123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339 |
- """Functions for generating interesting polynomials, e.g. for benchmarking. """
- from sympy.core import Add, Mul, Symbol, sympify, Dummy, symbols
- from sympy.core.containers import Tuple
- from sympy.core.singleton import S
- from sympy.functions.elementary.miscellaneous import sqrt
- from sympy.ntheory import nextprime
- from sympy.polys.densearith import (
- dmp_add_term, dmp_neg, dmp_mul, dmp_sqr
- )
- from sympy.polys.densebasic import (
- dmp_zero, dmp_one, dmp_ground,
- dup_from_raw_dict, dmp_raise, dup_random
- )
- from sympy.polys.domains import ZZ
- from sympy.polys.factortools import dup_zz_cyclotomic_poly
- from sympy.polys.polyclasses import DMP
- from sympy.polys.polytools import Poly, PurePoly
- from sympy.polys.polyutils import _analyze_gens
- from sympy.utilities import subsets, public, filldedent
- @public
- def swinnerton_dyer_poly(n, x=None, polys=False):
- """Generates n-th Swinnerton-Dyer polynomial in `x`.
- Parameters
- ----------
- n : int
- `n` decides the order of polynomial
- x : optional
- polys : bool, optional
- ``polys=True`` returns an expression, otherwise
- (default) returns an expression.
- """
- from .numberfields import minimal_polynomial
- if n <= 0:
- raise ValueError(
- "Cannot generate Swinnerton-Dyer polynomial of order %s" % n)
- if x is not None:
- sympify(x)
- else:
- x = Dummy('x')
- if n > 3:
- p = 2
- a = [sqrt(2)]
- for i in range(2, n + 1):
- p = nextprime(p)
- a.append(sqrt(p))
- return minimal_polynomial(Add(*a), x, polys=polys)
- if n == 1:
- ex = x**2 - 2
- elif n == 2:
- ex = x**4 - 10*x**2 + 1
- elif n == 3:
- ex = x**8 - 40*x**6 + 352*x**4 - 960*x**2 + 576
- return PurePoly(ex, x) if polys else ex
- @public
- def cyclotomic_poly(n, x=None, polys=False):
- """Generates cyclotomic polynomial of order `n` in `x`.
- Parameters
- ----------
- n : int
- `n` decides the order of polynomial
- x : optional
- polys : bool, optional
- ``polys=True`` returns an expression, otherwise
- (default) returns an expression.
- """
- if n <= 0:
- raise ValueError(
- "Cannot generate cyclotomic polynomial of order %s" % n)
- poly = DMP(dup_zz_cyclotomic_poly(int(n), ZZ), ZZ)
- if x is not None:
- poly = Poly.new(poly, x)
- else:
- poly = PurePoly.new(poly, Dummy('x'))
- return poly if polys else poly.as_expr()
- @public
- def symmetric_poly(n, *gens, **args):
- """Generates symmetric polynomial of order `n`.
- Returns a Poly object when ``polys=True``, otherwise
- (default) returns an expression.
- """
- # TODO: use an explicit keyword argument
- gens = _analyze_gens(gens)
- if n < 0 or n > len(gens) or not gens:
- raise ValueError("Cannot generate symmetric polynomial of order %s for %s" % (n, gens))
- elif not n:
- poly = S.One
- else:
- poly = Add(*[Mul(*s) for s in subsets(gens, int(n))])
- if not args.get('polys', False):
- return poly
- else:
- return Poly(poly, *gens)
- @public
- def random_poly(x, n, inf, sup, domain=ZZ, polys=False):
- """Generates a polynomial of degree ``n`` with coefficients in
- ``[inf, sup]``.
- Parameters
- ----------
- x
- `x` is the independent term of polynomial
- n : int
- `n` decides the order of polynomial
- inf
- Lower limit of range in which coefficients lie
- sup
- Upper limit of range in which coefficients lie
- domain : optional
- Decides what ring the coefficients are supposed
- to belong. Default is set to Integers.
