123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880 |
- """Minimal polynomials for algebraic numbers."""
- from functools import reduce
- from sympy.core.add import Add
- from sympy.core.function import expand_mul, expand_multinomial
- from sympy.core.mul import Mul
- from sympy.core import (GoldenRatio, TribonacciConstant)
- from sympy.core.numbers import (I, Rational, pi)
- from sympy.core.singleton import S
- from sympy.core.symbol import Dummy
- from sympy.core.sympify import sympify
- from sympy.functions import sqrt, cbrt
- from sympy.core.exprtools import Factors
- from sympy.core.function import _mexpand
- from sympy.core.traversal import preorder_traversal
- from sympy.functions.elementary.exponential import exp
- from sympy.functions.elementary.trigonometric import cos, sin, tan
- from sympy.ntheory.factor_ import divisors
- from sympy.utilities.iterables import subsets
- from sympy.polys.domains import ZZ, QQ, FractionField
- from sympy.polys.orthopolys import dup_chebyshevt
- from sympy.polys.polyerrors import (
- NotAlgebraic,
- GeneratorsError,
- )
- from sympy.polys.polytools import (
- Poly, PurePoly, invert, factor_list, groebner, resultant,
- degree, poly_from_expr, parallel_poly_from_expr, lcm
- )
- from sympy.polys.polyutils import dict_from_expr, expr_from_dict, illegal
- from sympy.polys.ring_series import rs_compose_add
- from sympy.polys.rings import ring
- from sympy.polys.rootoftools import CRootOf
- from sympy.polys.specialpolys import cyclotomic_poly
- from sympy.simplify.radsimp import _split_gcd
- from sympy.simplify.simplify import _is_sum_surds
- from sympy.utilities import (
- numbered_symbols, public, sift
- )
- def _choose_factor(factors, x, v, dom=QQ, prec=200, bound=5):
- """
- Return a factor having root ``v``
- It is assumed that one of the factors has root ``v``.
- """
- if isinstance(factors[0], tuple):
- factors = [f[0] for f in factors]
- if len(factors) == 1:
- return factors[0]
- prec1 = 10
- points = {}
- symbols = dom.symbols if hasattr(dom, 'symbols') else []
- while prec1 <= prec:
- # when dealing with non-Rational numbers we usually evaluate
- # with `subs` argument but we only need a ballpark evaluation
- xv = {x:v if not v.is_number else v.n(prec1)}
- fe = [f.as_expr().xreplace(xv) for f in factors]
- # assign integers [0, n) to symbols (if any)
- for n in subsets(range(bound), k=len(symbols), repetition=True):
- for s, i in zip(symbols, n):
- points[s] = i
- # evaluate the expression at these points
- candidates = [(abs(f.subs(points).n(prec1)), i)
- for i,f in enumerate(fe)]
- # if we get invalid numbers (e.g. from division by zero)
- # we try again
- if any(i in illegal for i, _ in candidates):
- continue
- # find the smallest two -- if they differ significantly
- # then we assume we have found the factor that becomes
- # 0 when v is substituted into it
- can = sorted(candidates)
- (a, ix), (b, _) = can[:2]
- if b > a * 10**6: # XXX what to use?
- return factors[ix]
- prec1 *= 2
- raise NotImplementedError("multiple candidates for the minimal polynomial of %s" % v)
- def _separate_sq(p):
- """
- helper function for ``_minimal_polynomial_sq``
- It selects a rational ``g`` such that the polynomial ``p``
- consists of a sum of terms whose surds squared have gcd equal to ``g``
- and a sum of terms with surds squared prime with ``g``;
- then it takes the field norm to eliminate ``sqrt(g)``
- See simplify.simplify.split_surds and polytools.sqf_norm.
