12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490 |
- """Polynomial factorization routines in characteristic zero. """
- from sympy.polys.galoistools import (
- gf_from_int_poly, gf_to_int_poly,
- gf_lshift, gf_add_mul, gf_mul,
- gf_div, gf_rem,
- gf_gcdex,
- gf_sqf_p,
- gf_factor_sqf, gf_factor)
- from sympy.polys.densebasic import (
- dup_LC, dmp_LC, dmp_ground_LC,
- dup_TC,
- dup_convert, dmp_convert,
- dup_degree, dmp_degree,
- dmp_degree_in, dmp_degree_list,
- dmp_from_dict,
- dmp_zero_p,
- dmp_one,
- dmp_nest, dmp_raise,
- dup_strip,
- dmp_ground,
- dup_inflate,
- dmp_exclude, dmp_include,
- dmp_inject, dmp_eject,
- dup_terms_gcd, dmp_terms_gcd)
- from sympy.polys.densearith import (
- dup_neg, dmp_neg,
- dup_add, dmp_add,
- dup_sub, dmp_sub,
- dup_mul, dmp_mul,
- dup_sqr,
- dmp_pow,
- dup_div, dmp_div,
- dup_quo, dmp_quo,
- dmp_expand,
- dmp_add_mul,
- dup_sub_mul, dmp_sub_mul,
- dup_lshift,
- dup_max_norm, dmp_max_norm,
- dup_l1_norm,
- dup_mul_ground, dmp_mul_ground,
- dup_quo_ground, dmp_quo_ground)
- from sympy.polys.densetools import (
- dup_clear_denoms, dmp_clear_denoms,
- dup_trunc, dmp_ground_trunc,
- dup_content,
- dup_monic, dmp_ground_monic,
- dup_primitive, dmp_ground_primitive,
- dmp_eval_tail,
- dmp_eval_in, dmp_diff_eval_in,
- dmp_compose,
- dup_shift, dup_mirror)
- from sympy.polys.euclidtools import (
- dmp_primitive,
- dup_inner_gcd, dmp_inner_gcd)
- from sympy.polys.sqfreetools import (
- dup_sqf_p,
- dup_sqf_norm, dmp_sqf_norm,
- dup_sqf_part, dmp_sqf_part)
- from sympy.polys.polyutils import _sort_factors
- from sympy.polys.polyconfig import query
- from sympy.polys.polyerrors import (
- ExtraneousFactors, DomainError, CoercionFailed, EvaluationFailed)
- from sympy.ntheory import nextprime, isprime, factorint
- from sympy.utilities import subsets
- from math import ceil as _ceil, log as _log
- def dup_trial_division(f, factors, K):
- """
- Determine multiplicities of factors for a univariate polynomial
- using trial division.
- """
- result = []
- for factor in factors:
- k = 0
- while True:
- q, r = dup_div(f, factor, K)
- if not r:
- f, k = q, k + 1
- else:
- break
- result.append((factor, k))
- return _sort_factors(result)
- def dmp_trial_division(f, factors, u, K):
- """
- Determine multiplicities of factors for a multivariate polynomial
- using trial division.
- """
- result = []
- for factor in factors:
- k = 0
- while True:
- q, r = dmp_div(f, factor, u, K)
- if dmp_zero_p(r, u):
- f, k = q, k + 1
- else:
- break
- result.append((factor, k))
- return _sort_factors(result)
- def dup_zz_mignotte_bound(f, K):
- """
- The Knuth-Cohen variant of Mignotte bound for
- univariate polynomials in `K[x]`.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x = ring("x", ZZ)
- >>> f = x**3 + 14*x**2 + 56*x + 64
- >>> R.dup_zz_mignotte_bound(f)
- 152
- By checking `factor(f)` we can see that max coeff is 8
- Also consider a case that `f` is irreducible for example `f = 2*x**2 + 3*x + 4`
- To avoid a bug for these cases, we return the bound plus the max coefficient of `f`
- >>> f = 2*x**2 + 3*x + 4
- >>> R.dup_zz_mignotte_bound(f)
- 6
- Lastly,To see the difference between the new and the old Mignotte bound
- consider the irreducible polynomial::
- >>> f = 87*x**7 + 4*x**6 + 80*x**5 + 17*x**4 + 9*x**3 + 12*x**2 + 49*x + 26
- >>> R.dup_zz_mignotte_bound(f)
- 744
- The new Mignotte bound is 744 whereas the old one (SymPy 1.5.1) is 1937664.
- References
- ==========
- ..[1] [Abbott2013]_
- """
- from sympy.functions.combinatorial.factorials import binomial
- d = dup_degree(f)
- delta = _ceil(d / 2)
- delta2 = _ceil(delta / 2)
- # euclidean-norm
- eucl_norm = K.sqrt( sum( [cf**2 for cf in f] ) )
- # biggest values of binomial coefficients (p. 538 of reference)
- t1 = binomial(delta - 1, delta2)
- t2 = binomial(delta - 1, delta2 - 1)
- lc = K.abs(dup_LC(f, K)) # leading coefficient
- bound = t1 * eucl_norm + t2 * lc # (p. 538 of reference)
- bound += dup_max_norm(f, K) # add max coeff for irreducible polys
- bound = _ceil(bound / 2) * 2 # round up to even integer
- return bound
- def dmp_zz_mignotte_bound(f, u, K):
- """Mignotte bound for multivariate polynomials in `K[X]`. """
- a = dmp_max_norm(f, u, K)
- b = abs(dmp_ground_LC(f, u, K))
- n = sum(dmp_degree_list(f, u))
- return K.sqrt(K(n + 1))*2**n*a*b
- def dup_zz_hensel_step(m, f, g, h, s, t, K):
- """
- One step in Hensel lifting in `Z[x]`.
