123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337 |
- """
- Javascript code printer
- The JavascriptCodePrinter converts single SymPy expressions into single
- Javascript expressions, using the functions defined in the Javascript
- Math object where possible.
- """
- from typing import Any, Dict as tDict
- from sympy.core import S
- from sympy.printing.codeprinter import CodePrinter
- from sympy.printing.precedence import precedence, PRECEDENCE
- # dictionary mapping SymPy function to (argument_conditions, Javascript_function).
- # Used in JavascriptCodePrinter._print_Function(self)
- known_functions = {
- 'Abs': 'Math.abs',
- 'acos': 'Math.acos',
- 'acosh': 'Math.acosh',
- 'asin': 'Math.asin',
- 'asinh': 'Math.asinh',
- 'atan': 'Math.atan',
- 'atan2': 'Math.atan2',
- 'atanh': 'Math.atanh',
- 'ceiling': 'Math.ceil',
- 'cos': 'Math.cos',
- 'cosh': 'Math.cosh',
- 'exp': 'Math.exp',
- 'floor': 'Math.floor',
- 'log': 'Math.log',
- 'Max': 'Math.max',
- 'Min': 'Math.min',
- 'sign': 'Math.sign',
- 'sin': 'Math.sin',
- 'sinh': 'Math.sinh',
- 'tan': 'Math.tan',
- 'tanh': 'Math.tanh',
- }
- class JavascriptCodePrinter(CodePrinter):
- """"A Printer to convert Python expressions to strings of JavaScript code
- """
- printmethod = '_javascript'
- language = 'JavaScript'
- _default_settings = {
- 'order': None,
- 'full_prec': 'auto',
- 'precision': 17,
- 'user_functions': {},
- 'human': True,
- 'allow_unknown_functions': False,
- 'contract': True,
- } # type: tDict[str, Any]
- def __init__(self, settings={}):
- CodePrinter.__init__(self, settings)
- self.known_functions = dict(known_functions)
- userfuncs = settings.get('user_functions', {})
- self.known_functions.update(userfuncs)
- def _rate_index_position(self, p):
- return p*5
- def _get_statement(self, codestring):
- return "%s;" % codestring
- def _get_comment(self, text):
- return "// {}".format(text)
- def _declare_number_const(self, name, value):
- return "var {} = {};".format(name, value.evalf(self._settings['precision']))
- def _format_code(self, lines):
- return self.indent_code(lines)
- def _traverse_matrix_indices(self, mat):
- rows, cols = mat.shape
- return ((i, j) for i in range(rows) for j in range(cols))
- def _get_loop_opening_ending(self, indices):
- open_lines = []
- close_lines = []
- loopstart = "for (var %(varble)s=%(start)s; %(varble)s<%(end)s; %(varble)s++){"
- for i in indices:
- # Javascript arrays start at 0 and end at dimension-1
- open_lines.append(loopstart % {
- 'varble': self._print(i.label),
- 'start': self._print(i.lower),
- 'end': self._print(i.upper + 1)})
- close_lines.append("}")
- return open_lines, close_lines
- def _print_Pow(self, expr):
- PREC = precedence(expr)
- if expr.exp == -1:
- return '1/%s' % (self.parenthesize(expr.base, PREC))
- elif expr.exp == 0.5:
- return 'Math.sqrt(%s)' % self._print(expr.base)
- elif expr.exp == S.One/3:
- return 'Math.cbrt(%s)' % self._print(expr.base)
- else:
- return 'Math.pow(%s, %s)' % (self._print(expr.base),
- self._print(expr.exp))
- def _print_Rational(self, expr):
- p, q = int(expr.p), int(expr.q)
- return '%d/%d' % (p, q)
- def _print_Mod(self, expr):
- num, den = expr.args
- PREC = precedence(expr)
- snum, sden = [self.parenthesize(arg, PREC) for arg in expr.args]
- # % is remainder (same sign as numerator), not modulo (same sign as
