123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401 |
- """
- This module provides convenient functions to transform SymPy expressions to
- lambda functions which can be used to calculate numerical values very fast.
- """
- from typing import Any, Dict as tDict, Iterable, Union as tUnion, TYPE_CHECKING
- import builtins
- import inspect
- import keyword
- import textwrap
- import linecache
- # Required despite static analysis claiming it is not used
- from sympy.external import import_module # noqa:F401
- from sympy.utilities.exceptions import sympy_deprecation_warning
- from sympy.utilities.decorator import doctest_depends_on
- from sympy.utilities.iterables import (is_sequence, iterable,
- NotIterable, flatten)
- from sympy.utilities.misc import filldedent
- if TYPE_CHECKING:
- import sympy.core.expr
- __doctest_requires__ = {('lambdify',): ['numpy', 'tensorflow']}
- # Default namespaces, letting us define translations that can't be defined
- # by simple variable maps, like I => 1j
- MATH_DEFAULT = {} # type: tDict[str, Any]
- MPMATH_DEFAULT = {} # type: tDict[str, Any]
- NUMPY_DEFAULT = {"I": 1j} # type: tDict[str, Any]
- SCIPY_DEFAULT = {"I": 1j} # type: tDict[str, Any]
- CUPY_DEFAULT = {"I": 1j} # type: tDict[str, Any]
- TENSORFLOW_DEFAULT = {} # type: tDict[str, Any]
- SYMPY_DEFAULT = {} # type: tDict[str, Any]
- NUMEXPR_DEFAULT = {} # type: tDict[str, Any]
- # These are the namespaces the lambda functions will use.
- # These are separate from the names above because they are modified
- # throughout this file, whereas the defaults should remain unmodified.
- MATH = MATH_DEFAULT.copy()
- MPMATH = MPMATH_DEFAULT.copy()
- NUMPY = NUMPY_DEFAULT.copy()
- SCIPY = SCIPY_DEFAULT.copy()
- CUPY = CUPY_DEFAULT.copy()
- TENSORFLOW = TENSORFLOW_DEFAULT.copy()
- SYMPY = SYMPY_DEFAULT.copy()
- NUMEXPR = NUMEXPR_DEFAULT.copy()
- # Mappings between SymPy and other modules function names.
- MATH_TRANSLATIONS = {
- "ceiling": "ceil",
- "E": "e",
- "ln": "log",
- }
- # NOTE: This dictionary is reused in Function._eval_evalf to allow subclasses
- # of Function to automatically evalf.
- MPMATH_TRANSLATIONS = {
- "Abs": "fabs",
- "elliptic_k": "ellipk",
- "elliptic_f": "ellipf",
- "elliptic_e": "ellipe",
- "elliptic_pi": "ellippi",
- "ceiling": "ceil",
- "chebyshevt": "chebyt",
- "chebyshevu": "chebyu",
- "E": "e",
- "I": "j",
- "ln": "log",
- #"lowergamma":"lower_gamma",
- "oo": "inf",
- #"uppergamma":"upper_gamma",
- "LambertW": "lambertw",
- "MutableDenseMatrix": "matrix",
- "ImmutableDenseMatrix": "matrix",
- "conjugate": "conj",
- "dirichlet_eta": "altzeta",
- "Ei": "ei",
- "Shi": "shi",
- "Chi": "chi",
- "Si": "si",
- "Ci": "ci",
- "RisingFactorial": "rf",
- "FallingFactorial": "ff",
- "betainc_regularized": "betainc",
- }
- NUMPY_TRANSLATIONS = {
- "Heaviside": "heaviside",
- } # type: tDict[str, str]
- SCIPY_TRANSLATIONS = {} # type: tDict[str, str]
- CUPY_TRANSLATIONS = {} # type: tDict[str, str]
- TENSORFLOW_TRANSLATIONS = {} # type: tDict[str, str]
- NUMEXPR_TRANSLATIONS = {} # type: tDict[str, str]
- # Available modules:
- MODULES = {
- "math": (MATH, MATH_DEFAULT, MATH_TRANSLATIONS, ("from math import *",)),
- "mpmath": (MPMATH, MPMATH_DEFAULT, MPMATH_TRANSLATIONS, ("from mpmath import *",)),
- "numpy": (NUMPY, NUMPY_DEFAULT, NUMPY_TRANSLATIONS, ("import numpy; from numpy import *; from numpy.linalg import *",)),
- "scipy": (SCIPY, SCIPY_DEFAULT, SCIPY_TRANSLATIONS, ("import numpy; import scipy; from scipy import *; from scipy.special import *",)),
- "cupy": (CUPY, CUPY_DEFAULT, CUPY_TRANSLATIONS, ("import cupy",)),
- "tensorflow": (TENSORFLOW, TENSORFLOW_DEFAULT, TENSORFLOW_TRANSLATIONS, ("import tensorflow",)),
- "sympy": (SYMPY, SYMPY_DEFAULT, {}, (
- "from sympy.functions import *",
- "from sympy.matrices import *",
- "from sympy import Integral, pi, oo, nan, zoo, E, I",)),
- "numexpr" : (NUMEXPR, NUMEXPR_DEFAULT, NUMEXPR_TRANSLATIONS,
- ("import_module('numexpr')", )),
- }
- def _import(module, reload=False):
- """
- Creates a global translation dictionary for module.
- The argument module has to be one of the following strings: "math",
- "mpmath", "numpy", "sympy", "tensorflow".
- These dictionaries map names of Python functions to their equivalent in
- other modules.
- """
- try:
- namespace, namespace_default, translations, import_commands = MODULES[
- module]
- except KeyError:
- raise NameError(
- "'%s' module cannot be used for lambdification" % module)
- # Clear namespace or exit
- if namespace != namespace_default:
- # The namespace was already generated, don't do it again if not forced.