- Examples
- ========
- >>> from sympy import sqrt
- >>> from sympy.abc import x
- >>> from sympy.polys.numberfields.minpoly import _separate_sq
- >>> p= -x + sqrt(2) + sqrt(3) + sqrt(7)
- >>> p = _separate_sq(p); p
- -x**2 + 2*sqrt(3)*x + 2*sqrt(7)*x - 2*sqrt(21) - 8
- >>> p = _separate_sq(p); p
- -x**4 + 4*sqrt(7)*x**3 - 32*x**2 + 8*sqrt(7)*x + 20
- >>> p = _separate_sq(p); p
- -x**8 + 48*x**6 - 536*x**4 + 1728*x**2 - 400
- """
- def is_sqrt(expr):
- return expr.is_Pow and expr.exp is S.Half
- # p = c1*sqrt(q1) + ... + cn*sqrt(qn) -> a = [(c1, q1), .., (cn, qn)]
- a = []
- for y in p.args:
- if not y.is_Mul:
- if is_sqrt(y):
- a.append((S.One, y**2))
- elif y.is_Atom:
- a.append((y, S.One))
- elif y.is_Pow and y.exp.is_integer:
- a.append((y, S.One))
- else:
- raise NotImplementedError
- else:
- T, F = sift(y.args, is_sqrt, binary=True)
- a.append((Mul(*F), Mul(*T)**2))
- a.sort(key=lambda z: z[1])
- if a[-1][1] is S.One:
- # there are no surds
- return p
- surds = [z for y, z in a]
- for i in range(len(surds)):
- if surds[i] != 1:
- break
- g, b1, b2 = _split_gcd(*surds[i:])
- a1 = []
- a2 = []
- for y, z in a:
- if z in b1:
- a1.append(y*z**S.Half)
- else:
- a2.append(y*z**S.Half)
- p1 = Add(*a1)
- p2 = Add(*a2)
- p = _mexpand(p1**2) - _mexpand(p2**2)
- return p
- def _minimal_polynomial_sq(p, n, x):
- """
- Returns the minimal polynomial for the ``nth-root`` of a sum of surds
- or ``None`` if it fails.
- Parameters
- ==========
- p : sum of surds
- n : positive integer
- x : variable of the returned polynomial
- Examples
- ========
- >>> from sympy.polys.numberfields.minpoly import _minimal_polynomial_sq
- >>> from sympy import sqrt
- >>> from sympy.abc import x
- >>> q = 1 + sqrt(2) + sqrt(3)
- >>> _minimal_polynomial_sq(q, 3, x)
- x**12 - 4*x**9 - 4*x**6 + 16*x**3 - 8
- """
- p = sympify(p)
- n = sympify(n)
- if not n.is_Integer or not n > 0 or not _is_sum_surds(p):
- return None
- pn = p**Rational(1, n)
- # eliminate the square roots
- p -= x
- while 1:
- p1 = _separate_sq(p)
- if p1 is p:
- p = p1.subs({x:x**n})
- break
- else:
- p = p1
- # _separate_sq eliminates field extensions in a minimal way, so that
- # if n = 1 then `p = constant*(minimal_polynomial(p))`
- # if n > 1 it contains the minimal polynomial as a factor.
- if n == 1:
- p1 = Poly(p)
- if p.coeff(x**p1.degree(x)) < 0:
- p = -p
- p = p.primitive()[1]
- return p
- # by construction `p` has root `pn`
- # the minimal polynomial is the factor vanishing in x = pn
- factors = factor_list(p)[1]
- result = _choose_factor(factors, x, pn)
- return result
- def _minpoly_op_algebraic_element(op, ex1, ex2, x, dom, mp1=None, mp2=None):
- """
- return the minimal polynomial for ``op(ex1, ex2)``
- Parameters
- ==========
- op : operation ``Add`` or ``Mul``
- ex1, ex2 : expressions for the algebraic elements
- x : indeterminate of the polynomials
- dom: ground domain
- mp1, mp2 : minimal polynomials for ``ex1`` and ``ex2`` or None
- Examples
- ========
- >>> from sympy import sqrt, Add, Mul, QQ
- >>> from sympy.polys.numberfields.minpoly import _minpoly_op_algebraic_element
- >>> from sympy.abc import x, y
- >>> p1 = sqrt(sqrt(2) + 1)
- >>> p2 = sqrt(sqrt(2) - 1)
- >>> _minpoly_op_algebraic_element(Mul, p1, p2, x, QQ)
- x - 1
- >>> q1 = sqrt(y)
- >>> q2 = 1 / y
- >>> _minpoly_op_algebraic_element(Add, q1, q2, x, QQ.frac_field(y))
- x**2*y**2 - 2*x*y - y**3 + 1
- References
- ==========
- .. [1] https://en.wikipedia.org/wiki/Resultant
- .. [2] I.M. Isaacs, Proc. Amer. Math. Soc. 25 (1970), 638
- "Degrees of sums in a separable field extension".