- Given positive integer `m` and `Z[x]` polynomials `f`, `g`, `h`, `s`
- and `t` such that::
- f = g*h (mod m)
- s*g + t*h = 1 (mod m)
- lc(f) is not a zero divisor (mod m)
- lc(h) = 1
- deg(f) = deg(g) + deg(h)
- deg(s) < deg(h)
- deg(t) < deg(g)
- returns polynomials `G`, `H`, `S` and `T`, such that::
- f = G*H (mod m**2)
- S*G + T*H = 1 (mod m**2)
- References
- ==========
- .. [1] [Gathen99]_
- """
- M = m**2
- e = dup_sub_mul(f, g, h, K)
- e = dup_trunc(e, M, K)
- q, r = dup_div(dup_mul(s, e, K), h, K)
- q = dup_trunc(q, M, K)
- r = dup_trunc(r, M, K)
- u = dup_add(dup_mul(t, e, K), dup_mul(q, g, K), K)
- G = dup_trunc(dup_add(g, u, K), M, K)
- H = dup_trunc(dup_add(h, r, K), M, K)
- u = dup_add(dup_mul(s, G, K), dup_mul(t, H, K), K)
- b = dup_trunc(dup_sub(u, [K.one], K), M, K)
- c, d = dup_div(dup_mul(s, b, K), H, K)
- c = dup_trunc(c, M, K)
- d = dup_trunc(d, M, K)
- u = dup_add(dup_mul(t, b, K), dup_mul(c, G, K), K)
- S = dup_trunc(dup_sub(s, d, K), M, K)
- T = dup_trunc(dup_sub(t, u, K), M, K)
- return G, H, S, T
- def dup_zz_hensel_lift(p, f, f_list, l, K):
- r"""
- Multifactor Hensel lifting in `Z[x]`.
- Given a prime `p`, polynomial `f` over `Z[x]` such that `lc(f)`
- is a unit modulo `p`, monic pair-wise coprime polynomials `f_i`
- over `Z[x]` satisfying::
- f = lc(f) f_1 ... f_r (mod p)
- and a positive integer `l`, returns a list of monic polynomials
- `F_1,\ F_2,\ \dots,\ F_r` satisfying::
- f = lc(f) F_1 ... F_r (mod p**l)
- F_i = f_i (mod p), i = 1..r
- References
- ==========
- .. [1] [Gathen99]_
- """
- r = len(f_list)
- lc = dup_LC(f, K)
- if r == 1:
- F = dup_mul_ground(f, K.gcdex(lc, p**l)[0], K)
- return [ dup_trunc(F, p**l, K) ]
- m = p
- k = r // 2
- d = int(_ceil(_log(l, 2)))
- g = gf_from_int_poly([lc], p)
- for f_i in f_list[:k]:
- g = gf_mul(g, gf_from_int_poly(f_i, p), p, K)
- h = gf_from_int_poly(f_list[k], p)
- for f_i in f_list[k + 1:]:
- h = gf_mul(h, gf_from_int_poly(f_i, p), p, K)
- s, t, _ = gf_gcdex(g, h, p, K)
- g = gf_to_int_poly(g, p)
- h = gf_to_int_poly(h, p)
- s = gf_to_int_poly(s, p)
- t = gf_to_int_poly(t, p)
- for _ in range(1, d + 1):
- (g, h, s, t), m = dup_zz_hensel_step(m, f, g, h, s, t, K), m**2
- return dup_zz_hensel_lift(p, g, f_list[:k], l, K) \
- + dup_zz_hensel_lift(p, h, f_list[k:], l, K)
- def _test_pl(fc, q, pl):
- if q > pl // 2:
- q = q - pl
- if not q:
- return True
- return fc % q == 0
- def dup_zz_zassenhaus(f, K):
- """Factor primitive square-free polynomials in `Z[x]`. """
- n = dup_degree(f)
- if n == 1:
- return [f]
- fc = f[-1]
- A = dup_max_norm(f, K)
- b = dup_LC(f, K)
- B = int(abs(K.sqrt(K(n + 1))*2**n*A*b))
- C = int((n + 1)**(2*n)*A**(2*n - 1))
- gamma = int(_ceil(2*_log(C, 2)))
- bound = int(2*gamma*_log(gamma))
- a = []
- # choose a prime number `p` such that `f` be square free in Z_p
- # if there are many factors in Z_p, choose among a few different `p`
- # the one with fewer factors
- for px in range(3, bound + 1):
- if not isprime(px) or b % px == 0:
- continue
- px = K.convert(px)
- F = gf_from_int_poly(f, px)
- if not gf_sqf_p(F, px, K):
- continue
- fsqfx = gf_factor_sqf(F, px, K)[1]
- a.append((px, fsqfx))
- if len(fsqfx) < 15 or len(a) > 4:
- break
- p, fsqf = min(a, key=lambda x: len(x[1]))
- l = int(_ceil(_log(2*B + 1, p)))
- modular = [gf_to_int_poly(ff, p) for ff in fsqf]
- g = dup_zz_hensel_lift(p, f, modular, l, K)
- sorted_T = range(len(g))
- T = set(sorted_T)
- factors, s = [], 1
- pl = p**l
- while 2*s <= len(T):
- for S in subsets(sorted_T, s):
- # lift the constant coefficient of the product `G` of the factors
- # in the subset `S`; if it is does not divide `fc`, `G` does
- # not divide the input polynomial
- if b == 1:
- q = 1
- for i in S:
- q = q*g[i][-1]
- q = q % pl
- if not _test_pl(fc, q, pl):
- continue
- else:
- G = [b]
- for i in S:
- G = dup_mul(G, g[i], K)
- G = dup_trunc(G, pl, K)
- G = dup_primitive(G, K)[1]
- q = G[-1]
- if q and fc % q != 0:
- continue
- H = [b]
- S = set(S)
- T_S = T - S
- if b == 1:
- G = [b]
- for i in S:
- G = dup_mul(G, g[i], K)