- if reload:
- namespace.clear()
- namespace.update(namespace_default)
- else:
- return
- for import_command in import_commands:
- if import_command.startswith('import_module'):
- module = eval(import_command)
- if module is not None:
- namespace.update(module.__dict__)
- continue
- else:
- try:
- exec(import_command, {}, namespace)
- continue
- except ImportError:
- pass
- raise ImportError(
- "Cannot import '%s' with '%s' command" % (module, import_command))
- # Add translated names to namespace
- for sympyname, translation in translations.items():
- namespace[sympyname] = namespace[translation]
- # For computing the modulus of a SymPy expression we use the builtin abs
- # function, instead of the previously used fabs function for all
- # translation modules. This is because the fabs function in the math
- # module does not accept complex valued arguments. (see issue 9474). The
- # only exception, where we don't use the builtin abs function is the
- # mpmath translation module, because mpmath.fabs returns mpf objects in
- # contrast to abs().
- if 'Abs' not in namespace:
- namespace['Abs'] = abs
- # Used for dynamically generated filenames that are inserted into the
- # linecache.
- _lambdify_generated_counter = 1
- @doctest_depends_on(modules=('numpy', 'scipy', 'tensorflow',), python_version=(3,))
- def lambdify(args: tUnion[Iterable, 'sympy.core.expr.Expr'], expr: 'sympy.core.expr.Expr', modules=None, printer=None, use_imps=True,
- dummify=False, cse=False):
- """Convert a SymPy expression into a function that allows for fast
- numeric evaluation.
- .. warning::
- This function uses ``exec``, and thus shouldn't be used on
- unsanitized input.
- .. deprecated:: 1.7
- Passing a set for the *args* parameter is deprecated as sets are
- unordered. Use an ordered iterable such as a list or tuple.
- Explanation
- ===========
- For example, to convert the SymPy expression ``sin(x) + cos(x)`` to an
- equivalent NumPy function that numerically evaluates it:
- >>> from sympy import sin, cos, symbols, lambdify
- >>> import numpy as np
- >>> x = symbols('x')
- >>> expr = sin(x) + cos(x)
- >>> expr
- sin(x) + cos(x)
- >>> f = lambdify(x, expr, 'numpy')
- >>> a = np.array([1, 2])
- >>> f(a)
- [1.38177329 0.49315059]
- The primary purpose of this function is to provide a bridge from SymPy
- expressions to numerical libraries such as NumPy, SciPy, NumExpr, mpmath,
- and tensorflow. In general, SymPy functions do not work with objects from
- other libraries, such as NumPy arrays, and functions from numeric
- libraries like NumPy or mpmath do not work on SymPy expressions.
- ``lambdify`` bridges the two by converting a SymPy expression to an
- equivalent numeric function.
- The basic workflow with ``lambdify`` is to first create a SymPy expression
- representing whatever mathematical function you wish to evaluate. This
- should be done using only SymPy functions and expressions. Then, use
- ``lambdify`` to convert this to an equivalent function for numerical
- evaluation. For instance, above we created ``expr`` using the SymPy symbol
- ``x`` and SymPy functions ``sin`` and ``cos``, then converted it to an
- equivalent NumPy function ``f``, and called it on a NumPy array ``a``.
- Parameters
- ==========
- args : List[Symbol]
- A variable or a list of variables whose nesting represents the
- nesting of the arguments that will be passed to the function.
- Variables can be symbols, undefined functions, or matrix symbols.
- >>> from sympy import Eq
- >>> from sympy.abc import x, y, z
- The list of variables should match the structure of how the
- arguments will be passed to the function. Simply enclose the
- parameters as they will be passed in a list.
- To call a function like ``f(x)`` then ``[x]``
- should be the first argument to ``lambdify``; for this
- case a single ``x`` can also be used:
- >>> f = lambdify(x, x + 1)
- >>> f(1)
- 2
- >>> f = lambdify([x], x + 1)
- >>> f(1)
- 2
- To call a function like ``f(x, y)`` then ``[x, y]`` will
- be the first argument of the ``lambdify``:
- >>> f = lambdify([x, y], x + y)
- >>> f(1, 1)
- 2
- To call a function with a single 3-element tuple like
- ``f((x, y, z))`` then ``[(x, y, z)]`` will be the first
- argument of the ``lambdify``:
- >>> f = lambdify([(x, y, z)], Eq(z**2, x**2 + y**2))
- >>> f((3, 4, 5))
- True
- If two args will be passed and the first is a scalar but
- the second is a tuple with two arguments then the items
- in the list should match that structure:
- >>> f = lambdify([x, (y, z)], x + y + z)
- >>> f(1, (2, 3))
- 6
- expr : Expr
- An expression, list of expressions, or matrix to be evaluated.
- Lists may be nested.
- If the expression is a list, the output will also be a list.
- >>> f = lambdify(x, [x, [x + 1, x + 2]])
- >>> f(1)
- [1, [2, 3]]
- If it is a matrix, an array will be returned (for the NumPy module).
- >>> from sympy import Matrix
- >>> f = lambdify(x, Matrix([x, x + 1]))
- >>> f(1)
- [[1]
- [2]]
- Note that the argument order here (variables then expression) is used
- to emulate the Python ``lambda`` keyword. ``lambdify(x, expr)`` works
- (roughly) like ``lambda x: expr``
- (see :ref:`lambdify-how-it-works` below).
- modules : str, optional
- Specifies the numeric library to use.
- If not specified, *modules* defaults to:
- - ``["scipy", "numpy"]`` if SciPy is installed
- - ``["numpy"]`` if only NumPy is installed
- - ``["math", "mpmath", "sympy"]`` if neither is installed.
- That is, SymPy functions are replaced as far as possible by
- either ``scipy`` or ``numpy`` functions if available, and Python's
- standard library ``math``, or ``mpmath`` functions otherwise.
- *modules* can be one of the following types:
- - The strings ``"math"``, ``"mpmath"``, ``"numpy"``, ``"numexpr"``,
- ``"scipy"``, ``"sympy"``, or ``"tensorflow"``. This uses the
- corresponding printer and namespace mapping for that module.
- - A module (e.g., ``math``). This uses the global namespace of the
- module. If the module is one of the above known modules, it will
- also use the corresponding printer and namespace mapping
- (i.e., ``modules=numpy`` is equivalent to ``modules="numpy"``).
- - A dictionary that maps names of SymPy functions to arbitrary
- functions
- (e.g., ``{'sin': custom_sin}``).
