123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623 |
- """
- Rust code printer
- The `RustCodePrinter` converts SymPy expressions into Rust expressions.
- A complete code generator, which uses `rust_code` extensively, can be found
- in `sympy.utilities.codegen`. The `codegen` module can be used to generate
- complete source code files.
- """
- # Possible Improvement
- #
- # * make sure we follow Rust Style Guidelines_
- # * make use of pattern matching
- # * better support for reference
- # * generate generic code and use trait to make sure they have specific methods
- # * use crates_ to get more math support
- # - num_
- # + BigInt_, BigUint_
- # + Complex_
- # + Rational64_, Rational32_, BigRational_
- #
- # .. _crates: https://crates.io/
- # .. _Guidelines: https://github.com/rust-lang/rust/tree/master/src/doc/style
- # .. _num: http://rust-num.github.io/num/num/
- # .. _BigInt: http://rust-num.github.io/num/num/bigint/struct.BigInt.html
- # .. _BigUint: http://rust-num.github.io/num/num/bigint/struct.BigUint.html
- # .. _Complex: http://rust-num.github.io/num/num/complex/struct.Complex.html
- # .. _Rational32: http://rust-num.github.io/num/num/rational/type.Rational32.html
- # .. _Rational64: http://rust-num.github.io/num/num/rational/type.Rational64.html
- # .. _BigRational: http://rust-num.github.io/num/num/rational/type.BigRational.html
- from typing import Any, Dict as tDict
- from sympy.core import S, Rational, Float, Lambda
- from sympy.printing.codeprinter import CodePrinter
- # Rust's methods for integer and float can be found at here :
- #
- # * `Rust - Primitive Type f64 <https://doc.rust-lang.org/std/primitive.f64.html>`_
- # * `Rust - Primitive Type i64 <https://doc.rust-lang.org/std/primitive.i64.html>`_
- #
- # Function Style :
- #
- # 1. args[0].func(args[1:]), method with arguments
- # 2. args[0].func(), method without arguments
- # 3. args[1].func(), method without arguments (e.g. (e, x) => x.exp())
- # 4. func(args), function with arguments
- # dictionary mapping SymPy function to (argument_conditions, Rust_function).
- # Used in RustCodePrinter._print_Function(self)
- # f64 method in Rust
- known_functions = {
- # "": "is_nan",
- # "": "is_infinite",
- # "": "is_finite",
- # "": "is_normal",
- # "": "classify",
- "floor": "floor",
- "ceiling": "ceil",
- # "": "round",
- # "": "trunc",
- # "": "fract",
- "Abs": "abs",
- "sign": "signum",
- # "": "is_sign_positive",
- # "": "is_sign_negative",
- # "": "mul_add",
- "Pow": [(lambda base, exp: exp == -S.One, "recip", 2), # 1.0/x
- (lambda base, exp: exp == S.Half, "sqrt", 2), # x ** 0.5
- (lambda base, exp: exp == -S.Half, "sqrt().recip", 2), # 1/(x ** 0.5)
- (lambda base, exp: exp == Rational(1, 3), "cbrt", 2), # x ** (1/3)
- (lambda base, exp: base == S.One*2, "exp2", 3), # 2 ** x
- (lambda base, exp: exp.is_integer, "powi", 1), # x ** y, for i32
- (lambda base, exp: not exp.is_integer, "powf", 1)], # x ** y, for f64
- "exp": [(lambda exp: True, "exp", 2)], # e ** x
- "log": "ln",
- # "": "log", # number.log(base)
- # "": "log2",
- # "": "log10",
- # "": "to_degrees",
- # "": "to_radians",
- "Max": "max",
- "Min": "min",
- # "": "hypot", # (x**2 + y**2) ** 0.5
- "sin": "sin",
- "cos": "cos",
- "tan": "tan",
- "asin": "asin",
- "acos": "acos",
- "atan": "atan",
- "atan2": "atan2",
- # "": "sin_cos",
- # "": "exp_m1", # e ** x - 1
- # "": "ln_1p", # ln(1 + x)
- "sinh": "sinh",
- "cosh": "cosh",
- "tanh": "tanh",
- "asinh": "asinh",
- "acosh": "acosh",
- "atanh": "atanh",
- "sqrt": "sqrt", # To enable automatic rewrites
- }
- # i64 method in Rust
- # known_functions_i64 = {
- # "": "min_value",