- G = dup_trunc(G, pl, K)
- for i in T_S:
- H = dup_mul(H, g[i], K)
- H = dup_trunc(H, pl, K)
- G_norm = dup_l1_norm(G, K)
- H_norm = dup_l1_norm(H, K)
- if G_norm*H_norm <= B:
- T = T_S
- sorted_T = [i for i in sorted_T if i not in S]
- G = dup_primitive(G, K)[1]
- f = dup_primitive(H, K)[1]
- factors.append(G)
- b = dup_LC(f, K)
- break
- else:
- s += 1
- return factors + [f]
- def dup_zz_irreducible_p(f, K):
- """Test irreducibility using Eisenstein's criterion. """
- lc = dup_LC(f, K)
- tc = dup_TC(f, K)
- e_fc = dup_content(f[1:], K)
- if e_fc:
- e_ff = factorint(int(e_fc))
- for p in e_ff.keys():
- if (lc % p) and (tc % p**2):
- return True
- def dup_cyclotomic_p(f, K, irreducible=False):
- """
- Efficiently test if ``f`` is a cyclotomic polynomial.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x = ring("x", ZZ)
- >>> f = x**16 + x**14 - x**10 + x**8 - x**6 + x**2 + 1
- >>> R.dup_cyclotomic_p(f)
- False
- >>> g = x**16 + x**14 - x**10 - x**8 - x**6 + x**2 + 1
- >>> R.dup_cyclotomic_p(g)
- True
- """
- if K.is_QQ:
- try:
- K0, K = K, K.get_ring()
- f = dup_convert(f, K0, K)
- except CoercionFailed:
- return False
- elif not K.is_ZZ:
- return False
- lc = dup_LC(f, K)
- tc = dup_TC(f, K)
- if lc != 1 or (tc != -1 and tc != 1):
- return False
- if not irreducible:
- coeff, factors = dup_factor_list(f, K)
- if coeff != K.one or factors != [(f, 1)]:
- return False
- n = dup_degree(f)
- g, h = [], []
- for i in range(n, -1, -2):
- g.insert(0, f[i])
- for i in range(n - 1, -1, -2):
- h.insert(0, f[i])
- g = dup_sqr(dup_strip(g), K)
- h = dup_sqr(dup_strip(h), K)
- F = dup_sub(g, dup_lshift(h, 1, K), K)
- if K.is_negative(dup_LC(F, K)):
- F = dup_neg(F, K)
- if F == f:
- return True
- g = dup_mirror(f, K)
- if K.is_negative(dup_LC(g, K)):
- g = dup_neg(g, K)
- if F == g and dup_cyclotomic_p(g, K):
- return True
- G = dup_sqf_part(F, K)
- if dup_sqr(G, K) == F and dup_cyclotomic_p(G, K):
- return True
- return False
- def dup_zz_cyclotomic_poly(n, K):
- """Efficiently generate n-th cyclotomic polynomial. """
- h = [K.one, -K.one]
- for p, k in factorint(n).items():
- h = dup_quo(dup_inflate(h, p, K), h, K)
- h = dup_inflate(h, p**(k - 1), K)
- return h
- def _dup_cyclotomic_decompose(n, K):
- H = [[K.one, -K.one]]
- for p, k in factorint(n).items():
- Q = [ dup_quo(dup_inflate(h, p, K), h, K) for h in H ]
- H.extend(Q)
- for i in range(1, k):
- Q = [ dup_inflate(q, p, K) for q in Q ]
- H.extend(Q)
- return H
- def dup_zz_cyclotomic_factor(f, K):
- """
- Efficiently factor polynomials `x**n - 1` and `x**n + 1` in `Z[x]`.
- Given a univariate polynomial `f` in `Z[x]` returns a list of factors
- of `f`, provided that `f` is in the form `x**n - 1` or `x**n + 1` for
- `n >= 1`. Otherwise returns None.
- Factorization is performed using cyclotomic decomposition of `f`,
- which makes this method much faster that any other direct factorization
- approach (e.g. Zassenhaus's).
- References
- ==========
- .. [1] [Weisstein09]_
- """
- lc_f, tc_f = dup_LC(f, K), dup_TC(f, K)
- if dup_degree(f) <= 0:
- return None
- if lc_f != 1 or tc_f not in [-1, 1]:
- return None
- if any(bool(cf) for cf in f[1:-1]):
- return None
- n = dup_degree(f)
- F = _dup_cyclotomic_decompose(n, K)
- if not K.is_one(tc_f):
- return F
- else:
- H = []
- for h in _dup_cyclotomic_decompose(2*n, K):
- if h not in F:
- H.append(h)
- return H
- def dup_zz_factor_sqf(f, K):
- """Factor square-free (non-primitive) polynomials in `Z[x]`. """
- cont, g = dup_primitive(f, K)
- n = dup_degree(g)
- if dup_LC(g, K) < 0:
- cont, g = -cont, dup_neg(g, K)
- if n <= 0:
- return cont, []
- elif n == 1:
- return cont, [g]
- if query('USE_IRREDUCIBLE_IN_FACTOR'):
- if dup_zz_irreducible_p(g, K):
- return cont, [g]
- factors = None
- if query('USE_CYCLOTOMIC_FACTOR'):
- factors = dup_zz_cyclotomic_factor(g, K)
- if factors is None:
- factors = dup_zz_zassenhaus(g, K)
- return cont, _sort_factors(factors, multiple=False)
- def dup_zz_factor(f, K):
- """
- Factor (non square-free) polynomials in `Z[x]`.