- - A list that contains a mix of the arguments above, with higher
- priority given to entries appearing first
- (e.g., to use the NumPy module but override the ``sin`` function
- with a custom version, you can use
- ``[{'sin': custom_sin}, 'numpy']``).
- dummify : bool, optional
- Whether or not the variables in the provided expression that are not
- valid Python identifiers are substituted with dummy symbols.
- This allows for undefined functions like ``Function('f')(t)`` to be
- supplied as arguments. By default, the variables are only dummified
- if they are not valid Python identifiers.
- Set ``dummify=True`` to replace all arguments with dummy symbols
- (if ``args`` is not a string) - for example, to ensure that the
- arguments do not redefine any built-in names.
- cse : bool, or callable, optional
- Large expressions can be computed more efficiently when
- common subexpressions are identified and precomputed before
- being used multiple time. Finding the subexpressions will make
- creation of the 'lambdify' function slower, however.
- When ``True``, ``sympy.simplify.cse`` is used, otherwise (the default)
- the user may pass a function matching the ``cse`` signature.
- Examples
- ========
- >>> from sympy.utilities.lambdify import implemented_function
- >>> from sympy import sqrt, sin, Matrix
- >>> from sympy import Function
- >>> from sympy.abc import w, x, y, z
- >>> f = lambdify(x, x**2)
- >>> f(2)
- 4
- >>> f = lambdify((x, y, z), [z, y, x])
- >>> f(1,2,3)
- [3, 2, 1]
- >>> f = lambdify(x, sqrt(x))
- >>> f(4)
- 2.0
- >>> f = lambdify((x, y), sin(x*y)**2)
- >>> f(0, 5)
- 0.0
- >>> row = lambdify((x, y), Matrix((x, x + y)).T, modules='sympy')
- >>> row(1, 2)
- Matrix([[1, 3]])
- ``lambdify`` can be used to translate SymPy expressions into mpmath
- functions. This may be preferable to using ``evalf`` (which uses mpmath on
- the backend) in some cases.
- >>> f = lambdify(x, sin(x), 'mpmath')
- >>> f(1)
- 0.8414709848078965
- Tuple arguments are handled and the lambdified function should
- be called with the same type of arguments as were used to create
- the function:
- >>> f = lambdify((x, (y, z)), x + y)
- >>> f(1, (2, 4))
- 3
- The ``flatten`` function can be used to always work with flattened
- arguments:
- >>> from sympy.utilities.iterables import flatten
- >>> args = w, (x, (y, z))
- >>> vals = 1, (2, (3, 4))
- >>> f = lambdify(flatten(args), w + x + y + z)
- >>> f(*flatten(vals))
- 10
- Functions present in ``expr`` can also carry their own numerical
- implementations, in a callable attached to the ``_imp_`` attribute. This
- can be used with undefined functions using the ``implemented_function``
- factory:
- >>> f = implemented_function(Function('f'), lambda x: x+1)
- >>> func = lambdify(x, f(x))
- >>> func(4)
- 5
- ``lambdify`` always prefers ``_imp_`` implementations to implementations
- in other namespaces, unless the ``use_imps`` input parameter is False.
- Usage with Tensorflow:
- >>> import tensorflow as tf
- >>> from sympy import Max, sin, lambdify
- >>> from sympy.abc import x
- >>> f = Max(x, sin(x))
- >>> func = lambdify(x, f, 'tensorflow')
- After tensorflow v2, eager execution is enabled by default.
- If you want to get the compatible result across tensorflow v1 and v2
- as same as this tutorial, run this line.
- >>> tf.compat.v1.enable_eager_execution()
- If you have eager execution enabled, you can get the result out
- immediately as you can use numpy.
- If you pass tensorflow objects, you may get an ``EagerTensor``
- object instead of value.
- >>> result = func(tf.constant(1.0))
- >>> print(result)
- tf.Tensor(1.0, shape=(), dtype=float32)
- >>> print(result.__class__)
- <class 'tensorflow.python.framework.ops.EagerTensor'>
- You can use ``.numpy()`` to get the numpy value of the tensor.
- >>> result.numpy()
- 1.0
- >>> var = tf.Variable(2.0)
- >>> result = func(var) # also works for tf.Variable and tf.Placeholder
- >>> result.numpy()
- 2.0
- And it works with any shape array.
- >>> tensor = tf.constant([[1.0, 2.0], [3.0, 4.0]])
- >>> result = func(tensor)
- >>> result.numpy()
- [[1. 2.]
- [3. 4.]]
- Notes
- =====
- - For functions involving large array calculations, numexpr can provide a
- significant speedup over numpy. Please note that the available functions
- for numexpr are more limited than numpy but can be expanded with
- ``implemented_function`` and user defined subclasses of Function. If
- specified, numexpr may be the only option in modules. The official list
- of numexpr functions can be found at:
- https://numexpr.readthedocs.io/en/latest/user_guide.html#supported-functions
- - In previous versions of SymPy, ``lambdify`` replaced ``Matrix`` with
- ``numpy.matrix`` by default. As of SymPy 1.0 ``numpy.array`` is the
- default. To get the old default behavior you must pass in
- ``[{'ImmutableDenseMatrix': numpy.matrix}, 'numpy']`` to the
- ``modules`` kwarg.
- >>> from sympy import lambdify, Matrix
- >>> from sympy.abc import x, y
- >>> import numpy
- >>> array2mat = [{'ImmutableDenseMatrix': numpy.matrix}, 'numpy']
- >>> f = lambdify((x, y), Matrix([x, y]), modules=array2mat)
- >>> f(1, 2)
- [[1]
- [2]]
- - In the above examples, the generated functions can accept scalar
- values or numpy arrays as arguments. However, in some cases
- the generated function relies on the input being a numpy array:
- >>> from sympy import Piecewise
- >>> from sympy.testing.pytest import ignore_warnings
- >>> f = lambdify(x, Piecewise((x, x <= 1), (1/x, x > 1)), "numpy")
- >>> with ignore_warnings(RuntimeWarning):
- ... f(numpy.array([-1, 0, 1, 2]))
- [-1. 0. 1. 0.5]
- >>> f(0)
- Traceback (most recent call last):
- ...