- polys : bool, optional
- ``polys=True`` returns an expression, otherwise
- (default) returns an expression.
- """
- poly = Poly(dup_random(n, inf, sup, domain), x, domain=domain)
- return poly if polys else poly.as_expr()
- @public
- def interpolating_poly(n, x, X='x', Y='y'):
- """Construct Lagrange interpolating polynomial for ``n``
- data points. If a sequence of values are given for ``X`` and ``Y``
- then the first ``n`` values will be used.
- """
- ok = getattr(x, 'free_symbols', None)
- if isinstance(X, str):
- X = symbols("%s:%s" % (X, n))
- elif ok and ok & Tuple(*X).free_symbols:
- ok = False
- if isinstance(Y, str):
- Y = symbols("%s:%s" % (Y, n))
- elif ok and ok & Tuple(*Y).free_symbols:
- ok = False
- if not ok:
- raise ValueError(filldedent('''
- Expecting symbol for x that does not appear in X or Y.
- Use `interpolate(list(zip(X, Y)), x)` instead.'''))
- coeffs = []
- numert = Mul(*[x - X[i] for i in range(n)])
- for i in range(n):
- numer = numert/(x - X[i])
- denom = Mul(*[(X[i] - X[j]) for j in range(n) if i != j])
- coeffs.append(numer/denom)
- return Add(*[coeff*y for coeff, y in zip(coeffs, Y)])
- def fateman_poly_F_1(n):
- """Fateman's GCD benchmark: trivial GCD """
- Y = [Symbol('y_' + str(i)) for i in range(n + 1)]
- y_0, y_1 = Y[0], Y[1]
- u = y_0 + Add(*[y for y in Y[1:]])
- v = y_0**2 + Add(*[y**2 for y in Y[1:]])
- F = ((u + 1)*(u + 2)).as_poly(*Y)
- G = ((v + 1)*(-3*y_1*y_0**2 + y_1**2 - 1)).as_poly(*Y)
- H = Poly(1, *Y)
- return F, G, H
- def dmp_fateman_poly_F_1(n, K):
- """Fateman's GCD benchmark: trivial GCD """
- u = [K(1), K(0)]
- for i in range(n):
- u = [dmp_one(i, K), u]
- v = [K(1), K(0), K(0)]
- for i in range(0, n):
- v = [dmp_one(i, K), dmp_zero(i), v]
- m = n - 1
- U = dmp_add_term(u, dmp_ground(K(1), m), 0, n, K)
- V = dmp_add_term(u, dmp_ground(K(2), m), 0, n, K)
- f = [[-K(3), K(0)], [], [K(1), K(0), -K(1)]]
- W = dmp_add_term(v, dmp_ground(K(1), m), 0, n, K)
- Y = dmp_raise(f, m, 1, K)
- F = dmp_mul(U, V, n, K)
- G = dmp_mul(W, Y, n, K)
- H = dmp_one(n, K)
- return F, G, H
- def fateman_poly_F_2(n):
- """Fateman's GCD benchmark: linearly dense quartic inputs """
- Y = [Symbol('y_' + str(i)) for i in range(n + 1)]
- y_0 = Y[0]
- u = Add(*[y for y in Y[1:]])
- H = Poly((y_0 + u + 1)**2, *Y)
- F = Poly((y_0 - u - 2)**2, *Y)
- G = Poly((y_0 + u + 2)**2, *Y)
- return H*F, H*G, H