- # denominator), in js. Hence, % only works as modulo if both numbers
- # have the same sign
- if (num.is_nonnegative and den.is_nonnegative or
- num.is_nonpositive and den.is_nonpositive):
- return f"{snum} % {sden}"
- return f"(({snum} % {sden}) + {sden}) % {sden}"
- def _print_Relational(self, expr):
- lhs_code = self._print(expr.lhs)
- rhs_code = self._print(expr.rhs)
- op = expr.rel_op
- return "{} {} {}".format(lhs_code, op, rhs_code)
- def _print_Indexed(self, expr):
- # calculate index for 1d array
- dims = expr.shape
- elem = S.Zero
- offset = S.One
- for i in reversed(range(expr.rank)):
- elem += expr.indices[i]*offset
- offset *= dims[i]
- return "%s[%s]" % (self._print(expr.base.label), self._print(elem))
- def _print_Idx(self, expr):
- return self._print(expr.label)
- def _print_Exp1(self, expr):
- return "Math.E"
- def _print_Pi(self, expr):
- return 'Math.PI'
- def _print_Infinity(self, expr):
- return 'Number.POSITIVE_INFINITY'
- def _print_NegativeInfinity(self, expr):
- return 'Number.NEGATIVE_INFINITY'
- def _print_Piecewise(self, expr):
- from sympy.codegen.ast import Assignment
- if expr.args[-1].cond != True:
- # We need the last conditional to be a True, otherwise the resulting
- # function may not return a result.
- raise ValueError("All Piecewise expressions must contain an "
- "(expr, True) statement to be used as a default "
- "condition. Without one, the generated "
- "expression may not evaluate to anything under "
- "some condition.")
- lines = []
- if expr.has(Assignment):
- for i, (e, c) in enumerate(expr.args):
- if i == 0:
- lines.append("if (%s) {" % self._print(c))
- elif i == len(expr.args) - 1 and c == True:
- lines.append("else {")
- else:
- lines.append("else if (%s) {" % self._print(c))
- code0 = self._print(e)
- lines.append(code0)
- lines.append("}")
- return "\n".join(lines)
- else:
- # The piecewise was used in an expression, need to do inline
- # operators. This has the downside that inline operators will
- # not work for statements that span multiple lines (Matrix or
- # Indexed expressions).
- ecpairs = ["((%s) ? (\n%s\n)\n" % (self._print(c), self._print(e))
- for e, c in expr.args[:-1]]
- last_line = ": (\n%s\n)" % self._print(expr.args[-1].expr)
- return ": ".join(ecpairs) + last_line + " ".join([")"*len(ecpairs)])
- def _print_MatrixElement(self, expr):
- return "{}[{}]".format(self.parenthesize(expr.parent,
- PRECEDENCE["Atom"], strict=True),
- expr.j + expr.i*expr.parent.shape[1])
- def indent_code(self, code):
- """Accepts a string of code or a list of code lines"""
- if isinstance(code, str):
- code_lines = self.indent_code(code.splitlines(True))
- return ''.join(code_lines)
- tab = " "
- inc_token = ('{', '(', '{\n', '(\n')
- dec_token = ('}', ')')
- code = [ line.lstrip(' \t') for line in code ]
- increase = [ int(any(map(line.endswith, inc_token))) for line in code ]
- decrease = [ int(any(map(line.startswith, dec_token)))
- for line in code ]
- pretty = []
- level = 0
- for n, line in enumerate(code):
- if line in ('', '\n'):
- pretty.append(line)
- continue
- level -= decrease[n]
- pretty.append("%s%s" % (tab*level, line))
- level += increase[n]
- return pretty
- def jscode(expr, assign_to=None, **settings):
- """Converts an expr to a string of javascript code
- Parameters
- ==========
- expr : Expr
- A SymPy expression to be converted.