- """
- y = Dummy(str(x))
- if mp1 is None:
- mp1 = _minpoly_compose(ex1, x, dom)
- if mp2 is None:
- mp2 = _minpoly_compose(ex2, y, dom)
- else:
- mp2 = mp2.subs({x: y})
- if op is Add:
- # mp1a = mp1.subs({x: x - y})
- if dom == QQ:
- R, X = ring('X', QQ)
- p1 = R(dict_from_expr(mp1)[0])
- p2 = R(dict_from_expr(mp2)[0])
- else:
- (p1, p2), _ = parallel_poly_from_expr((mp1, x - y), x, y)
- r = p1.compose(p2)
- mp1a = r.as_expr()
- elif op is Mul:
- mp1a = _muly(mp1, x, y)
- else:
- raise NotImplementedError('option not available')
- if op is Mul or dom != QQ:
- r = resultant(mp1a, mp2, gens=[y, x])
- else:
- r = rs_compose_add(p1, p2)
- r = expr_from_dict(r.as_expr_dict(), x)
- deg1 = degree(mp1, x)
- deg2 = degree(mp2, y)
- if op is Mul and deg1 == 1 or deg2 == 1:
- # if deg1 = 1, then mp1 = x - a; mp1a = x - y - a;
- # r = mp2(x - a), so that `r` is irreducible
- return r
- r = Poly(r, x, domain=dom)
- _, factors = r.factor_list()
- res = _choose_factor(factors, x, op(ex1, ex2), dom)
- return res.as_expr()
- def _invertx(p, x):
- """
- Returns ``expand_mul(x**degree(p, x)*p.subs(x, 1/x))``
- """
- p1 = poly_from_expr(p, x)[0]
- n = degree(p1)
- a = [c * x**(n - i) for (i,), c in p1.terms()]
- return Add(*a)
- def _muly(p, x, y):
- """
- Returns ``_mexpand(y**deg*p.subs({x:x / y}))``
- """
- p1 = poly_from_expr(p, x)[0]
- n = degree(p1)
- a = [c * x**i * y**(n - i) for (i,), c in p1.terms()]
- return Add(*a)
- def _minpoly_pow(ex, pw, x, dom, mp=None):
- """
- Returns ``minpoly(ex**pw, x)``
- Parameters
- ==========
- ex : algebraic element
- pw : rational number
- x : indeterminate of the polynomial
- dom: ground domain
- mp : minimal polynomial of ``p``
- Examples
- ========
- >>> from sympy import sqrt, QQ, Rational
- >>> from sympy.polys.numberfields.minpoly import _minpoly_pow, minpoly
- >>> from sympy.abc import x, y
- >>> p = sqrt(1 + sqrt(2))
- >>> _minpoly_pow(p, 2, x, QQ)
- x**2 - 2*x - 1
- >>> minpoly(p**2, x)
- x**2 - 2*x - 1
- >>> _minpoly_pow(y, Rational(1, 3), x, QQ.frac_field(y))
- x**3 - y
- >>> minpoly(y**Rational(1, 3), x)
- x**3 - y
- """
- pw = sympify(pw)
- if not mp:
- mp = _minpoly_compose(ex, x, dom)
- if not pw.is_rational:
- raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)
- if pw < 0:
- if mp == x:
- raise ZeroDivisionError('%s is zero' % ex)
- mp = _invertx(mp, x)
- if pw == -1:
- return mp
- pw = -pw
- ex = 1/ex
- y = Dummy(str(x))
- mp = mp.subs({x: y})
- n, d = pw.as_numer_denom()
- res = Poly(resultant(mp, x**d - y**n, gens=[y]), x, domain=dom)
- _, factors = res.factor_list()
- res = _choose_factor(factors, x, ex**pw, dom)
- return res.as_expr()
- def _minpoly_add(x, dom, *a):
- """
- returns ``minpoly(Add(*a), dom, x)``
- """
- mp = _minpoly_op_algebraic_element(Add, a[0], a[1], x, dom)
- p = a[0] + a[1]
- for px in a[2:]:
- mp = _minpoly_op_algebraic_element(Add, p, px, x, dom, mp1=mp)
- p = p + px
- return mp
- def _minpoly_mul(x, dom, *a):
- """
- returns ``minpoly(Mul(*a), dom, x)``
- """
- mp = _minpoly_op_algebraic_element(Mul, a[0], a[1], x, dom)
- p = a[0] * a[1]
- for px in a[2:]:
- mp = _minpoly_op_algebraic_element(Mul, p, px, x, dom, mp1=mp)
- p = p * px
- return mp
