123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292 |
- from sympy.core.expr import Expr
- from sympy.core.symbol import Dummy
- from sympy.core.sympify import _sympify
- from sympy.polys.polyerrors import CoercionFailed
- from sympy.polys.polytools import Poly, parallel_poly_from_expr
- from sympy.polys.domains import QQ
- from sympy.polys.matrices import DomainMatrix
- from sympy.polys.matrices.domainscalar import DomainScalar
- class MutablePolyDenseMatrix:
- """
- A mutable matrix of objects from poly module or to operate with them.
- Examples
- ========
- >>> from sympy.polys.polymatrix import PolyMatrix
- >>> from sympy import Symbol, Poly
- >>> x = Symbol('x')
- >>> pm1 = PolyMatrix([[Poly(x**2, x), Poly(-x, x)], [Poly(x**3, x), Poly(-1 + x, x)]])
- >>> v1 = PolyMatrix([[1, 0], [-1, 0]], x)
- >>> pm1*v1
- PolyMatrix([
- [ x**2 + x, 0],
- [x**3 - x + 1, 0]], ring=QQ[x])
- >>> pm1.ring
- ZZ[x]
- >>> v1*pm1
- PolyMatrix([
- [ x**2, -x],
- [-x**2, x]], ring=QQ[x])
- >>> pm2 = PolyMatrix([[Poly(x**2, x, domain='QQ'), Poly(0, x, domain='QQ'), Poly(1, x, domain='QQ'), \
- Poly(x**3, x, domain='QQ'), Poly(0, x, domain='QQ'), Poly(-x**3, x, domain='QQ')]])
- >>> v2 = PolyMatrix([1, 0, 0, 0, 0, 0], x)
- >>> v2.ring
- QQ[x]
- >>> pm2*v2
- PolyMatrix([[x**2]], ring=QQ[x])
- """
- def __new__(cls, *args, ring=None):
- if not args:
- # PolyMatrix(ring=QQ[x])
- if ring is None:
- raise TypeError("The ring needs to be specified for an empty PolyMatrix")
- rows, cols, items, gens = 0, 0, [], ()
- elif isinstance(args[0], list):
- elements, gens = args[0], args[1:]
- if not elements:
- # PolyMatrix([])
- rows, cols, items = 0, 0, []
- elif isinstance(elements[0], (list, tuple)):
- # PolyMatrix([[1, 2]], x)
- rows, cols = len(elements), len(elements[0])
- items = [e for row in elements for e in row]
- else:
- # PolyMatrix([1, 2], x)
- rows, cols = len(elements), 1
- items = elements
- elif [type(a) for a in args[:3]] == [int, int, list]:
- # PolyMatrix(2, 2, [1, 2, 3, 4], x)
- rows, cols, items, gens = args[0], args[1], args[2], args[3:]
- elif [type(a) for a in args[:3]] == [int, int, type(lambda: 0)]:
- # PolyMatrix(2, 2, lambda i, j: i+j, x)
- rows, cols, func, gens = args[0], args[1], args[2], args[3:]
- items = [func(i, j) for i in range(rows) for j in range(cols)]
- else:
- raise TypeError("Invalid arguments")
- # PolyMatrix([[1]], x, y) vs PolyMatrix([[1]], (x, y))
- if len(gens) == 1 and isinstance(gens[0], tuple):
- gens = gens[0]
- # gens is now a tuple (x, y)
- return cls.from_list(rows, cols, items, gens, ring)
- @classmethod
- def from_list(cls, rows, cols, items, gens, ring):
- # items can be Expr, Poly, or a mix of Expr and Poly
- items = [_sympify(item) for item in items]
- if items and all(isinstance(item, Poly) for item in items):
- polys = True
- else:
- polys = False
- # Identify the ring for the polys
- if ring is not None:
- # Parse a domain string like 'QQ[x]'
- if isinstance(ring, str):
- ring = Poly(0, Dummy(), domain=ring).domain
- elif polys:
- p = items[0]
- for p2 in items[1:]:
- p, _ = p.unify(p2)
- ring = p.domain[p.gens]
- else:
- items, info = parallel_poly_from_expr(items, gens, field=True)
- ring = info['domain'][info['gens']]
- polys = True
- # Efficiently convert when all elements are Poly
- if polys:
- p_ring = Poly(0, ring.symbols, domain=ring.domain)
- to_ring = ring.ring.from_list
- convert_poly = lambda p: to_ring(p.unify(p_ring)[0].rep.rep)
- elements = [convert_poly(p) for p in items]
- else:
- convert_expr = ring.from_sympy
- elements = [convert_expr(e.as_expr()) for e in items]
- # Convert to domain elements and construct DomainMatrix
- elements_lol = [[elements[i*cols + j] for j in range(cols)] for i in range(rows)]
- dm = DomainMatrix(elements_lol, (rows, cols), ring)
- return cls.from_dm(dm)
- @classmethod
- def from_dm(cls, dm):
- obj = super().__new__(cls)
- dm = dm.to_sparse()
- R = dm.domain
- obj._dm = dm
- obj.ring = R
- obj.domain = R.domain
- obj.gens = R.symbols
- return obj
- def to_Matrix(self):
- return self._dm.to_Matrix()
- @classmethod
- def from_Matrix(cls, other, *gens, ring=None):