- assign_to : optional
- When given, the argument is used as the name of the variable to which
- the expression is assigned. Can be a string, ``Symbol``,
- ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of
- line-wrapping, or for expressions that generate multi-line statements.
- precision : integer, optional
- The precision for numbers such as pi [default=15].
- user_functions : dict, optional
- A dictionary where keys are ``FunctionClass`` instances and values are
- their string representations. Alternatively, the dictionary value can
- be a list of tuples i.e. [(argument_test, js_function_string)]. See
- below for examples.
- human : bool, optional
- If True, the result is a single string that may contain some constant
- declarations for the number symbols. If False, the same information is
- returned in a tuple of (symbols_to_declare, not_supported_functions,
- code_text). [default=True].
- contract: bool, optional
- If True, ``Indexed`` instances are assumed to obey tensor contraction
- rules and the corresponding nested loops over indices are generated.
- Setting contract=False will not generate loops, instead the user is
- responsible to provide values for the indices in the code.
- [default=True].
- Examples
- ========
- >>> from sympy import jscode, symbols, Rational, sin, ceiling, Abs
- >>> x, tau = symbols("x, tau")
- >>> jscode((2*tau)**Rational(7, 2))
- '8*Math.sqrt(2)*Math.pow(tau, 7/2)'
- >>> jscode(sin(x), assign_to="s")
- 's = Math.sin(x);'
- Custom printing can be defined for certain types by passing a dictionary of
- "type" : "function" to the ``user_functions`` kwarg. Alternatively, the
- dictionary value can be a list of tuples i.e. [(argument_test,
- js_function_string)].
- >>> custom_functions = {
- ... "ceiling": "CEIL",
- ... "Abs": [(lambda x: not x.is_integer, "fabs"),
- ... (lambda x: x.is_integer, "ABS")]
- ... }
- >>> jscode(Abs(x) + ceiling(x), user_functions=custom_functions)
- 'fabs(x) + CEIL(x)'
- ``Piecewise`` expressions are converted into conditionals. If an
- ``assign_to`` variable is provided an if statement is created, otherwise
- the ternary operator is used. Note that if the ``Piecewise`` lacks a
- default term, represented by ``(expr, True)`` then an error will be thrown.
- This is to prevent generating an expression that may not evaluate to
- anything.
- >>> from sympy import Piecewise
- >>> expr = Piecewise((x + 1, x > 0), (x, True))
- >>> print(jscode(expr, tau))
- if (x > 0) {
- tau = x + 1;
- }
- else {
- tau = x;
- }
- Support for loops is provided through ``Indexed`` types. With
- ``contract=True`` these expressions will be turned into loops, whereas
- ``contract=False`` will just print the assignment expression that should be
- looped over:
- >>> from sympy import Eq, IndexedBase, Idx
- >>> len_y = 5
- >>> y = IndexedBase('y', shape=(len_y,))
- >>> t = IndexedBase('t', shape=(len_y,))
- >>> Dy = IndexedBase('Dy', shape=(len_y-1,))
- >>> i = Idx('i', len_y-1)
- >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
- >>> jscode(e.rhs, assign_to=e.lhs, contract=False)
- 'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'
- Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions
- must be provided to ``assign_to``. Note that any expression that can be
- generated normally can also exist inside a Matrix:
- >>> from sympy import Matrix, MatrixSymbol
- >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
- >>> A = MatrixSymbol('A', 3, 1)
- >>> print(jscode(mat, A))
- A[0] = Math.pow(x, 2);
- if (x > 0) {
- A[1] = x + 1;
- }
- else {
- A[1] = x;
- }
- A[2] = Math.sin(x);
- """
- return JavascriptCodePrinter(settings).doprint(expr, assign_to)
- def print_jscode(expr, **settings):
- """Prints the Javascript representation of the given expression.
- See jscode for the meaning of the optional arguments.
- """
- print(jscode(expr, **settings))
|