- # "": "max_value",
- # "": "from_str_radix",
- # "": "count_ones",
- # "": "count_zeros",
- # "": "leading_zeros",
- # "": "trainling_zeros",
- # "": "rotate_left",
- # "": "rotate_right",
- # "": "swap_bytes",
- # "": "from_be",
- # "": "from_le",
- # "": "to_be", # to big endian
- # "": "to_le", # to little endian
- # "": "checked_add",
- # "": "checked_sub",
- # "": "checked_mul",
- # "": "checked_div",
- # "": "checked_rem",
- # "": "checked_neg",
- # "": "checked_shl",
- # "": "checked_shr",
- # "": "checked_abs",
- # "": "saturating_add",
- # "": "saturating_sub",
- # "": "saturating_mul",
- # "": "wrapping_add",
- # "": "wrapping_sub",
- # "": "wrapping_mul",
- # "": "wrapping_div",
- # "": "wrapping_rem",
- # "": "wrapping_neg",
- # "": "wrapping_shl",
- # "": "wrapping_shr",
- # "": "wrapping_abs",
- # "": "overflowing_add",
- # "": "overflowing_sub",
- # "": "overflowing_mul",
- # "": "overflowing_div",
- # "": "overflowing_rem",
- # "": "overflowing_neg",
- # "": "overflowing_shl",
- # "": "overflowing_shr",
- # "": "overflowing_abs",
- # "Pow": "pow",
- # "Abs": "abs",
- # "sign": "signum",
- # "": "is_positive",
- # "": "is_negnative",
- # }
- # These are the core reserved words in the Rust language. Taken from:
- # http://doc.rust-lang.org/grammar.html#keywords
- reserved_words = ['abstract',
- 'alignof',
- 'as',
- 'become',
- 'box',
- 'break',
- 'const',
- 'continue',
- 'crate',
- 'do',
- 'else',
- 'enum',
- 'extern',
- 'false',
- 'final',
- 'fn',
- 'for',
- 'if',
- 'impl',
- 'in',
- 'let',
- 'loop',
- 'macro',
- 'match',
- 'mod',
- 'move',
- 'mut',
- 'offsetof',
- 'override',
- 'priv',
- 'proc',
- 'pub',
- 'pure',
- 'ref',
- 'return',
- 'Self',
- 'self',
- 'sizeof',
- 'static',
- 'struct',
- 'super',
- 'trait',
- 'true',
- 'type',
- 'typeof',
- 'unsafe',
- 'unsized',
- 'use',
- 'virtual',
- 'where',
- 'while',
- 'yield']
- class RustCodePrinter(CodePrinter):
- """A printer to convert SymPy expressions to strings of Rust code"""
- printmethod = "_rust_code"
- language = "Rust"
- _default_settings = {
- 'order': None,
- 'full_prec': 'auto',
- 'precision': 17,
- 'user_functions': {},
- 'human': True,
- 'contract': True,
- 'dereference': set(),
- 'error_on_reserved': False,
- 'reserved_word_suffix': '_',
- 'inline': False,
- } # type: tDict[str, Any]
- def __init__(self, settings={}):
- CodePrinter.__init__(self, settings)
- self.known_functions = dict(known_functions)
- userfuncs = settings.get('user_functions', {})
- self.known_functions.update(userfuncs)
- self._dereference = set(settings.get('dereference', []))
- self.reserved_words = set(reserved_words)
- def _rate_index_position(self, p):
- return p*5
- def _get_statement(self, codestring):
- return "%s;" % codestring
- def _get_comment(self, text):
- return "// %s" % text
- def _declare_number_const(self, name, value):
- return "const %s: f64 = %s;" % (name, value)
- def _format_code(self, lines):
- return self.indent_code(lines)
- def _traverse_matrix_indices(self, mat):
- rows, cols = mat.shape
- return ((i, j) for i in range(rows) for j in range(cols))
- def _get_loop_opening_ending(self, indices):
- open_lines = []
- close_lines = []
- loopstart = "for %(var)s in %(start)s..%(end)s {"
- for i in indices:
- # Rust arrays start at 0 and end at dimension-1
- open_lines.append(loopstart % {
- 'var': self._print(i),
- 'start': self._print(i.lower),
- 'end': self._print(i.upper + 1)})
- close_lines.append("}")
- return open_lines, close_lines
- def _print_caller_var(self, expr):
- if len(expr.args) > 1:
- # for something like `sin(x + y + z)`,
- # make sure we can get '(x + y + z).sin()'
- # instead of 'x + y + z.sin()'