- return cls(*other.shape, other.flat(), *gens, ring=ring)
- def set_gens(self, gens):
- return self.from_Matrix(self.to_Matrix(), gens)
- def __repr__(self):
- if self.rows * self.cols:
- return 'Poly' + repr(self.to_Matrix())[:-1] + f', ring={self.ring})'
- else:
- return f'PolyMatrix({self.rows}, {self.cols}, [], ring={self.ring})'
- @property
- def shape(self):
- return self._dm.shape
- @property
- def rows(self):
- return self.shape[0]
- @property
- def cols(self):
- return self.shape[1]
- def __len__(self):
- return self.rows * self.cols
- def __getitem__(self, key):
- def to_poly(v):
- ground = self._dm.domain.domain
- gens = self._dm.domain.symbols
- return Poly(v.to_dict(), gens, domain=ground)
- dm = self._dm
- if isinstance(key, slice):
- items = dm.flat()[key]
- return [to_poly(item) for item in items]
- elif isinstance(key, int):
- i, j = divmod(key, self.cols)
- e = dm[i,j]
- return to_poly(e.element)
- i, j = key
- if isinstance(i, int) and isinstance(j, int):
- return to_poly(dm[i, j].element)
- else:
- return self.from_dm(dm[i, j])
- def __eq__(self, other):
- if not isinstance(self, type(other)):
- return NotImplemented
- return self._dm == other._dm
- def __add__(self, other):
- if isinstance(other, type(self)):
- return self.from_dm(self._dm + other._dm)
- return NotImplemented
- def __sub__(self, other):
- if isinstance(other, type(self)):
- return self.from_dm(self._dm - other._dm)
- return NotImplemented
- def __mul__(self, other):
- if isinstance(other, type(self)):
- return self.from_dm(self._dm * other._dm)
- elif isinstance(other, int):
- other = _sympify(other)
- if isinstance(other, Expr):
- Kx = self.ring
- try:
- other_ds = DomainScalar(Kx.from_sympy(other), Kx)
- except (CoercionFailed, ValueError):
- other_ds = DomainScalar.from_sympy(other)
- return self.from_dm(self._dm * other_ds)
- return NotImplemented
- def __rmul__(self, other):
- if isinstance(other, int):
- other = _sympify(other)
- if isinstance(other, Expr):
- other_ds = DomainScalar.from_sympy(other)
- return self.from_dm(other_ds * self._dm)
- return NotImplemented
- def __truediv__(self, other):
- if isinstance(other, Poly):
- other = other.as_expr()
- elif isinstance(other, int):
- other = _sympify(other)
- if not isinstance(other, Expr):
- return NotImplemented
- other = self.domain.from_sympy(other)
- inverse = self.ring.convert_from(1/other, self.domain)
- inverse = DomainScalar(inverse, self.ring)
- dm = self._dm * inverse
- return self.from_dm(dm)
- def __neg__(self):
- return self.from_dm(-self._dm)
- def transpose(self):
- return self.from_dm(self._dm.transpose())
- def row_join(self, other):
- dm = DomainMatrix.hstack(self._dm, other._dm)
- return self.from_dm(dm)
- def col_join(self, other):
- dm = DomainMatrix.vstack(self._dm, other._dm)
- return self.from_dm(dm)
- def applyfunc(self, func):
- M = self.to_Matrix().applyfunc(func)
- return self.from_Matrix(M, self.gens)
- @classmethod
- def eye(cls, n, gens):
- return cls.from_dm(DomainMatrix.eye(n, QQ[gens]))
- @classmethod
- def zeros(cls, m, n, gens):
- return cls.from_dm(DomainMatrix.zeros((m, n), QQ[gens]))
- def rref(self, simplify='ignore', normalize_last='ignore'):
- # If this is K[x] then computes RREF in ground field K.
- if not (self.domain.is_Field and all(p.is_ground for p in self)):
- raise ValueError("PolyMatrix rref is only for ground field elements")
- dm = self._dm
- dm_ground = dm.convert_to(dm.domain.domain)
- dm_rref, pivots = dm_ground.rref()
- dm_rref = dm_rref.convert_to(dm.domain)
- return self.from_dm(dm_rref), pivots
- def nullspace(self):
- # If this is K[x] then computes nullspace in ground field K.
- if not (self.domain.is_Field and all(p.is_ground for p in self)):
- raise ValueError("PolyMatrix nullspace is only for ground field elements")
- dm = self._dm
- K, Kx = self.domain, self.ring
- dm_null_rows = dm.convert_to(K).nullspace().convert_to(Kx)
- dm_null = dm_null_rows.transpose()
- dm_basis = [dm_null[:,i] for i in range(dm_null.shape[1])]
- return [self.from_dm(dmvec) for dmvec in dm_basis]
- def rank(self):
- return self.cols - len(self.nullspace())
- MutablePolyMatrix = PolyMatrix = MutablePolyDenseMatrix
|