- ZeroDivisionError: division by zero
- In such cases, the input should be wrapped in a numpy array:
- >>> with ignore_warnings(RuntimeWarning):
- ... float(f(numpy.array([0])))
- 0.0
- Or if numpy functionality is not required another module can be used:
- >>> f = lambdify(x, Piecewise((x, x <= 1), (1/x, x > 1)), "math")
- >>> f(0)
- 0
- .. _lambdify-how-it-works:
- How it works
- ============
- When using this function, it helps a great deal to have an idea of what it
- is doing. At its core, lambdify is nothing more than a namespace
- translation, on top of a special printer that makes some corner cases work
- properly.
- To understand lambdify, first we must properly understand how Python
- namespaces work. Say we had two files. One called ``sin_cos_sympy.py``,
- with
- .. code:: python
- # sin_cos_sympy.py
- from sympy.functions.elementary.trigonometric import (cos, sin)
- def sin_cos(x):
- return sin(x) + cos(x)
- and one called ``sin_cos_numpy.py`` with
- .. code:: python
- # sin_cos_numpy.py
- from numpy import sin, cos
- def sin_cos(x):
- return sin(x) + cos(x)
- The two files define an identical function ``sin_cos``. However, in the
- first file, ``sin`` and ``cos`` are defined as the SymPy ``sin`` and
- ``cos``. In the second, they are defined as the NumPy versions.
- If we were to import the first file and use the ``sin_cos`` function, we
- would get something like
- >>> from sin_cos_sympy import sin_cos # doctest: +SKIP
- >>> sin_cos(1) # doctest: +SKIP
- cos(1) + sin(1)
- On the other hand, if we imported ``sin_cos`` from the second file, we
- would get
- >>> from sin_cos_numpy import sin_cos # doctest: +SKIP
- >>> sin_cos(1) # doctest: +SKIP
- 1.38177329068
- In the first case we got a symbolic output, because it used the symbolic
- ``sin`` and ``cos`` functions from SymPy. In the second, we got a numeric
- result, because ``sin_cos`` used the numeric ``sin`` and ``cos`` functions
- from NumPy. But notice that the versions of ``sin`` and ``cos`` that were
- used was not inherent to the ``sin_cos`` function definition. Both
- ``sin_cos`` definitions are exactly the same. Rather, it was based on the
- names defined at the module where the ``sin_cos`` function was defined.
- The key point here is that when function in Python references a name that
- is not defined in the function, that name is looked up in the "global"
- namespace of the module where that function is defined.
- Now, in Python, we can emulate this behavior without actually writing a
- file to disk using the ``exec`` function. ``exec`` takes a string
- containing a block of Python code, and a dictionary that should contain
- the global variables of the module. It then executes the code "in" that
- dictionary, as if it were the module globals. The following is equivalent
- to the ``sin_cos`` defined in ``sin_cos_sympy.py``:
- >>> import sympy
- >>> module_dictionary = {'sin': sympy.sin, 'cos': sympy.cos}
- >>> exec('''
- ... def sin_cos(x):
- ... return sin(x) + cos(x)
- ... ''', module_dictionary)
- >>> sin_cos = module_dictionary['sin_cos']
- >>> sin_cos(1)
- cos(1) + sin(1)
- and similarly with ``sin_cos_numpy``:
- >>> import numpy
- >>> module_dictionary = {'sin': numpy.sin, 'cos': numpy.cos}
- >>> exec('''
- ... def sin_cos(x):
- ... return sin(x) + cos(x)
- ... ''', module_dictionary)
- >>> sin_cos = module_dictionary['sin_cos']
- >>> sin_cos(1)
- 1.38177329068
- So now we can get an idea of how ``lambdify`` works. The name "lambdify"
- comes from the fact that we can think of something like ``lambdify(x,
- sin(x) + cos(x), 'numpy')`` as ``lambda x: sin(x) + cos(x)``, where
- ``sin`` and ``cos`` come from the ``numpy`` namespace. This is also why
- the symbols argument is first in ``lambdify``, as opposed to most SymPy
- functions where it comes after the expression: to better mimic the
- ``lambda`` keyword.
- ``lambdify`` takes the input expression (like ``sin(x) + cos(x)``) and
- 1. Converts it to a string
- 2. Creates a module globals dictionary based on the modules that are
- passed in (by default, it uses the NumPy module)
- 3. Creates the string ``"def func({vars}): return {expr}"``, where ``{vars}`` is the
- list of variables separated by commas, and ``{expr}`` is the string
- created in step 1., then ``exec``s that string with the module globals
- namespace and returns ``func``.
- In fact, functions returned by ``lambdify`` support inspection. So you can
- see exactly how they are defined by using ``inspect.getsource``, or ``??`` if you
- are using IPython or the Jupyter notebook.
- >>> f = lambdify(x, sin(x) + cos(x))
- >>> import inspect
- >>> print(inspect.getsource(f))
- def _lambdifygenerated(x):
- return sin(x) + cos(x)
- This shows us the source code of the function, but not the namespace it
- was defined in. We can inspect that by looking at the ``__globals__``
- attribute of ``f``:
- >>> f.__globals__['sin']
- <ufunc 'sin'>
- >>> f.__globals__['cos']
- <ufunc 'cos'>
- >>> f.__globals__['sin'] is numpy.sin
- True
- This shows us that ``sin`` and ``cos`` in the namespace of ``f`` will be
- ``numpy.sin`` and ``numpy.cos``.
- Note that there are some convenience layers in each of these steps, but at
- the core, this is how ``lambdify`` works. Step 1 is done using the
- ``LambdaPrinter`` printers defined in the printing module (see
- :mod:`sympy.printing.lambdarepr`). This allows different SymPy expressions
- to define how they should be converted to a string for different modules.
- You can change which printer ``lambdify`` uses by passing a custom printer
- in to the ``printer`` argument.
- Step 2 is augmented by certain translations. There are default
- translations for each module, but you can provide your own by passing a
- list to the ``modules`` argument. For instance,
- >>> def mysin(x):
- ... print('taking the sin of', x)
- ... return numpy.sin(x)
- ...