- return '(' + self._print(expr) + ')'
- elif expr.is_number:
- return self._print(expr, _type=True)
- else:
- return self._print(expr)
- def _print_Function(self, expr):
- """
- basic function for printing `Function`
- Function Style :
- 1. args[0].func(args[1:]), method with arguments
- 2. args[0].func(), method without arguments
- 3. args[1].func(), method without arguments (e.g. (e, x) => x.exp())
- 4. func(args), function with arguments
- """
- if expr.func.__name__ in self.known_functions:
- cond_func = self.known_functions[expr.func.__name__]
- func = None
- style = 1
- if isinstance(cond_func, str):
- func = cond_func
- else:
- for cond, func, style in cond_func:
- if cond(*expr.args):
- break
- if func is not None:
- if style == 1:
- ret = "%(var)s.%(method)s(%(args)s)" % {
- 'var': self._print_caller_var(expr.args[0]),
- 'method': func,
- 'args': self.stringify(expr.args[1:], ", ") if len(expr.args) > 1 else ''
- }
- elif style == 2:
- ret = "%(var)s.%(method)s()" % {
- 'var': self._print_caller_var(expr.args[0]),
- 'method': func,
- }
- elif style == 3:
- ret = "%(var)s.%(method)s()" % {
- 'var': self._print_caller_var(expr.args[1]),
- 'method': func,
- }
- else:
- ret = "%(func)s(%(args)s)" % {
- 'func': func,
- 'args': self.stringify(expr.args, ", "),
- }
- return ret
- elif hasattr(expr, '_imp_') and isinstance(expr._imp_, Lambda):
- # inlined function
- return self._print(expr._imp_(*expr.args))
- elif expr.func.__name__ in self._rewriteable_functions:
- # Simple rewrite to supported function possible
- target_f, required_fs = self._rewriteable_functions[expr.func.__name__]
- if self._can_print(target_f) and all(self._can_print(f) for f in required_fs):
- return self._print(expr.rewrite(target_f))
- else:
- return self._print_not_supported(expr)
- def _print_Pow(self, expr):
- if expr.base.is_integer and not expr.exp.is_integer:
- expr = type(expr)(Float(expr.base), expr.exp)
- return self._print(expr)
- return self._print_Function(expr)
- def _print_Float(self, expr, _type=False):
- ret = super()._print_Float(expr)
- if _type:
- return ret + '_f64'
- else:
- return ret
- def _print_Integer(self, expr, _type=False):
- ret = super()._print_Integer(expr)
- if _type:
- return ret + '_i32'
- else:
- return ret
- def _print_Rational(self, expr):
- p, q = int(expr.p), int(expr.q)
- return '%d_f64/%d.0' % (p, q)
- def _print_Relational(self, expr):
- lhs_code = self._print(expr.lhs)
- rhs_code = self._print(expr.rhs)
- op = expr.rel_op
- return "{} {} {}".format(lhs_code, op, rhs_code)
- def _print_Indexed(self, expr):
- # calculate index for 1d array
- dims = expr.shape
- elem = S.Zero
- offset = S.One
- for i in reversed(range(expr.rank)):
- elem += expr.indices[i]*offset
- offset *= dims[i]
- return "%s[%s]" % (self._print(expr.base.label), self._print(elem))
- def _print_Idx(self, expr):
- return expr.label.name
- def _print_Dummy(self, expr):
- return expr.name
- def _print_Exp1(self, expr, _type=False):
- return "E"
- def _print_Pi(self, expr, _type=False):
- return 'PI'
- def _print_Infinity(self, expr, _type=False):
- return 'INFINITY'
- def _print_NegativeInfinity(self, expr, _type=False):
- return 'NEG_INFINITY'
- def _print_BooleanTrue(self, expr, _type=False):
- return "true"
- def _print_BooleanFalse(self, expr, _type=False):
- return "false"
- def _print_bool(self, expr, _type=False):
- return str(expr).lower()
- def _print_NaN(self, expr, _type=False):
- return "NAN"
- def _print_Piecewise(self, expr):
- if expr.args[-1].cond != True:
- # We need the last conditional to be a True, otherwise the resulting
- # function may not return a result.
