123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101 |
- """
- Convergence acceleration / extrapolation methods for series and
- sequences.
- References:
- Carl M. Bender & Steven A. Orszag, "Advanced Mathematical Methods for
- Scientists and Engineers: Asymptotic Methods and Perturbation Theory",
- Springer 1999. (Shanks transformation: pp. 368-375, Richardson
- extrapolation: pp. 375-377.)
- """
- from sympy.core.numbers import Integer
- from sympy.core.singleton import S
- from sympy.functions.combinatorial.factorials import factorial
- def richardson(A, k, n, N):
- """
- Calculate an approximation for lim k->oo A(k) using Richardson
- extrapolation with the terms A(n), A(n+1), ..., A(n+N+1).
- Choosing N ~= 2*n often gives good results.
- Examples
- ========
- A simple example is to calculate exp(1) using the limit definition.
- This limit converges slowly; n = 100 only produces two accurate
- digits:
- >>> from sympy.abc import n
- >>> e = (1 + 1/n)**n
- >>> print(round(e.subs(n, 100).evalf(), 10))
- 2.7048138294
- Richardson extrapolation with 11 appropriately chosen terms gives
- a value that is accurate to the indicated precision:
- >>> from sympy import E
- >>> from sympy.series.acceleration import richardson
- >>> print(round(richardson(e, n, 10, 20).evalf(), 10))
- 2.7182818285
- >>> print(round(E.evalf(), 10))
- 2.7182818285
- Another useful application is to speed up convergence of series.
- Computing 100 terms of the zeta(2) series 1/k**2 yields only
- two accurate digits:
- >>> from sympy.abc import k, n
- >>> from sympy import Sum
- >>> A = Sum(k**-2, (k, 1, n))
- >>> print(round(A.subs(n, 100).evalf(), 10))
- 1.6349839002
- Richardson extrapolation performs much better:
- >>> from sympy import pi
- >>> print(round(richardson(A, n, 10, 20).evalf(), 10))
- 1.6449340668
- >>> print(round(((pi**2)/6).evalf(), 10)) # Exact value
- 1.6449340668
- """
- s = S.Zero
- for j in range(0, N + 1):
- s += (A.subs(k, Integer(n + j)).doit() * (n + j)**N *
- S.NegativeOne**(j + N) / (factorial(j) * factorial(N - j)))
- return s
- def shanks(A, k, n, m=1):
- """
- Calculate an approximation for lim k->oo A(k) using the n-term Shanks
- transformation S(A)(n). With m > 1, calculate the m-fold recursive
- Shanks transformation S(S(...S(A)...))(n).
- The Shanks transformation is useful for summing Taylor series that
- converge slowly near a pole or singularity, e.g. for log(2):
- >>> from sympy.abc import k, n
- >>> from sympy import Sum, Integer
- >>> from sympy.series.acceleration import shanks
- >>> A = Sum(Integer(-1)**(k+1) / k, (k, 1, n))
- >>> print(round(A.subs(n, 100).doit().evalf(), 10))
- 0.6881721793
- >>> print(round(shanks(A, n, 25).evalf(), 10))
- 0.6931396564
- >>> print(round(shanks(A, n, 25, 5).evalf(), 10))
- 0.6931471806
- The correct value is 0.6931471805599453094172321215.
- """
- table = [A.subs(k, Integer(j)).doit() for j in range(n + m + 2)]
- table2 = table[:]
- for i in range(1, m + 1):
- for j in range(i, n + m + 1):
- x, y, z = table[j - 1], table[j], table[j + 1]
- table2[j] = (z*x - y**2) / (z + x - 2*y)
- table = table2[:]
- return table[n]
|