- def _minpoly_sin(ex, x):
- """
- Returns the minimal polynomial of ``sin(ex)``
- see http://mathworld.wolfram.com/TrigonometryAngles.html
- """
- c, a = ex.args[0].as_coeff_Mul()
- if a is pi:
- if c.is_rational:
- n = c.q
- q = sympify(n)
- if q.is_prime:
- # for a = pi*p/q with q odd prime, using chebyshevt
- # write sin(q*a) = mp(sin(a))*sin(a);
- # the roots of mp(x) are sin(pi*p/q) for p = 1,..., q - 1
- a = dup_chebyshevt(n, ZZ)
- return Add(*[x**(n - i - 1)*a[i] for i in range(n)])
- if c.p == 1:
- if q == 9:
- return 64*x**6 - 96*x**4 + 36*x**2 - 3
- if n % 2 == 1:
- # for a = pi*p/q with q odd, use
- # sin(q*a) = 0 to see that the minimal polynomial must be
- # a factor of dup_chebyshevt(n, ZZ)
- a = dup_chebyshevt(n, ZZ)
- a = [x**(n - i)*a[i] for i in range(n + 1)]
- r = Add(*a)
- _, factors = factor_list(r)
- res = _choose_factor(factors, x, ex)
- return res
- expr = ((1 - cos(2*c*pi))/2)**S.Half
- res = _minpoly_compose(expr, x, QQ)
- return res
- raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)
- def _minpoly_cos(ex, x):
- """
- Returns the minimal polynomial of ``cos(ex)``
- see http://mathworld.wolfram.com/TrigonometryAngles.html
- """
- c, a = ex.args[0].as_coeff_Mul()
- if a is pi:
- if c.is_rational:
- if c.p == 1:
- if c.q == 7:
- return 8*x**3 - 4*x**2 - 4*x + 1
- if c.q == 9:
- return 8*x**3 - 6*x - 1
- elif c.p == 2:
- q = sympify(c.q)
- if q.is_prime:
- s = _minpoly_sin(ex, x)
- return _mexpand(s.subs({x:sqrt((1 - x)/2)}))
- # for a = pi*p/q, cos(q*a) =T_q(cos(a)) = (-1)**p
- n = int(c.q)
- a = dup_chebyshevt(n, ZZ)
- a = [x**(n - i)*a[i] for i in range(n + 1)]
- r = Add(*a) - (-1)**c.p
- _, factors = factor_list(r)
- res = _choose_factor(factors, x, ex)
- return res
- raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)
- def _minpoly_tan(ex, x):
- """
- Returns the minimal polynomial of ``tan(ex)``
- see https://github.com/sympy/sympy/issues/21430
- """
- c, a = ex.args[0].as_coeff_Mul()
- if a is pi:
- if c.is_rational:
- c = c * 2
- n = int(c.q)
- a = n if c.p % 2 == 0 else 1
- terms = []
- for k in range((c.p+1)%2, n+1, 2):
- terms.append(a*x**k)
- a = -(a*(n-k-1)*(n-k)) // ((k+1)*(k+2))
- r = Add(*terms)
- _, factors = factor_list(r)
- res = _choose_factor(factors, x, ex)
- return res
- raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)
- def _minpoly_exp(ex, x):
- """
- Returns the minimal polynomial of ``exp(ex)``
- """
- c, a = ex.args[0].as_coeff_Mul()
- if a == I*pi:
- if c.is_rational:
- q = sympify(c.q)
- if c.p == 1 or c.p == -1:
- if q == 3:
- return x**2 - x + 1
- if q == 4:
- return x**4 + 1
- if q == 6:
- return x**4 - x**2 + 1
- if q == 8:
- return x**8 + 1
- if q == 9:
- return x**6 - x**3 + 1
- if q == 10:
- return x**8 - x**6 + x**4 - x**2 + 1
- if q.is_prime:
- s = 0
- for i in range(q):
- s += (-x)**i
- return s
- # x**(2*q) = product(factors)
- factors = [cyclotomic_poly(i, x) for i in divisors(2*q)]
- mp = _choose_factor(factors, x, ex)
- return mp
- else:
- raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)
- raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)
- def _minpoly_rootof(ex, x):
- """
- Returns the minimal polynomial of a ``CRootOf`` object.