- Given a univariate polynomial `f` in `Z[x]` computes its complete
- factorization `f_1, ..., f_n` into irreducibles over integers::
- f = content(f) f_1**k_1 ... f_n**k_n
- The factorization is computed by reducing the input polynomial
- into a primitive square-free polynomial and factoring it using
- Zassenhaus algorithm. Trial division is used to recover the
- multiplicities of factors.
- The result is returned as a tuple consisting of::
- (content(f), [(f_1, k_1), ..., (f_n, k_n))
- Examples
- ========
- Consider the polynomial `f = 2*x**4 - 2`::
- >>> from sympy.polys import ring, ZZ
- >>> R, x = ring("x", ZZ)
- >>> R.dup_zz_factor(2*x**4 - 2)
- (2, [(x - 1, 1), (x + 1, 1), (x**2 + 1, 1)])
- In result we got the following factorization::
- f = 2 (x - 1) (x + 1) (x**2 + 1)
- Note that this is a complete factorization over integers,
- however over Gaussian integers we can factor the last term.
- By default, polynomials `x**n - 1` and `x**n + 1` are factored
- using cyclotomic decomposition to speedup computations. To
- disable this behaviour set cyclotomic=False.
- References
- ==========
- .. [1] [Gathen99]_
- """
- cont, g = dup_primitive(f, K)
- n = dup_degree(g)
- if dup_LC(g, K) < 0:
- cont, g = -cont, dup_neg(g, K)
- if n <= 0:
- return cont, []
- elif n == 1:
- return cont, [(g, 1)]
- if query('USE_IRREDUCIBLE_IN_FACTOR'):
- if dup_zz_irreducible_p(g, K):
- return cont, [(g, 1)]
- g = dup_sqf_part(g, K)
- H = None
- if query('USE_CYCLOTOMIC_FACTOR'):
- H = dup_zz_cyclotomic_factor(g, K)
- if H is None:
- H = dup_zz_zassenhaus(g, K)
- factors = dup_trial_division(f, H, K)
- return cont, factors
- def dmp_zz_wang_non_divisors(E, cs, ct, K):
- """Wang/EEZ: Compute a set of valid divisors. """
- result = [ cs*ct ]
- for q in E:
- q = abs(q)
- for r in reversed(result):
- while r != 1:
- r = K.gcd(r, q)
- q = q // r
- if K.is_one(q):
- return None
- result.append(q)
- return result[1:]
- def dmp_zz_wang_test_points(f, T, ct, A, u, K):
- """Wang/EEZ: Test evaluation points for suitability. """
- if not dmp_eval_tail(dmp_LC(f, K), A, u - 1, K):
- raise EvaluationFailed('no luck')
- g = dmp_eval_tail(f, A, u, K)
- if not dup_sqf_p(g, K):
- raise EvaluationFailed('no luck')
- c, h = dup_primitive(g, K)
- if K.is_negative(dup_LC(h, K)):
- c, h = -c, dup_neg(h, K)
- v = u - 1
- E = [ dmp_eval_tail(t, A, v, K) for t, _ in T ]
- D = dmp_zz_wang_non_divisors(E, c, ct, K)
- if D is not None:
- return c, h, E
- else:
- raise EvaluationFailed('no luck')
- def dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K):
- """Wang/EEZ: Compute correct leading coefficients. """
- C, J, v = [], [0]*len(E), u - 1
- for h in H:
- c = dmp_one(v, K)
- d = dup_LC(h, K)*cs
- for i in reversed(range(len(E))):
- k, e, (t, _) = 0, E[i], T[i]
- while not (d % e):
- d, k = d//e, k + 1
- if k != 0:
- c, J[i] = dmp_mul(c, dmp_pow(t, k, v, K), v, K), 1
- C.append(c)
- if not all(J):
- raise ExtraneousFactors # pragma: no cover
- CC, HH = [], []
- for c, h in zip(C, H):
- d = dmp_eval_tail(c, A, v, K)
- lc = dup_LC(h, K)
- if K.is_one(cs):
- cc = lc//d
- else:
- g = K.gcd(lc, d)
- d, cc = d//g, lc//g
- h, cs = dup_mul_ground(h, d, K), cs//d
- c = dmp_mul_ground(c, cc, v, K)
- CC.append(c)
- HH.append(h)
- if K.is_one(cs):
- return f, HH, CC
- CCC, HHH = [], []
- for c, h in zip(CC, HH):
- CCC.append(dmp_mul_ground(c, cs, v, K))
- HHH.append(dmp_mul_ground(h, cs, 0, K))
- f = dmp_mul_ground(f, cs**(len(H) - 1), u, K)
- return f, HHH, CCC
- def dup_zz_diophantine(F, m, p, K):
- """Wang/EEZ: Solve univariate Diophantine equations. """
- if len(F) == 2:
- a, b = F
- f = gf_from_int_poly(a, p)