- >>> f = lambdify(x, sin(x), [{'sin': mysin}, 'numpy'])
- >>> f(1)
- taking the sin of 1
- 0.8414709848078965
- The globals dictionary is generated from the list by merging the
- dictionary ``{'sin': mysin}`` and the module dictionary for NumPy. The
- merging is done so that earlier items take precedence, which is why
- ``mysin`` is used above instead of ``numpy.sin``.
- If you want to modify the way ``lambdify`` works for a given function, it
- is usually easiest to do so by modifying the globals dictionary as such.
- In more complicated cases, it may be necessary to create and pass in a
- custom printer.
- Finally, step 3 is augmented with certain convenience operations, such as
- the addition of a docstring.
- Understanding how ``lambdify`` works can make it easier to avoid certain
- gotchas when using it. For instance, a common mistake is to create a
- lambdified function for one module (say, NumPy), and pass it objects from
- another (say, a SymPy expression).
- For instance, say we create
- >>> from sympy.abc import x
- >>> f = lambdify(x, x + 1, 'numpy')
- Now if we pass in a NumPy array, we get that array plus 1
- >>> import numpy
- >>> a = numpy.array([1, 2])
- >>> f(a)
- [2 3]
- But what happens if you make the mistake of passing in a SymPy expression
- instead of a NumPy array:
- >>> f(x + 1)
- x + 2
- This worked, but it was only by accident. Now take a different lambdified
- function:
- >>> from sympy import sin
- >>> g = lambdify(x, x + sin(x), 'numpy')
- This works as expected on NumPy arrays:
- >>> g(a)
- [1.84147098 2.90929743]
- But if we try to pass in a SymPy expression, it fails
- >>> try:
- ... g(x + 1)
- ... # NumPy release after 1.17 raises TypeError instead of
- ... # AttributeError
- ... except (AttributeError, TypeError):
- ... raise AttributeError() # doctest: +IGNORE_EXCEPTION_DETAIL
- Traceback (most recent call last):
- ...
- AttributeError:
- Now, let's look at what happened. The reason this fails is that ``g``
- calls ``numpy.sin`` on the input expression, and ``numpy.sin`` does not
- know how to operate on a SymPy object. **As a general rule, NumPy
- functions do not know how to operate on SymPy expressions, and SymPy
- functions do not know how to operate on NumPy arrays. This is why lambdify
- exists: to provide a bridge between SymPy and NumPy.**
- However, why is it that ``f`` did work? That's because ``f`` doesn't call
- any functions, it only adds 1. So the resulting function that is created,
- ``def _lambdifygenerated(x): return x + 1`` does not depend on the globals
- namespace it is defined in. Thus it works, but only by accident. A future
- version of ``lambdify`` may remove this behavior.
- Be aware that certain implementation details described here may change in
- future versions of SymPy. The API of passing in custom modules and
- printers will not change, but the details of how a lambda function is
- created may change. However, the basic idea will remain the same, and
- understanding it will be helpful to understanding the behavior of
- lambdify.
- **In general: you should create lambdified functions for one module (say,
- NumPy), and only pass it input types that are compatible with that module
- (say, NumPy arrays).** Remember that by default, if the ``module``
- argument is not provided, ``lambdify`` creates functions using the NumPy
- and SciPy namespaces.
- """
- from sympy.core.symbol import Symbol
- from sympy.core.expr import Expr
- # If the user hasn't specified any modules, use what is available.
- if modules is None:
- try:
- _import("scipy")
- except ImportError:
- try:
- _import("numpy")
- except ImportError:
- # Use either numpy (if available) or python.math where possible.
- # XXX: This leads to different behaviour on different systems and
- # might be the reason for irreproducible errors.
- modules = ["math", "mpmath", "sympy"]
- else:
- modules = ["numpy"]
- else:
- modules = ["numpy", "scipy"]
- # Get the needed namespaces.
- namespaces = []
- # First find any function implementations
- if use_imps:
- namespaces.append(_imp_namespace(expr))
- # Check for dict before iterating
- if isinstance(modules, (dict, str)) or not hasattr(modules, '__iter__'):
- namespaces.append(modules)
- else:
- # consistency check
- if _module_present('numexpr', modules) and len(modules) > 1:
- raise TypeError("numexpr must be the only item in 'modules'")
- namespaces += list(modules)
- # fill namespace with first having highest priority
- namespace = {} # type: tDict[str, Any]
- for m in namespaces[::-1]:
- buf = _get_namespace(m)
- namespace.update(buf)
- if hasattr(expr, "atoms"):
- #Try if you can extract symbols from the expression.
- #Move on if expr.atoms in not implemented.
- syms = expr.atoms(Symbol)
- for term in syms:
- namespace.update({str(term): term})
- if printer is None:
- if _module_present('mpmath', namespaces):
- from sympy.printing.pycode import MpmathPrinter as Printer # type: ignore
- elif _module_present('scipy', namespaces):
- from sympy.printing.numpy import SciPyPrinter as Printer # type: ignore
- elif _module_present('numpy', namespaces):
- from sympy.printing.numpy import NumPyPrinter as Printer # type: ignore
- elif _module_present('cupy', namespaces):
- from sympy.printing.numpy import CuPyPrinter as Printer # type: ignore
- elif _module_present('numexpr', namespaces):
- from sympy.printing.lambdarepr import NumExprPrinter as Printer # type: ignore
- elif _module_present('tensorflow', namespaces):
- from sympy.printing.tensorflow import TensorflowPrinter as Printer # type: ignore
- elif _module_present('sympy', namespaces):
- from sympy.printing.pycode import SymPyPrinter as Printer # type: ignore
- else:
- from sympy.printing.pycode import PythonCodePrinter as Printer # type: ignore
- user_functions = {}
- for m in namespaces[::-1]:
- if isinstance(m, dict):
- for k in m:
- user_functions[k] = k
- printer = Printer({'fully_qualified_modules': False, 'inline': True,
- 'allow_unknown_functions': True,
- 'user_functions': user_functions})
- if isinstance(args, set):
- sympy_deprecation_warning(
- """
- Passing the function arguments to lambdify() as a set is deprecated. This
- leads to unpredictable results since sets are unordered. Instead, use a list
- or tuple for the function arguments.