- """
- p = ex.expr
- p = p.subs({ex.poly.gens[0]:x})
- _, factors = factor_list(p, x)
- result = _choose_factor(factors, x, ex)
- return result
- def _minpoly_compose(ex, x, dom):
- """
- Computes the minimal polynomial of an algebraic element
- using operations on minimal polynomials
- Examples
- ========
- >>> from sympy import minimal_polynomial, sqrt, Rational
- >>> from sympy.abc import x, y
- >>> minimal_polynomial(sqrt(2) + 3*Rational(1, 3), x, compose=True)
- x**2 - 2*x - 1
- >>> minimal_polynomial(sqrt(y) + 1/y, x, compose=True)
- x**2*y**2 - 2*x*y - y**3 + 1
- """
- if ex.is_Rational:
- return ex.q*x - ex.p
- if ex is I:
- _, factors = factor_list(x**2 + 1, x, domain=dom)
- return x**2 + 1 if len(factors) == 1 else x - I
- if ex is GoldenRatio:
- _, factors = factor_list(x**2 - x - 1, x, domain=dom)
- if len(factors) == 1:
- return x**2 - x - 1
- else:
- return _choose_factor(factors, x, (1 + sqrt(5))/2, dom=dom)
- if ex is TribonacciConstant:
- _, factors = factor_list(x**3 - x**2 - x - 1, x, domain=dom)
- if len(factors) == 1:
- return x**3 - x**2 - x - 1
- else:
- fac = (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3
- return _choose_factor(factors, x, fac, dom=dom)
- if hasattr(dom, 'symbols') and ex in dom.symbols:
- return x - ex
- if dom.is_QQ and _is_sum_surds(ex):
- # eliminate the square roots
- ex -= x
- while 1:
- ex1 = _separate_sq(ex)
- if ex1 is ex:
- return ex
- else:
- ex = ex1
- if ex.is_Add:
- res = _minpoly_add(x, dom, *ex.args)
- elif ex.is_Mul:
- f = Factors(ex).factors
- r = sift(f.items(), lambda itx: itx[0].is_Rational and itx[1].is_Rational)
- if r[True] and dom == QQ:
- ex1 = Mul(*[bx**ex for bx, ex in r[False] + r[None]])
- r1 = dict(r[True])
- dens = [y.q for y in r1.values()]
- lcmdens = reduce(lcm, dens, 1)
- neg1 = S.NegativeOne
- expn1 = r1.pop(neg1, S.Zero)
- nums = [base**(y.p*lcmdens // y.q) for base, y in r1.items()]
- ex2 = Mul(*nums)
- mp1 = minimal_polynomial(ex1, x)
- # use the fact that in SymPy canonicalization products of integers
- # raised to rational powers are organized in relatively prime
- # bases, and that in ``base**(n/d)`` a perfect power is
- # simplified with the root
- # Powers of -1 have to be treated separately to preserve sign.
- mp2 = ex2.q*x**lcmdens - ex2.p*neg1**(expn1*lcmdens)
- ex2 = neg1**expn1 * ex2**Rational(1, lcmdens)
- res = _minpoly_op_algebraic_element(Mul, ex1, ex2, x, dom, mp1=mp1, mp2=mp2)
- else:
- res = _minpoly_mul(x, dom, *ex.args)
- elif ex.is_Pow:
- res = _minpoly_pow(ex.base, ex.exp, x, dom)
- elif ex.__class__ is sin:
- res = _minpoly_sin(ex, x)
- elif ex.__class__ is cos:
- res = _minpoly_cos(ex, x)
- elif ex.__class__ is tan:
- res = _minpoly_tan(ex, x)
- elif ex.__class__ is exp:
- res = _minpoly_exp(ex, x)
- elif ex.__class__ is CRootOf:
- res = _minpoly_rootof(ex, x)
- else:
- raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)
- return res
- @public
- def minimal_polynomial(ex, x=None, compose=True, polys=False, domain=None):
- """
- Computes the minimal polynomial of an algebraic element.