- def dmp_fateman_poly_F_2(n, K):
- """Fateman's GCD benchmark: linearly dense quartic inputs """
- u = [K(1), K(0)]
- for i in range(n - 1):
- u = [dmp_one(i, K), u]
- m = n - 1
- v = dmp_add_term(u, dmp_ground(K(2), m - 1), 0, n, K)
- f = dmp_sqr([dmp_one(m, K), dmp_neg(v, m, K)], n, K)
- g = dmp_sqr([dmp_one(m, K), v], n, K)
- v = dmp_add_term(u, dmp_one(m - 1, K), 0, n, K)
- h = dmp_sqr([dmp_one(m, K), v], n, K)
- return dmp_mul(f, h, n, K), dmp_mul(g, h, n, K), h
- def fateman_poly_F_3(n):
- """Fateman's GCD benchmark: sparse inputs (deg f ~ vars f) """
- Y = [Symbol('y_' + str(i)) for i in range(n + 1)]
- y_0 = Y[0]
- u = Add(*[y**(n + 1) for y in Y[1:]])
- H = Poly((y_0**(n + 1) + u + 1)**2, *Y)
- F = Poly((y_0**(n + 1) - u - 2)**2, *Y)
- G = Poly((y_0**(n + 1) + u + 2)**2, *Y)
- return H*F, H*G, H
- def dmp_fateman_poly_F_3(n, K):
- """Fateman's GCD benchmark: sparse inputs (deg f ~ vars f) """
- u = dup_from_raw_dict({n + 1: K.one}, K)
- for i in range(0, n - 1):
- u = dmp_add_term([u], dmp_one(i, K), n + 1, i + 1, K)
- v = dmp_add_term(u, dmp_ground(K(2), n - 2), 0, n, K)
- f = dmp_sqr(
- dmp_add_term([dmp_neg(v, n - 1, K)], dmp_one(n - 1, K), n + 1, n, K), n, K)
- g = dmp_sqr(dmp_add_term([v], dmp_one(n - 1, K), n + 1, n, K), n, K)
- v = dmp_add_term(u, dmp_one(n - 2, K), 0, n - 1, K)
- h = dmp_sqr(dmp_add_term([v], dmp_one(n - 1, K), n + 1, n, K), n, K)
- return dmp_mul(f, h, n, K), dmp_mul(g, h, n, K), h
- # A few useful polynomials from Wang's paper ('78).
- from sympy.polys.rings import ring
- def _f_0():
- R, x, y, z = ring("x,y,z", ZZ)
- return x**2*y*z**2 + 2*x**2*y*z + 3*x**2*y + 2*x**2 + 3*x + 4*y**2*z**2 + 5*y**2*z + 6*y**2 + y*z**2 + 2*y*z + y + 1
- def _f_1():
- R, x, y, z = ring("x,y,z", ZZ)
- return x**3*y*z + x**2*y**2*z**2 + x**2*y**2 + 20*x**2*y*z + 30*x**2*y + x**2*z**2 + 10*x**2*z + x*y**3*z + 30*x*y**2*z + 20*x*y**2 + x*y*z**3 + 10*x*y*z**2 + x*y*z + 610*x*y + 20*x*z**2 + 230*x*z + 300*x + y**2*z**2 + 10*y**2*z + 30*y*z**2 + 320*y*z + 200*y + 600*z + 6000
- def _f_2():
- R, x, y, z = ring("x,y,z", ZZ)
- return x**5*y**3 + x**5*y**2*z + x**5*y*z**2 + x**5*z**3 + x**3*y**2 + x**3*y*z + 90*x**3*y + 90*x**3*z + x**2*y**2*z - 11*x**2*y**2 + x**2*z**3 - 11*x**2*z**2 + y*z - 11*y + 90*z - 990
- def _f_3():
- R, x, y, z = ring("x,y,z", ZZ)