- g = gf_from_int_poly(b, p)
- s, t, G = gf_gcdex(g, f, p, K)
- s = gf_lshift(s, m, K)
- t = gf_lshift(t, m, K)
- q, s = gf_div(s, f, p, K)
- t = gf_add_mul(t, q, g, p, K)
- s = gf_to_int_poly(s, p)
- t = gf_to_int_poly(t, p)
- result = [s, t]
- else:
- G = [F[-1]]
- for f in reversed(F[1:-1]):
- G.insert(0, dup_mul(f, G[0], K))
- S, T = [], [[1]]
- for f, g in zip(F, G):
- t, s = dmp_zz_diophantine([g, f], T[-1], [], 0, p, 1, K)
- T.append(t)
- S.append(s)
- result, S = [], S + [T[-1]]
- for s, f in zip(S, F):
- s = gf_from_int_poly(s, p)
- f = gf_from_int_poly(f, p)
- r = gf_rem(gf_lshift(s, m, K), f, p, K)
- s = gf_to_int_poly(r, p)
- result.append(s)
- return result
- def dmp_zz_diophantine(F, c, A, d, p, u, K):
- """Wang/EEZ: Solve multivariate Diophantine equations. """
- if not A:
- S = [ [] for _ in F ]
- n = dup_degree(c)
- for i, coeff in enumerate(c):
- if not coeff:
- continue
- T = dup_zz_diophantine(F, n - i, p, K)
- for j, (s, t) in enumerate(zip(S, T)):
- t = dup_mul_ground(t, coeff, K)
- S[j] = dup_trunc(dup_add(s, t, K), p, K)
- else:
- n = len(A)
- e = dmp_expand(F, u, K)
- a, A = A[-1], A[:-1]
- B, G = [], []
- for f in F:
- B.append(dmp_quo(e, f, u, K))
- G.append(dmp_eval_in(f, a, n, u, K))
- C = dmp_eval_in(c, a, n, u, K)
- v = u - 1
- S = dmp_zz_diophantine(G, C, A, d, p, v, K)
- S = [ dmp_raise(s, 1, v, K) for s in S ]
- for s, b in zip(S, B):
- c = dmp_sub_mul(c, s, b, u, K)
- c = dmp_ground_trunc(c, p, u, K)
- m = dmp_nest([K.one, -a], n, K)
- M = dmp_one(n, K)
- for k in K.map(range(0, d)):
- if dmp_zero_p(c, u):
- break
- M = dmp_mul(M, m, u, K)
- C = dmp_diff_eval_in(c, k + 1, a, n, u, K)
- if not dmp_zero_p(C, v):
- C = dmp_quo_ground(C, K.factorial(k + 1), v, K)
- T = dmp_zz_diophantine(G, C, A, d, p, v, K)
- for i, t in enumerate(T):
- T[i] = dmp_mul(dmp_raise(t, 1, v, K), M, u, K)
- for i, (s, t) in enumerate(zip(S, T)):
- S[i] = dmp_add(s, t, u, K)
- for t, b in zip(T, B):
- c = dmp_sub_mul(c, t, b, u, K)
- c = dmp_ground_trunc(c, p, u, K)
- S = [ dmp_ground_trunc(s, p, u, K) for s in S ]
- return S
- def dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K):
- """Wang/EEZ: Parallel Hensel lifting algorithm. """
- S, n, v = [f], len(A), u - 1
- H = list(H)
- for i, a in enumerate(reversed(A[1:])):
- s = dmp_eval_in(S[0], a, n - i, u - i, K)
- S.insert(0, dmp_ground_trunc(s, p, v - i, K))
- d = max(dmp_degree_list(f, u)[1:])
- for j, s, a in zip(range(2, n + 2), S, A):
- G, w = list(H), j - 1
- I, J = A[:j - 2], A[j - 1:]
- for i, (h, lc) in enumerate(zip(H, LC)):
- lc = dmp_ground_trunc(dmp_eval_tail(lc, J, v, K), p, w - 1, K)
- H[i] = [lc] + dmp_raise(h[1:], 1, w - 1, K)
- m = dmp_nest([K.one, -a], w, K)
- M = dmp_one(w, K)
- c = dmp_sub(s, dmp_expand(H, w, K), w, K)
- dj = dmp_degree_in(s, w, w)
- for k in K.map(range(0, dj)):
- if dmp_zero_p(c, w):
- break
- M = dmp_mul(M, m, w, K)
- C = dmp_diff_eval_in(c, k + 1, a, w, w, K)
- if not dmp_zero_p(C, w - 1):
- C = dmp_quo_ground(C, K.factorial(k + 1), w - 1, K)
- T = dmp_zz_diophantine(G, C, I, d, p, w - 1, K)
- for i, (h, t) in enumerate(zip(H, T)):
- h = dmp_add_mul(h, dmp_raise(t, 1, w - 1, K), M, w, K)
- H[i] = dmp_ground_trunc(h, p, w, K)
- h = dmp_sub(s, dmp_expand(H, w, K), w, K)
- c = dmp_ground_trunc(h, p, w, K)
- if dmp_expand(H, u, K) != f:
- raise ExtraneousFactors # pragma: no cover
- else:
- return H
- def dmp_zz_wang(f, u, K, mod=None, seed=None):
- r"""
- Factor primitive square-free polynomials in `Z[X]`.
- Given a multivariate polynomial `f` in `Z[x_1,...,x_n]`, which is
- primitive and square-free in `x_1`, computes factorization of `f` into
- irreducibles over integers.