- raise ValueError("All Piecewise expressions must contain an "
- "(expr, True) statement to be used as a default "
- "condition. Without one, the generated "
- "expression may not evaluate to anything under "
- "some condition.")
- lines = []
- for i, (e, c) in enumerate(expr.args):
- if i == 0:
- lines.append("if (%s) {" % self._print(c))
- elif i == len(expr.args) - 1 and c == True:
- lines[-1] += " else {"
- else:
- lines[-1] += " else if (%s) {" % self._print(c)
- code0 = self._print(e)
- lines.append(code0)
- lines.append("}")
- if self._settings['inline']:
- return " ".join(lines)
- else:
- return "\n".join(lines)
- def _print_ITE(self, expr):
- from sympy.functions import Piecewise
- return self._print(expr.rewrite(Piecewise, deep=False))
- def _print_MatrixBase(self, A):
- if A.cols == 1:
- return "[%s]" % ", ".join(self._print(a) for a in A)
- else:
- raise ValueError("Full Matrix Support in Rust need Crates (https://crates.io/keywords/matrix).")
- def _print_SparseRepMatrix(self, mat):
- # do not allow sparse matrices to be made dense
- return self._print_not_supported(mat)
- def _print_MatrixElement(self, expr):
- return "%s[%s]" % (expr.parent,
- expr.j + expr.i*expr.parent.shape[1])
- def _print_Symbol(self, expr):
- name = super()._print_Symbol(expr)
- if expr in self._dereference:
- return '(*%s)' % name
- else:
- return name
- def _print_Assignment(self, expr):
- from sympy.tensor.indexed import IndexedBase
- lhs = expr.lhs
- rhs = expr.rhs
- if self._settings["contract"] and (lhs.has(IndexedBase) or
- rhs.has(IndexedBase)):
- # Here we check if there is looping to be done, and if so
- # print the required loops.
- return self._doprint_loops(rhs, lhs)
- else:
- lhs_code = self._print(lhs)
- rhs_code = self._print(rhs)
- return self._get_statement("%s = %s" % (lhs_code, rhs_code))
- def indent_code(self, code):
- """Accepts a string of code or a list of code lines"""
- if isinstance(code, str):
- code_lines = self.indent_code(code.splitlines(True))
- return ''.join(code_lines)
- tab = " "
- inc_token = ('{', '(', '{\n', '(\n')
- dec_token = ('}', ')')
- code = [ line.lstrip(' \t') for line in code ]
- increase = [ int(any(map(line.endswith, inc_token))) for line in code ]
- decrease = [ int(any(map(line.startswith, dec_token)))
- for line in code ]
- pretty = []
- level = 0
- for n, line in enumerate(code):
- if line in ('', '\n'):
- pretty.append(line)
- continue
- level -= decrease[n]
- pretty.append("%s%s" % (tab*level, line))
- level += increase[n]
- return pretty
- def rust_code(expr, assign_to=None, **settings):
- """Converts an expr to a string of Rust code
- Parameters
- ==========
- expr : Expr
- A SymPy expression to be converted.