- """,
- deprecated_since_version="1.6.3",
- active_deprecations_target="deprecated-lambdify-arguments-set",
- )
- # Get the names of the args, for creating a docstring
- iterable_args: Iterable = (args,) if isinstance(args, Expr) else args
- names = []
- # Grab the callers frame, for getting the names by inspection (if needed)
- callers_local_vars = inspect.currentframe().f_back.f_locals.items() # type: ignore
- for n, var in enumerate(iterable_args):
- if hasattr(var, 'name'):
- names.append(var.name)
- else:
- # It's an iterable. Try to get name by inspection of calling frame.
- name_list = [var_name for var_name, var_val in callers_local_vars
- if var_val is var]
- if len(name_list) == 1:
- names.append(name_list[0])
- else:
- # Cannot infer name with certainty. arg_# will have to do.
- names.append('arg_' + str(n))
- # Create the function definition code and execute it
- funcname = '_lambdifygenerated'
- if _module_present('tensorflow', namespaces):
- funcprinter = _TensorflowEvaluatorPrinter(printer, dummify) # type: _EvaluatorPrinter
- else:
- funcprinter = _EvaluatorPrinter(printer, dummify)
- if cse == True:
- from sympy.simplify.cse_main import cse as _cse
- cses, _expr = _cse(expr, list=False)
- elif callable(cse):
- cses, _expr = cse(expr)
- else:
- cses, _expr = (), expr
- funcstr = funcprinter.doprint(funcname, iterable_args, _expr, cses=cses)
- # Collect the module imports from the code printers.
- imp_mod_lines = []
- for mod, keys in (getattr(printer, 'module_imports', None) or {}).items():
- for k in keys:
- if k not in namespace:
- ln = "from %s import %s" % (mod, k)
- try:
- exec(ln, {}, namespace)
- except ImportError:
- # Tensorflow 2.0 has issues with importing a specific
- # function from its submodule.
- # https://github.com/tensorflow/tensorflow/issues/33022
- ln = "%s = %s.%s" % (k, mod, k)
- exec(ln, {}, namespace)
- imp_mod_lines.append(ln)
- # Provide lambda expression with builtins, and compatible implementation of range
- namespace.update({'builtins':builtins, 'range':range})
- funclocals = {} # type: tDict[str, Any]
- global _lambdify_generated_counter
- filename = '<lambdifygenerated-%s>' % _lambdify_generated_counter
- _lambdify_generated_counter += 1
- c = compile(funcstr, filename, 'exec')
- exec(c, namespace, funclocals)
- # mtime has to be None or else linecache.checkcache will remove it
- linecache.cache[filename] = (len(funcstr), None, funcstr.splitlines(True), filename) # type: ignore
- func = funclocals[funcname]
- # Apply the docstring
- sig = "func({})".format(", ".join(str(i) for i in names))
- sig = textwrap.fill(sig, subsequent_indent=' '*8)
- expr_str = str(expr)
- if len(expr_str) > 78:
- expr_str = textwrap.wrap(expr_str, 75)[0] + '...'
- func.__doc__ = (
- "Created with lambdify. Signature:\n\n"
- "{sig}\n\n"
- "Expression:\n\n"
- "{expr}\n\n"
- "Source code:\n\n"
- "{src}\n\n"
- "Imported modules:\n\n"
- "{imp_mods}"
- ).format(sig=sig, expr=expr_str, src=funcstr, imp_mods='\n'.join(imp_mod_lines))
- return func
- def _module_present(modname, modlist):
- if modname in modlist:
- return True
- for m in modlist:
- if hasattr(m, '__name__') and m.__name__ == modname:
- return True
- return False
- def _get_namespace(m):
- """
- This is used by _lambdify to parse its arguments.
- """
- if isinstance(m, str):
- _import(m)
- return MODULES[m][0]
- elif isinstance(m, dict):
- return m
- elif hasattr(m, "__dict__"):
- return m.__dict__
- else:
- raise TypeError("Argument must be either a string, dict or module but it is: %s" % m)
- def _recursive_to_string(doprint, arg):
- """Functions in lambdify accept both SymPy types and non-SymPy types such as python
- lists and tuples. This method ensures that we only call the doprint method of the
- printer with SymPy types (so that the printer safely can use SymPy-methods)."""
- from sympy.matrices.common import MatrixOperations
- from sympy.core.basic import Basic
- if isinstance(arg, (Basic, MatrixOperations)):
- return doprint(arg)
- elif iterable(arg):
- if isinstance(arg, list):
- left, right = "[]"
- elif isinstance(arg, tuple):
- left, right = "()"
- else:
- raise NotImplementedError("unhandled type: %s, %s" % (type(arg), arg))
- return left +', '.join(_recursive_to_string(doprint, e) for e in arg) + right
- elif isinstance(arg, str):
- return arg
- else:
- return doprint(arg)
- def lambdastr(args, expr, printer=None, dummify=None):
- """
- Returns a string that can be evaluated to a lambda function.
- Examples
- ========
- >>> from sympy.abc import x, y, z
- >>> from sympy.utilities.lambdify import lambdastr
- >>> lambdastr(x, x**2)
- 'lambda x: (x**2)'
- >>> lambdastr((x,y,z), [z,y,x])
- 'lambda x,y,z: ([z, y, x])'
- Although tuples may not appear as arguments to lambda in Python 3,
- lambdastr will create a lambda function that will unpack the original
- arguments so that nested arguments can be handled:
- >>> lambdastr((x, (y, z)), x + y)
- 'lambda _0,_1: (lambda x,y,z: (x + y))(_0,_1[0],_1[1])'
- """
- # Transforming everything to strings.