- Parameters
- ==========
- ex : Expr
- Element or expression whose minimal polynomial is to be calculated.
- x : Symbol, optional
- Independent variable of the minimal polynomial
- compose : boolean, optional (default=True)
- Method to use for computing minimal polynomial. If ``compose=True``
- (default) then ``_minpoly_compose`` is used, if ``compose=False`` then
- groebner bases are used.
- polys : boolean, optional (default=False)
- If ``True`` returns a ``Poly`` object else an ``Expr`` object.
- domain : Domain, optional
- Ground domain
- Notes
- =====
- By default ``compose=True``, the minimal polynomial of the subexpressions of ``ex``
- are computed, then the arithmetic operations on them are performed using the resultant
- and factorization.
- If ``compose=False``, a bottom-up algorithm is used with ``groebner``.
- The default algorithm stalls less frequently.
- If no ground domain is given, it will be generated automatically from the expression.
- Examples
- ========
- >>> from sympy import minimal_polynomial, sqrt, solve, QQ
- >>> from sympy.abc import x, y
- >>> minimal_polynomial(sqrt(2), x)
- x**2 - 2
- >>> minimal_polynomial(sqrt(2), x, domain=QQ.algebraic_field(sqrt(2)))
- x - sqrt(2)
- >>> minimal_polynomial(sqrt(2) + sqrt(3), x)
- x**4 - 10*x**2 + 1
- >>> minimal_polynomial(solve(x**3 + x + 3)[0], x)
- x**3 + x + 3
- >>> minimal_polynomial(sqrt(y), x)
- x**2 - y
- """
- ex = sympify(ex)
- if ex.is_number:
- # not sure if it's always needed but try it for numbers (issue 8354)
- ex = _mexpand(ex, recursive=True)
- for expr in preorder_traversal(ex):
- if expr.is_AlgebraicNumber:
- compose = False
- break
- if x is not None:
- x, cls = sympify(x), Poly
- else:
- x, cls = Dummy('x'), PurePoly
- if not domain:
- if ex.free_symbols:
- domain = FractionField(QQ, list(ex.free_symbols))
- else:
- domain = QQ
- if hasattr(domain, 'symbols') and x in domain.symbols:
- raise GeneratorsError("the variable %s is an element of the ground "
- "domain %s" % (x, domain))
- if compose:
- result = _minpoly_compose(ex, x, domain)
- result = result.primitive()[1]
- c = result.coeff(x**degree(result, x))
- if c.is_negative:
- result = expand_mul(-result)
- return cls(result, x, field=True) if polys else result.collect(x)
- if not domain.is_QQ:
- raise NotImplementedError("groebner method only works for QQ")
- result = _minpoly_groebner(ex, x, cls)
- return cls(result, x, field=True) if polys else result.collect(x)
- def _minpoly_groebner(ex, x, cls):
- """
- Computes the minimal polynomial of an algebraic number
- using Groebner bases
- Examples
- ========
- >>> from sympy import minimal_polynomial, sqrt, Rational
- >>> from sympy.abc import x
- >>> minimal_polynomial(sqrt(2) + 3*Rational(1, 3), x, compose=False)
- x**2 - 2*x - 1
- """
- generator = numbered_symbols('a', cls=Dummy)
- mapping, symbols = {}, {}
- def update_mapping(ex, exp, base=None):
- a = next(generator)
- symbols[ex] = a
- if base is not None:
- mapping[ex] = a**exp + base
- else:
- mapping[ex] = exp.as_expr(a)
- return a
- def bottom_up_scan(ex):
- """
- Transform a given algebraic expression *ex* into a multivariate
- polynomial, by introducing fresh variables with defining equations.
- Explanation
- ===========
- The critical elements of the algebraic expression *ex* are root
- extractions, instances of :py:class:`~.AlgebraicNumber`, and negative
- powers.