- The procedure is based on Wang's Enhanced Extended Zassenhaus
- algorithm. The algorithm works by viewing `f` as a univariate polynomial
- in `Z[x_2,...,x_n][x_1]`, for which an evaluation mapping is computed::
- x_2 -> a_2, ..., x_n -> a_n
- where `a_i`, for `i = 2, \dots, n`, are carefully chosen integers. The
- mapping is used to transform `f` into a univariate polynomial in `Z[x_1]`,
- which can be factored efficiently using Zassenhaus algorithm. The last
- step is to lift univariate factors to obtain true multivariate
- factors. For this purpose a parallel Hensel lifting procedure is used.
- The parameter ``seed`` is passed to _randint and can be used to seed randint
- (when an integer) or (for testing purposes) can be a sequence of numbers.
- References
- ==========
- .. [1] [Wang78]_
- .. [2] [Geddes92]_
- """
- from sympy.core.random import _randint
- randint = _randint(seed)
- ct, T = dmp_zz_factor(dmp_LC(f, K), u - 1, K)
- b = dmp_zz_mignotte_bound(f, u, K)
- p = K(nextprime(b))
- if mod is None:
- if u == 1:
- mod = 2
- else:
- mod = 1
- history, configs, A, r = set(), [], [K.zero]*u, None
- try:
- cs, s, E = dmp_zz_wang_test_points(f, T, ct, A, u, K)
- _, H = dup_zz_factor_sqf(s, K)
- r = len(H)
- if r == 1:
- return [f]
- configs = [(s, cs, E, H, A)]
- except EvaluationFailed:
- pass
- eez_num_configs = query('EEZ_NUMBER_OF_CONFIGS')
- eez_num_tries = query('EEZ_NUMBER_OF_TRIES')
- eez_mod_step = query('EEZ_MODULUS_STEP')
- while len(configs) < eez_num_configs:
- for _ in range(eez_num_tries):
- A = [ K(randint(-mod, mod)) for _ in range(u) ]
- if tuple(A) not in history:
- history.add(tuple(A))
- else:
- continue
- try:
- cs, s, E = dmp_zz_wang_test_points(f, T, ct, A, u, K)
- except EvaluationFailed:
- continue
- _, H = dup_zz_factor_sqf(s, K)
- rr = len(H)
- if r is not None:
- if rr != r: # pragma: no cover
- if rr < r:
- configs, r = [], rr
- else:
- continue
- else:
- r = rr
- if r == 1:
- return [f]
- configs.append((s, cs, E, H, A))
- if len(configs) == eez_num_configs:
- break
- else:
- mod += eez_mod_step
- s_norm, s_arg, i = None, 0, 0
- for s, _, _, _, _ in configs:
- _s_norm = dup_max_norm(s, K)
- if s_norm is not None:
- if _s_norm < s_norm:
- s_norm = _s_norm
- s_arg = i
- else:
- s_norm = _s_norm
- i += 1
- _, cs, E, H, A = configs[s_arg]
- orig_f = f
- try:
- f, H, LC = dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K)
- factors = dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K)
- except ExtraneousFactors: # pragma: no cover
- if query('EEZ_RESTART_IF_NEEDED'):
- return dmp_zz_wang(orig_f, u, K, mod + 1)
- else:
- raise ExtraneousFactors(
- "we need to restart algorithm with better parameters")
- result = []
- for f in factors:
- _, f = dmp_ground_primitive(f, u, K)
- if K.is_negative(dmp_ground_LC(f, u, K)):
- f = dmp_neg(f, u, K)
- result.append(f)
- return result
- def dmp_zz_factor(f, u, K):
- r"""
- Factor (non square-free) polynomials in `Z[X]`.
- Given a multivariate polynomial `f` in `Z[x]` computes its complete
- factorization `f_1, \dots, f_n` into irreducibles over integers::
- f = content(f) f_1**k_1 ... f_n**k_n
- The factorization is computed by reducing the input polynomial
- into a primitive square-free polynomial and factoring it using
- Enhanced Extended Zassenhaus (EEZ) algorithm. Trial division
- is used to recover the multiplicities of factors.