- from sympy.matrices import DeferredVector
- from sympy.core.basic import Basic
- from sympy.core.function import (Derivative, Function)
- from sympy.core.symbol import (Dummy, Symbol)
- from sympy.core.sympify import sympify
- if printer is not None:
- if inspect.isfunction(printer):
- lambdarepr = printer
- else:
- if inspect.isclass(printer):
- lambdarepr = lambda expr: printer().doprint(expr)
- else:
- lambdarepr = lambda expr: printer.doprint(expr)
- else:
- #XXX: This has to be done here because of circular imports
- from sympy.printing.lambdarepr import lambdarepr
- def sub_args(args, dummies_dict):
- if isinstance(args, str):
- return args
- elif isinstance(args, DeferredVector):
- return str(args)
- elif iterable(args):
- dummies = flatten([sub_args(a, dummies_dict) for a in args])
- return ",".join(str(a) for a in dummies)
- else:
- # replace these with Dummy symbols
- if isinstance(args, (Function, Symbol, Derivative)):
- dummies = Dummy()
- dummies_dict.update({args : dummies})
- return str(dummies)
- else:
- return str(args)
- def sub_expr(expr, dummies_dict):
- expr = sympify(expr)
- # dict/tuple are sympified to Basic
- if isinstance(expr, Basic):
- expr = expr.xreplace(dummies_dict)
- # list is not sympified to Basic
- elif isinstance(expr, list):
- expr = [sub_expr(a, dummies_dict) for a in expr]
- return expr
- # Transform args
- def isiter(l):
- return iterable(l, exclude=(str, DeferredVector, NotIterable))
- def flat_indexes(iterable):
- n = 0
- for el in iterable:
- if isiter(el):
- for ndeep in flat_indexes(el):
- yield (n,) + ndeep
- else:
- yield (n,)
- n += 1
- if dummify is None:
- dummify = any(isinstance(a, Basic) and
- a.atoms(Function, Derivative) for a in (
- args if isiter(args) else [args]))
- if isiter(args) and any(isiter(i) for i in args):
- dum_args = [str(Dummy(str(i))) for i in range(len(args))]
- indexed_args = ','.join([
- dum_args[ind[0]] + ''.join(["[%s]" % k for k in ind[1:]])
- for ind in flat_indexes(args)])
- lstr = lambdastr(flatten(args), expr, printer=printer, dummify=dummify)
- return 'lambda %s: (%s)(%s)' % (','.join(dum_args), lstr, indexed_args)
- dummies_dict = {}
- if dummify:
- args = sub_args(args, dummies_dict)
- else:
- if isinstance(args, str):
- pass
- elif iterable(args, exclude=DeferredVector):
- args = ",".join(str(a) for a in args)
- # Transform expr
- if dummify:
- if isinstance(expr, str):
- pass
- else:
- expr = sub_expr(expr, dummies_dict)
- expr = _recursive_to_string(lambdarepr, expr)
- return "lambda %s: (%s)" % (args, expr)
- class _EvaluatorPrinter:
- def __init__(self, printer=None, dummify=False):
- self._dummify = dummify
- #XXX: This has to be done here because of circular imports
- from sympy.printing.lambdarepr import LambdaPrinter
- if printer is None:
- printer = LambdaPrinter()
- if inspect.isfunction(printer):
- self._exprrepr = printer
- else:
- if inspect.isclass(printer):
- printer = printer()
- self._exprrepr = printer.doprint
- #if hasattr(printer, '_print_Symbol'):
- # symbolrepr = printer._print_Symbol
- #if hasattr(printer, '_print_Dummy'):
- # dummyrepr = printer._print_Dummy
- # Used to print the generated function arguments in a standard way
- self._argrepr = LambdaPrinter().doprint
- def doprint(self, funcname, args, expr, *, cses=()):
- """
- Returns the function definition code as a string.
- """
- from sympy.core.symbol import Dummy
- funcbody = []
- if not iterable(args):
- args = [args]
- argstrs, expr = self._preprocess(args, expr)
- # Generate argument unpacking and final argument list
- funcargs = []
- unpackings = []
- for argstr in argstrs:
- if iterable(argstr):
- funcargs.append(self._argrepr(Dummy()))
- unpackings.extend(self._print_unpacking(argstr, funcargs[-1]))
- else:
- funcargs.append(argstr)
- funcsig = 'def {}({}):'.format(funcname, ', '.join(funcargs))
- # Wrap input arguments before unpacking
- funcbody.extend(self._print_funcargwrapping(funcargs))
- funcbody.extend(unpackings)
- for s, e in cses:
- if e is None:
- funcbody.append('del {}'.format(s))
- else:
- funcbody.append('{} = {}'.format(s, self._exprrepr(e)))
- str_expr = _recursive_to_string(self._exprrepr, expr)
- if '\n' in str_expr:
- str_expr = '({})'.format(str_expr)
- funcbody.append('return {}'.format(str_expr))
- funclines = [funcsig]
- funclines.extend([' ' + line for line in funcbody])
- return '\n'.join(funclines) + '\n'
- @classmethod
- def _is_safe_ident(cls, ident):
- return isinstance(ident, str) and ident.isidentifier() \
- and not keyword.iskeyword(ident)
- def _preprocess(self, args, expr):
- """Preprocess args, expr to replace arguments that do not map
- to valid Python identifiers.
- Returns string form of args, and updated expr.
- """
- from sympy.core.basic import Basic
- from sympy.core.sorting import ordered
- from sympy.core.function import (Derivative, Function)
- from sympy.core.symbol import Dummy, uniquely_named_symbol
- from sympy.matrices import DeferredVector
- from sympy.core.expr import Expr
- # Args of type Dummy can cause name collisions with args
- # of type Symbol. Force dummify of everything in this
- # situation.
- dummify = self._dummify or any(
- isinstance(arg, Dummy) for arg in flatten(args))
- argstrs = [None]*len(args)
- for arg, i in reversed(list(ordered(zip(args, range(len(args)))))):
- if iterable(arg):
- s, expr = self._preprocess(arg, expr)
- elif isinstance(arg, DeferredVector):
- s = str(arg)
- elif isinstance(arg, Basic) and arg.is_symbol:
- s = self._argrepr(arg)
- if dummify or not self._is_safe_ident(s):
- dummy = Dummy()
- if isinstance(expr, Expr):
- dummy = uniquely_named_symbol(
- dummy.name, expr, modify=lambda s: '_' + s)
- s = self._argrepr(dummy)
- expr = self._subexpr(expr, {arg: dummy})
- elif dummify or isinstance(arg, (Function, Derivative)):
- dummy = Dummy()
- s = self._argrepr(dummy)
- expr = self._subexpr(expr, {arg: dummy})
- else:
- s = str(arg)
- argstrs[i] = s
- return argstrs, expr
- def _subexpr(self, expr, dummies_dict):
- from sympy.matrices import DeferredVector
- from sympy.core.sympify import sympify
- expr = sympify(expr)
- xreplace = getattr(expr, 'xreplace', None)
- if xreplace is not None:
- expr = xreplace(dummies_dict)
- else:
- if isinstance(expr, DeferredVector):
- pass
- elif isinstance(expr, dict):
- k = [self._subexpr(sympify(a), dummies_dict) for a in expr.keys()]
- v = [self._subexpr(sympify(a), dummies_dict) for a in expr.values()]
- expr = dict(zip(k, v))
- elif isinstance(expr, tuple):
- expr = tuple(self._subexpr(sympify(a), dummies_dict) for a in expr)
- elif isinstance(expr, list):
- expr = [self._subexpr(sympify(a), dummies_dict) for a in expr]
- return expr
- def _print_funcargwrapping(self, args):
- """Generate argument wrapping code.