- return x**5*y**2 + x**4*z**4 + x**4 + x**3*y**3*z + x**3*z + x**2*y**4 + x**2*y**3*z**3 + x**2*y*z**5 + x**2*y*z + x*y**2*z**4 + x*y**2 + x*y*z**7 + x*y*z**3 + x*y*z**2 + y**2*z + y*z**4
- def _f_4():
- R, x, y, z = ring("x,y,z", ZZ)
- return -x**9*y**8*z - x**8*y**5*z**3 - x**7*y**12*z**2 - 5*x**7*y**8 - x**6*y**9*z**4 + x**6*y**7*z**3 + 3*x**6*y**7*z - 5*x**6*y**5*z**2 - x**6*y**4*z**3 + x**5*y**4*z**5 + 3*x**5*y**4*z**3 - x**5*y*z**5 + x**4*y**11*z**4 + 3*x**4*y**11*z**2 - x**4*y**8*z**4 + 5*x**4*y**7*z**2 + 15*x**4*y**7 - 5*x**4*y**4*z**2 + x**3*y**8*z**6 + 3*x**3*y**8*z**4 - x**3*y**5*z**6 + 5*x**3*y**4*z**4 + 15*x**3*y**4*z**2 + x**3*y**3*z**5 + 3*x**3*y**3*z**3 - 5*x**3*y*z**4 + x**2*z**7 + 3*x**2*z**5 + x*y**7*z**6 + 3*x*y**7*z**4 + 5*x*y**3*z**4 + 15*x*y**3*z**2 + y**4*z**8 + 3*y**4*z**6 + 5*z**6 + 15*z**4
- def _f_5():
- R, x, y, z = ring("x,y,z", ZZ)
- return -x**3 - 3*x**2*y + 3*x**2*z - 3*x*y**2 + 6*x*y*z - 3*x*z**2 - y**3 + 3*y**2*z - 3*y*z**2 + z**3
- def _f_6():
- R, x, y, z, t = ring("x,y,z,t", ZZ)
- return 2115*x**4*y + 45*x**3*z**3*t**2 - 45*x**3*t**2 - 423*x*y**4 - 47*x*y**3 + 141*x*y*z**3 + 94*x*y*z*t - 9*y**3*z**3*t**2 + 9*y**3*t**2 - y**2*z**3*t**2 + y**2*t**2 + 3*z**6*t**2 + 2*z**4*t**3 - 3*z**3*t**2 - 2*z*t**3
- def _w_1():
- R, x, y, z = ring("x,y,z", ZZ)
- return 4*x**6*y**4*z**2 + 4*x**6*y**3*z**3 - 4*x**6*y**2*z**4 - 4*x**6*y*z**5 + x**5*y**4*z**3 + 12*x**5*y**3*z - x**5*y**2*z**5 + 12*x**5*y**2*z**2 - 12*x**5*y*z**3 - 12*x**5*z**4 + 8*x**4*y**4 + 6*x**4*y**3*z**2 + 8*x**4*y**3*z - 4*x**4*y**2*z**4 + 4*x**4*y**2*z**3 - 8*x**4*y**2*z**2 - 4*x**4*y*z**5 - 2*x**4*y*z**4 - 8*x**4*y*z**3 + 2*x**3*y**4*z + x**3*y**3*z**3 - x**3*y**2*z**5 - 2*x**3*y**2*z**3 + 9*x**3*y**2*z - 12*x**3*y*z**3 + 12*x**3*y*z**2 - 12*x**3*z**4 + 3*x**3*z**3 + 6*x**2*y**3 - 6*x**2*y**2*z**2 + 8*x**2*y**2*z - 2*x**2*y*z**4 - 8*x**2*y*z**3 + 2*x**2*y*z**2 + 2*x*y**3*z - 2*x*y**2*z**3 - 3*x*y*z + 3*x*z**3 - 2*y**2 + 2*y*z**2
- def _w_2():
- R, x, y = ring("x,y", ZZ)
- return 24*x**8*y**3 + 48*x**8*y**2 + 24*x**7*y**5 - 72*x**7*y**2 + 25*x**6*y**4 + 2*x**6*y**3 + 4*x**6*y + 8*x**6 + x**5*y**6 + x**5*y**3 - 12*x**5 + x**4*y**5 - x**4*y**4 - 2*x**4*y**3 + 292*x**4*y**2 - x**3*y**6 + 3*x**3*y**3 - x**2*y**5 + 12*x**2*y**3 + 48*x**2 - 12*y**3
- def f_polys():
- return _f_0(), _f_1(), _f_2(), _f_3(), _f_4(), _f_5(), _f_6()
- def w_polys():
- return _w_1(), _w_2()
|