- The result is returned as a tuple consisting of::
- (content(f), [(f_1, k_1), ..., (f_n, k_n))
- Consider polynomial `f = 2*(x**2 - y**2)`::
- >>> from sympy.polys import ring, ZZ
- >>> R, x,y = ring("x,y", ZZ)
- >>> R.dmp_zz_factor(2*x**2 - 2*y**2)
- (2, [(x - y, 1), (x + y, 1)])
- In result we got the following factorization::
- f = 2 (x - y) (x + y)
- References
- ==========
- .. [1] [Gathen99]_
- """
- if not u:
- return dup_zz_factor(f, K)
- if dmp_zero_p(f, u):
- return K.zero, []
- cont, g = dmp_ground_primitive(f, u, K)
- if dmp_ground_LC(g, u, K) < 0:
- cont, g = -cont, dmp_neg(g, u, K)
- if all(d <= 0 for d in dmp_degree_list(g, u)):
- return cont, []
- G, g = dmp_primitive(g, u, K)
- factors = []
- if dmp_degree(g, u) > 0:
- g = dmp_sqf_part(g, u, K)
- H = dmp_zz_wang(g, u, K)
- factors = dmp_trial_division(f, H, u, K)
- for g, k in dmp_zz_factor(G, u - 1, K)[1]:
- factors.insert(0, ([g], k))
- return cont, _sort_factors(factors)
- def dup_qq_i_factor(f, K0):
- """Factor univariate polynomials into irreducibles in `QQ_I[x]`. """
- # Factor in QQ<I>
- K1 = K0.as_AlgebraicField()
- f = dup_convert(f, K0, K1)
- coeff, factors = dup_factor_list(f, K1)
- factors = [(dup_convert(fac, K1, K0), i) for fac, i in factors]
- coeff = K0.convert(coeff, K1)
- return coeff, factors
- def dup_zz_i_factor(f, K0):
- """Factor univariate polynomials into irreducibles in `ZZ_I[x]`. """
- # First factor in QQ_I
- K1 = K0.get_field()
- f = dup_convert(f, K0, K1)
- coeff, factors = dup_qq_i_factor(f, K1)
- new_factors = []
- for fac, i in factors:
- # Extract content
- fac_denom, fac_num = dup_clear_denoms(fac, K1)
- fac_num_ZZ_I = dup_convert(fac_num, K1, K0)
- content, fac_prim = dmp_ground_primitive(fac_num_ZZ_I, 0, K1)
- coeff = (coeff * content ** i) // fac_denom ** i
- new_factors.append((fac_prim, i))
- factors = new_factors
- coeff = K0.convert(coeff, K1)
- return coeff, factors
- def dmp_qq_i_factor(f, u, K0):
- """Factor multivariate polynomials into irreducibles in `QQ_I[X]`. """
- # Factor in QQ<I>
- K1 = K0.as_AlgebraicField()
- f = dmp_convert(f, u, K0, K1)
- coeff, factors = dmp_factor_list(f, u, K1)
- factors = [(dmp_convert(fac, u, K1, K0), i) for fac, i in factors]
- coeff = K0.convert(coeff, K1)
- return coeff, factors
- def dmp_zz_i_factor(f, u, K0):
- """Factor multivariate polynomials into irreducibles in `ZZ_I[X]`. """
- # First factor in QQ_I
- K1 = K0.get_field()
- f = dmp_convert(f, u, K0, K1)
- coeff, factors = dmp_qq_i_factor(f, u, K1)
- new_factors = []
- for fac, i in factors:
- # Extract content
- fac_denom, fac_num = dmp_clear_denoms(fac, u, K1)
- fac_num_ZZ_I = dmp_convert(fac_num, u, K1, K0)
- content, fac_prim = dmp_ground_primitive(fac_num_ZZ_I, u, K1)
- coeff = (coeff * content ** i) // fac_denom ** i
- new_factors.append((fac_prim, i))
- factors = new_factors
- coeff = K0.convert(coeff, K1)
- return coeff, factors
- def dup_ext_factor(f, K):
- """Factor univariate polynomials over algebraic number fields. """
- n, lc = dup_degree(f), dup_LC(f, K)
- f = dup_monic(f, K)
- if n <= 0:
- return lc, []
- if n == 1:
- return lc, [(f, 1)]
- f, F = dup_sqf_part(f, K), f
- s, g, r = dup_sqf_norm(f, K)
- factors = dup_factor_list_include(r, K.dom)
- if len(factors) == 1:
- return lc, [(f, n//dup_degree(f))]
- H = s*K.unit
- for i, (factor, _) in enumerate(factors):
- h = dup_convert(factor, K.dom, K)
- h, _, g = dup_inner_gcd(h, g, K)
- h = dup_shift(h, H, K)
- factors[i] = h
- factors = dup_trial_division(F, factors, K)
- return lc, factors
- def dmp_ext_factor(f, u, K):
- """Factor multivariate polynomials over algebraic number fields. """
- if not u:
- return dup_ext_factor(f, K)
- lc = dmp_ground_LC(f, u, K)
- f = dmp_ground_monic(f, u, K)
- if all(d <= 0 for d in dmp_degree_list(f, u)):
- return lc, []
- f, F = dmp_sqf_part(f, u, K), f
- s, g, r = dmp_sqf_norm(f, u, K)
- factors = dmp_factor_list_include(r, u, K.dom)
- if len(factors) == 1:
- factors = [f]
- else:
- H = dmp_raise([K.one, s*K.unit], u, 0, K)
- for i, (factor, _) in enumerate(factors):
- h = dmp_convert(factor, u, K.dom, K)
- h, _, g = dmp_inner_gcd(h, g, u, K)
- h = dmp_compose(h, H, u, K)
- factors[i] = h
- return lc, dmp_trial_division(F, factors, u, K)
- def dup_gf_factor(f, K):
- """Factor univariate polynomials over finite fields. """
- f = dup_convert(f, K, K.dom)
- coeff, factors = gf_factor(f, K.mod, K.dom)
- for i, (f, k) in enumerate(factors):
- factors[i] = (dup_convert(f, K.dom, K), k)
- return K.convert(coeff, K.dom), factors
- def dmp_gf_factor(f, u, K):
- """Factor multivariate polynomials over finite fields. """
- raise NotImplementedError('multivariate polynomials over finite fields')