- args is the argument list of the generated function (strings).
- Return value is a list of lines of code that will be inserted at
- the beginning of the function definition.
- """
- return []
- def _print_unpacking(self, unpackto, arg):
- """Generate argument unpacking code.
- arg is the function argument to be unpacked (a string), and
- unpackto is a list or nested lists of the variable names (strings) to
- unpack to.
- """
- def unpack_lhs(lvalues):
- return '[{}]'.format(', '.join(
- unpack_lhs(val) if iterable(val) else val for val in lvalues))
- return ['{} = {}'.format(unpack_lhs(unpackto), arg)]
- class _TensorflowEvaluatorPrinter(_EvaluatorPrinter):
- def _print_unpacking(self, lvalues, rvalue):
- """Generate argument unpacking code.
- This method is used when the input value is not interable,
- but can be indexed (see issue #14655).
- """
- def flat_indexes(elems):
- n = 0
- for el in elems:
- if iterable(el):
- for ndeep in flat_indexes(el):
- yield (n,) + ndeep
- else:
- yield (n,)
- n += 1
- indexed = ', '.join('{}[{}]'.format(rvalue, ']['.join(map(str, ind)))
- for ind in flat_indexes(lvalues))
- return ['[{}] = [{}]'.format(', '.join(flatten(lvalues)), indexed)]
- def _imp_namespace(expr, namespace=None):
- """ Return namespace dict with function implementations
- We need to search for functions in anything that can be thrown at
- us - that is - anything that could be passed as ``expr``. Examples
- include SymPy expressions, as well as tuples, lists and dicts that may
- contain SymPy expressions.
- Parameters
- ----------
- expr : object
- Something passed to lambdify, that will generate valid code from
- ``str(expr)``.
- namespace : None or mapping
- Namespace to fill. None results in new empty dict
- Returns
- -------
- namespace : dict
- dict with keys of implemented function names within ``expr`` and
- corresponding values being the numerical implementation of
- function
- Examples
- ========
- >>> from sympy.abc import x
- >>> from sympy.utilities.lambdify import implemented_function, _imp_namespace
- >>> from sympy import Function
- >>> f = implemented_function(Function('f'), lambda x: x+1)
- >>> g = implemented_function(Function('g'), lambda x: x*10)
- >>> namespace = _imp_namespace(f(g(x)))
- >>> sorted(namespace.keys())
- ['f', 'g']
- """
- # Delayed import to avoid circular imports
- from sympy.core.function import FunctionClass
- if namespace is None:
- namespace = {}
- # tuples, lists, dicts are valid expressions
- if is_sequence(expr):
- for arg in expr:
- _imp_namespace(arg, namespace)
- return namespace
- elif isinstance(expr, dict):
- for key, val in expr.items():
- # functions can be in dictionary keys
- _imp_namespace(key, namespace)
- _imp_namespace(val, namespace)
- return namespace
- # SymPy expressions may be Functions themselves
- func = getattr(expr, 'func', None)
- if isinstance(func, FunctionClass):
- imp = getattr(func, '_imp_', None)
- if imp is not None:
- name = expr.func.__name__
- if name in namespace and namespace[name] != imp:
- raise ValueError('We found more than one '
- 'implementation with name '
- '"%s"' % name)
- namespace[name] = imp
- # and / or they may take Functions as arguments
- if hasattr(expr, 'args'):
- for arg in expr.args:
- _imp_namespace(arg, namespace)
- return namespace
- def implemented_function(symfunc, implementation):
- """ Add numerical ``implementation`` to function ``symfunc``.
- ``symfunc`` can be an ``UndefinedFunction`` instance, or a name string.
- In the latter case we create an ``UndefinedFunction`` instance with that
- name.
- Be aware that this is a quick workaround, not a general method to create
- special symbolic functions. If you want to create a symbolic function to be
- used by all the machinery of SymPy you should subclass the ``Function``
- class.
- Parameters
- ----------
- symfunc : ``str`` or ``UndefinedFunction`` instance
- If ``str``, then create new ``UndefinedFunction`` with this as
- name. If ``symfunc`` is an Undefined function, create a new function
- with the same name and the implemented function attached.
- implementation : callable
- numerical implementation to be called by ``evalf()`` or ``lambdify``
- Returns
- -------
- afunc : sympy.FunctionClass instance
- function with attached implementation
- Examples
- ========
- >>> from sympy.abc import x
- >>> from sympy.utilities.lambdify import lambdify, implemented_function
- >>> f = implemented_function('f', lambda x: x+1)
- >>> lam_f = lambdify(x, f(x))
- >>> lam_f(4)
- 5
- """
- # Delayed import to avoid circular imports
- from sympy.core.function import UndefinedFunction
- # if name, create function to hold implementation
- kwargs = {}
- if isinstance(symfunc, UndefinedFunction):
- kwargs = symfunc._kwargs
- symfunc = symfunc.__name__
- if isinstance(symfunc, str):
- # Keyword arguments to UndefinedFunction are added as attributes to
- # the created class.
- symfunc = UndefinedFunction(
- symfunc, _imp_=staticmethod(implementation), **kwargs)
- elif not isinstance(symfunc, UndefinedFunction):
- raise ValueError(filldedent('''
- symfunc should be either a string or
- an UndefinedFunction instance.'''))
- return symfunc
|