a, K0):
- """Convert an algebraic number to ``dtype``. """
- if K1.domain != K0:
- a = K1.domain.convert_from(a, K0)
- if a is not None:
- return K1.new(a)
- def from_PolynomialRing(K1, a, K0):
- """Convert a polynomial to ``dtype``. """
- try:
- return a.set_ring(K1.ring)
- except (CoercionFailed, GeneratorsError):
- return None
- def from_FractionField(K1, a, K0):
- """Convert a rational function to ``dtype``. """
- if K1.domain == K0:
- return K1.ring.from_list([a])
- q, r = K0.numer(a).div(K0.denom(a))
- if r.is_zero:
- return K1.from_PolynomialRing(q, K0.field.ring.to_domain())
- else:
- return None
- def from_GlobalPolynomialRing(K1, a, K0):
- """Convert from old poly ring to ``dtype``. """
- if K1.symbols == K0.gens:
- ad = a.to_dict()
- if K1.domain != K0.domain:
- ad = {m: K1.domain.convert(c) for m, c in ad.items()}
- return K1(ad)
- elif a.is_ground and K0.domain == K1:
- return K1.convert_from(a.to_list()[0], K0.domain)
- def get_field(self):
- """Returns a field associated with `self`. """
- return self.ring.to_field().to_domain()
- def is_positive(self, a):
- """Returns True if `LC(a)` is positive. """
- return self.domain.is_positive(a.LC)
- def is_negative(self, a):
- """Returns True if `LC(a)` is negative. """
- return self.domain.is_negative(a.LC)
- def is_nonpositive(self, a):
- """Returns True if `LC(a)` is non-positive. """
- return self.domain.is_nonpositive(a.LC)
- def is_nonnegative(self, a):
- """Returns True if `LC(a)` is non-negative. """
- return self.domain.is_nonnegative(a.LC)
- def gcdex(self, a, b):
- """Extended GCD of `a` and `b`. """
- return a.gcdex(b)
- def gcd(self, a, b):
- """Returns GCD of `a` and `b`. """
- return a.gcd(b)
- def lcm(self, a, b):
- """Returns LCM of `a` and `b`. """
- return a.lcm(b)
- def factorial(self, a):
- """Returns factorial of `a`. """
- return self.dtype(self.domain.factorial(a))
|