- def dup_factor_list(f, K0):
- """Factor univariate polynomials into irreducibles in `K[x]`. """
- j, f = dup_terms_gcd(f, K0)
- cont, f = dup_primitive(f, K0)
- if K0.is_FiniteField:
- coeff, factors = dup_gf_factor(f, K0)
- elif K0.is_Algebraic:
- coeff, factors = dup_ext_factor(f, K0)
- elif K0.is_GaussianRing:
- coeff, factors = dup_zz_i_factor(f, K0)
- elif K0.is_GaussianField:
- coeff, factors = dup_qq_i_factor(f, K0)
- else:
- if not K0.is_Exact:
- K0_inexact, K0 = K0, K0.get_exact()
- f = dup_convert(f, K0_inexact, K0)
- else:
- K0_inexact = None
- if K0.is_Field:
- K = K0.get_ring()
- denom, f = dup_clear_denoms(f, K0, K)
- f = dup_convert(f, K0, K)
- else:
- K = K0
- if K.is_ZZ:
- coeff, factors = dup_zz_factor(f, K)
- elif K.is_Poly:
- f, u = dmp_inject(f, 0, K)
- coeff, factors = dmp_factor_list(f, u, K.dom)
- for i, (f, k) in enumerate(factors):
- factors[i] = (dmp_eject(f, u, K), k)
- coeff = K.convert(coeff, K.dom)
- else: # pragma: no cover
- raise DomainError('factorization not supported over %s' % K0)
- if K0.is_Field:
- for i, (f, k) in enumerate(factors):
- factors[i] = (dup_convert(f, K, K0), k)
- coeff = K0.convert(coeff, K)
- coeff = K0.quo(coeff, denom)
- if K0_inexact:
- for i, (f, k) in enumerate(factors):
- max_norm = dup_max_norm(f, K0)
- f = dup_quo_ground(f, max_norm, K0)
- f = dup_convert(f, K0, K0_inexact)
- factors[i] = (f, k)
- coeff = K0.mul(coeff, K0.pow(max_norm, k))
- coeff = K0_inexact.convert(coeff, K0)
- K0 = K0_inexact
- if j:
- factors.insert(0, ([K0.one, K0.zero], j))
- return coeff*cont, _sort_factors(factors)
- def dup_factor_list_include(f, K):
- """Factor univariate polynomials into irreducibles in `K[x]`. """
- coeff, factors = dup_factor_list(f, K)
- if not factors:
- return [(dup_strip([coeff]), 1)]
- else:
- g = dup_mul_ground(factors[0][0], coeff, K)
- return [(g, factors[0][1])] + factors[1:]
- def dmp_factor_list(f, u, K0):
- """Factor multivariate polynomials into irreducibles in `K[X]`. """
- if not u:
- return dup_factor_list(f, K0)
- J, f = dmp_terms_gcd(f, u, K0)
- cont, f = dmp_ground_primitive(f, u, K0)
- if K0.is_FiniteField: # pragma: no cover
- coeff, factors = dmp_gf_factor(f, u, K0)
- elif K0.is_Algebraic:
- coeff, factors = dmp_ext_factor(f, u, K0)
- elif K0.is_GaussianRing:
- coeff, factors = dmp_zz_i_factor(f, u, K0)
- elif K0.is_GaussianField:
- coeff, factors = dmp_qq_i_factor(f, u, K0)
- else:
- if not K0.is_Exact:
- K0_inexact, K0 = K0, K0.get_exact()
- f = dmp_convert(f, u, K0_inexact, K0)
- else:
- K0_inexact = None
- if K0.is_Field:
- K = K0.get_ring()
- denom, f = dmp_clear_denoms(f, u, K0, K)
- f = dmp_convert(f, u, K0, K)
- else:
- K = K0
- if K.is_ZZ:
- levels, f, v = dmp_exclude(f, u, K)
- coeff, factors = dmp_zz_factor(f, v, K)
- for i, (f, k) in enumerate(factors):
- factors[i] = (dmp_include(f, levels, v, K), k)
- elif K.is_Poly:
- f, v = dmp_inject(f, u, K)
- coeff, factors = dmp_factor_list(f, v, K.dom)
- for i, (f, k) in enumerate(factors):
- factors[i] = (dmp_eject(f, v, K), k)
- coeff = K.convert(coeff, K.dom)
- else: # pragma: no cover
- raise DomainError('factorization not supported over %s' % K0)
- if K0.is_Field:
- for i, (f, k) in enumerate(factors):
- factors[i] = (dmp_convert(f, u, K, K0), k)
- coeff = K0.convert(coeff, K)
- coeff = K0.quo(coeff, denom)
- if K0_inexact:
- for i, (f, k) in enumerate(factors):
- max_norm = dmp_max_norm(f, u, K0)
- f = dmp_quo_ground(f, max_norm, u, K0)
- f = dmp_convert(f, u, K0, K0_inexact)
- factors[i] = (f, k)
- coeff = K0.mul(coeff, K0.pow(max_norm, k))
- coeff = K0_inexact.convert(coeff, K0)
- K0 = K0_inexact
- for i, j in enumerate(reversed(J)):
- if not j:
- continue
- term = {(0,)*(u - i) + (1,) + (0,)*i: K0.one}
- factors.insert(0, (dmp_from_dict(term, u, K0), j))
- return coeff*cont, _sort_factors(factors)
- def dmp_factor_list_include(f, u, K):
- """Factor multivariate polynomials into irreducibles in `K[X]`. """
- if not u:
- return dup_factor_list_include(f, K)
- coeff, factors = dmp_factor_list(f, u, K)
- if not factors:
- return [(dmp_ground(coeff, u), 1)]
- else:
- g = dmp_mul_ground(factors[0][0], coeff, u, K)
- return [(g, factors[0][1])] + factors[1:]
- def dup_irreducible_p(f, K):
- """
- Returns ``True`` if a univariate polynomial ``f`` has no factors
- over its domain.
- """
- return dmp_irreducible_p(f, 0, K)
- def dmp_irreducible_p(f, u, K):
- """
- Returns ``True`` if a multivariate polynomial ``f`` has no factors
- over its domain.
- """
- _, factors = dmp_factor_list(f, u, K)
- if not factors:
- return True
- elif len(factors) > 1:
- return False
- else:
- _, k = factors[0]
- return k == 1
|