- When we encounter a root extraction or an :py:class:`~.AlgebraicNumber`
- we replace this expression with a fresh variable ``a_i``, and record
- the defining polynomial for ``a_i``. For example, if ``a_0**(1/3)``
- occurs, we will replace it with ``a_1``, and record the new defining
- polynomial ``a_1**3 - a_0``.
- When we encounter a negative power we transform it into a positive
- power by algebraically inverting the base. This means computing the
- minimal polynomial in ``x`` for the base, inverting ``x`` modulo this
- poly (which generates a new polynomial) and then substituting the
- original base expression for ``x`` in this last polynomial.
- We return the transformed expression, and we record the defining
- equations for new symbols using the ``update_mapping()`` function.
- """
- if ex.is_Atom:
- if ex is S.ImaginaryUnit:
- if ex not in mapping:
- return update_mapping(ex, 2, 1)
- else:
- return symbols[ex]
- elif ex.is_Rational:
- return ex
- elif ex.is_Add:
- return Add(*[ bottom_up_scan(g) for g in ex.args ])
- elif ex.is_Mul:
- return Mul(*[ bottom_up_scan(g) for g in ex.args ])
- elif ex.is_Pow:
- if ex.exp.is_Rational:
- if ex.exp < 0:
- minpoly_base = _minpoly_groebner(ex.base, x, cls)
- inverse = invert(x, minpoly_base).as_expr()
- base_inv = inverse.subs(x, ex.base).expand()
- if ex.exp == -1:
- return bottom_up_scan(base_inv)
- else:
- ex = base_inv**(-ex.exp)
- if not ex.exp.is_Integer:
- base, exp = (
- ex.base**ex.exp.p).expand(), Rational(1, ex.exp.q)
- else:
- base, exp = ex.base, ex.exp
- base = bottom_up_scan(base)
- expr = base**exp
- if expr not in mapping:
- if exp.is_Integer:
- return expr.expand()
- else:
- return update_mapping(expr, 1 / exp, -base)
- else:
- return symbols[expr]
- elif ex.is_AlgebraicNumber:
- if ex not in mapping:
- return update_mapping(ex, ex.minpoly_of_element())
- else:
- return symbols[ex]
- raise NotAlgebraic("%s doesn't seem to be an algebraic number" % ex)
- def simpler_inverse(ex):
- """
- Returns True if it is more likely that the minimal polynomial
- algorithm works better with the inverse
- """
- if ex.is_Pow:
- if (1/ex.exp).is_integer and ex.exp < 0:
- if ex.base.is_Add:
- return True
- if ex.is_Mul:
- hit = True
- for p in ex.args:
- if p.is_Add:
- return False
- if p.is_Pow:
- if p.base.is_Add and p.exp > 0:
- return False
- if hit:
- return True
- return False
- inverted = False
- ex = expand_multinomial(ex)
- if ex.is_AlgebraicNumber:
- return ex.minpoly_of_element().as_expr(x)
- elif ex.is_Rational:
- result = ex.q*x - ex.p
- else:
- inverted = simpler_inverse(ex)
- if inverted:
- ex = ex**-1
- res = None
- if ex.is_Pow and (1/ex.exp).is_Integer:
- n = 1/ex.exp
- res = _minimal_polynomial_sq(ex.base, n, x)
- elif _is_sum_surds(ex):
- res = _minimal_polynomial_sq(ex, S.One, x)
- if res is not None:
- result = res
- if res is None:
- bus = bottom_up_scan(ex)
- F = [x - bus] + list(mapping.values())
- G = groebner(F, list(symbols.values()) + [x], order='lex')
- _, factors = factor_list(G[-1])
- # by construction G[-1] has root `ex`
- result = _choose_factor(factors, x, ex)
- if inverted:
- result = _invertx(result, x)
- if result.coeff(x**degree(result, x)) < 0:
- result = expand_mul(-result)
- return result
- @public
- def minpoly(ex, x=None, compose=True, polys=False, domain=None):
- """This is a synonym for :py:func:`~.minimal_polynomial`."""
- return minimal_polynomial(ex, x=x, compose=compose, polys=polys, domain=domain)
|