- assign_to : optional
- When given, the argument is used as the name of the variable to which
- the expression is assigned. Can be a string, ``Symbol``,
- ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of
- line-wrapping, or for expressions that generate multi-line statements.
- precision : integer, optional
- The precision for numbers such as pi [default=15].
- user_functions : dict, optional
- A dictionary where the keys are string representations of either
- ``FunctionClass`` or ``UndefinedFunction`` instances and the values
- are their desired C string representations. Alternatively, the
- dictionary value can be a list of tuples i.e. [(argument_test,
- cfunction_string)]. See below for examples.
- dereference : iterable, optional
- An iterable of symbols that should be dereferenced in the printed code
- expression. These would be values passed by address to the function.
- For example, if ``dereference=[a]``, the resulting code would print
- ``(*a)`` instead of ``a``.
- human : bool, optional
- If True, the result is a single string that may contain some constant
- declarations for the number symbols. If False, the same information is
- returned in a tuple of (symbols_to_declare, not_supported_functions,
- code_text). [default=True].
- contract: bool, optional
- If True, ``Indexed`` instances are assumed to obey tensor contraction
- rules and the corresponding nested loops over indices are generated.
- Setting contract=False will not generate loops, instead the user is
- responsible to provide values for the indices in the code.
- [default=True].
- Examples
- ========
- >>> from sympy import rust_code, symbols, Rational, sin, ceiling, Abs, Function
- >>> x, tau = symbols("x, tau")
- >>> rust_code((2*tau)**Rational(7, 2))
- '8*1.4142135623731*tau.powf(7_f64/2.0)'
- >>> rust_code(sin(x), assign_to="s")
- 's = x.sin();'
- Simple custom printing can be defined for certain types by passing a
- dictionary of {"type" : "function"} to the ``user_functions`` kwarg.
- Alternatively, the dictionary value can be a list of tuples i.e.
- [(argument_test, cfunction_string)].
- >>> custom_functions = {
- ... "ceiling": "CEIL",
- ... "Abs": [(lambda x: not x.is_integer, "fabs", 4),
- ... (lambda x: x.is_integer, "ABS", 4)],
- ... "func": "f"
- ... }
- >>> func = Function('func')
- >>> rust_code(func(Abs(x) + ceiling(x)), user_functions=custom_functions)
- '(fabs(x) + x.CEIL()).f()'
- ``Piecewise`` expressions are converted into conditionals. If an
- ``assign_to`` variable is provided an if statement is created, otherwise
- the ternary operator is used. Note that if the ``Piecewise`` lacks a
- default term, represented by ``(expr, True)`` then an error will be thrown.
- This is to prevent generating an expression that may not evaluate to
- anything.
- >>> from sympy import Piecewise
- >>> expr = Piecewise((x + 1, x > 0), (x, True))
- >>> print(rust_code(expr, tau))
- tau = if (x > 0) {
- x + 1
- } else {
- x
- };
- Support for loops is provided through ``Indexed`` types. With
- ``contract=True`` these expressions will be turned into loops, whereas
- ``contract=False`` will just print the assignment expression that should be
- looped over:
- >>> from sympy import Eq, IndexedBase, Idx
- >>> len_y = 5
- >>> y = IndexedBase('y', shape=(len_y,))
- >>> t = IndexedBase('t', shape=(len_y,))
- >>> Dy = IndexedBase('Dy', shape=(len_y-1,))
- >>> i = Idx('i', len_y-1)
- >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
- >>> rust_code(e.rhs, assign_to=e.lhs, contract=False)
- 'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'
- Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions
- must be provided to ``assign_to``. Note that any expression that can be
- generated normally can also exist inside a Matrix:
- >>> from sympy import Matrix, MatrixSymbol
- >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
- >>> A = MatrixSymbol('A', 3, 1)
- >>> print(rust_code(mat, A))
- A = [x.powi(2), if (x > 0) {
- x + 1
- } else {
- x
- }, x.sin()];
- """
- return RustCodePrinter(settings).doprint(expr, assign_to)
- def print_rust_code(expr, **settings):
- """Prints Rust representation of the given expression."""
- print(rust_code(expr, **settings))
|