123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144 |
- from sympy.core.singleton import S
- from sympy.core.symbol import Symbol
- from sympy.core.logic import fuzzy_and, fuzzy_bool, fuzzy_not, fuzzy_or
- from sympy.core.relational import Eq
- from sympy.sets.sets import FiniteSet, Interval, Set, Union, ProductSet
- from sympy.sets.fancysets import Complexes, Reals, Range, Rationals
- from sympy.multipledispatch import Dispatcher
- _inf_sets = [S.Naturals, S.Naturals0, S.Integers, S.Rationals, S.Reals, S.Complexes]
- is_subset_sets = Dispatcher('is_subset_sets')
- @is_subset_sets.register(Set, Set)
- def _(a, b):
- return None
- @is_subset_sets.register(Interval, Interval)
- def _(a, b):
- # This is correct but can be made more comprehensive...
- if fuzzy_bool(a.start < b.start):
- return False
- if fuzzy_bool(a.end > b.end):
- return False
- if (b.left_open and not a.left_open and fuzzy_bool(Eq(a.start, b.start))):
- return False
- if (b.right_open and not a.right_open and fuzzy_bool(Eq(a.end, b.end))):
- return False
- @is_subset_sets.register(Interval, FiniteSet)
- def _(a_interval, b_fs):
- # An Interval can only be a subset of a finite set if it is finite
- # which can only happen if it has zero measure.
- if fuzzy_not(a_interval.measure.is_zero):
- return False
- @is_subset_sets.register(Interval, Union)
- def _(a_interval, b_u):
- if all(isinstance(s, (Interval, FiniteSet)) for s in b_u.args):
- intervals = [s for s in b_u.args if isinstance(s, Interval)]
- if all(fuzzy_bool(a_interval.start < s.start) for s in intervals):
- return False
- if all(fuzzy_bool(a_interval.end > s.end) for s in intervals):
- return False
- if a_interval.measure.is_nonzero:
- no_overlap = lambda s1, s2: fuzzy_or([
- fuzzy_bool(s1.end <= s2.start),
- fuzzy_bool(s1.start >= s2.end),
- ])
- if all(no_overlap(s, a_interval) for s in intervals):
- return False
- @is_subset_sets.register(Range, Range)
- def _(a, b):
- if a.step == b.step == 1:
- return fuzzy_and([fuzzy_bool(a.start >= b.start),
- fuzzy_bool(a.stop <= b.stop)])
- @is_subset_sets.register(Range, Interval)
- def _(a_range, b_interval):
- if a_range.step.is_positive:
- if b_interval.left_open and a_range.inf.is_finite:
- cond_left = a_range.inf > b_interval.left
- else:
- cond_left = a_range.inf >= b_interval.left
- if b_interval.right_open and a_range.sup.is_finite:
- cond_right = a_range.sup < b_interval.right
- else:
- cond_right = a_range.sup <= b_interval.right
- return fuzzy_and([cond_left, cond_right])
- @is_subset_sets.register(Range, FiniteSet)
- def _(a_range, b_finiteset):
- try:
- a_size = a_range.size
- except ValueError:
- # symbolic Range of unknown size
- return None
- if a_size > len(b_finiteset):
- return False
- elif any(arg.has(Symbol) for arg in a_range.args):
- return fuzzy_and(b_finiteset.contains(x) for x in a_range)
- else:
- # Checking A \ B == EmptySet is more efficient than repeated naive
- # membership checks on an arbitrary FiniteSet.
- a_set = set(a_range)
- b_remaining = len(b_finiteset)
- # Symbolic expressions and numbers of unknown type (integer or not) are
- # all counted as "candidates", i.e. *potentially* matching some a in
- # a_range.
- cnt_candidate = 0
- for b in b_finiteset:
- if b.is_Integer:
- a_set.discard(b)
- elif fuzzy_not(b.is_integer):
- pass
- else:
- cnt_candidate += 1
- b_remaining -= 1
- if len(a_set) > b_remaining + cnt_candidate:
- return False
- if len(a_set) == 0:
- return True
- return None
- @is_subset_sets.register(Interval, Range)
- def _(a_interval, b_range):
- if a_interval.measure.is_extended_nonzero:
- return False
- @is_subset_sets.register(Interval, Rationals)
- def _(a_interval, b_rationals):
- if a_interval.measure.is_extended_nonzero:
- return False
- @is_subset_sets.register(Range, Complexes)
- def _(a, b):
- return True
- @is_subset_sets.register(Complexes, Interval)
- def _(a, b):
- return False
- @is_subset_sets.register(Complexes, Range)
- def _(a, b):
- return False
- @is_subset_sets.register(Complexes, Rationals)
- def _(a, b):
- return False
- @is_subset_sets.register(Rationals, Reals)
- def _(a, b):
- return True
- @is_subset_sets.register(Rationals, Range)
- def _(a, b):
- return False
- @is_subset_sets.register(ProductSet, FiniteSet)
- def _(a_ps, b_fs):
- return fuzzy_and(b_fs.contains(x) for x in a_ps)
|