123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778 |
- from __future__ import annotations
- from typing import TYPE_CHECKING, Any
- import numpy as np
- if TYPE_CHECKING:
- from contourpy._contourpy import CoordinateArray
- def simple(
- shape: tuple[int, int], want_mask: bool = False,
- ) -> tuple[CoordinateArray, CoordinateArray, CoordinateArray | np.ma.MaskedArray[Any, Any]]:
- """Return simple test data consisting of the sum of two gaussians.
- Args:
- shape (tuple(int, int)): 2D shape of data to return.
- want_mask (bool, optional): Whether test data should be masked or not, default ``False``.
- Return:
- Tuple of 3 arrays: ``x``, ``y``, ``z`` test data, ``z`` will be masked if
- ``want_mask=True``.
- """
- ny, nx = shape
- x = np.arange(nx, dtype=np.float64)
- y = np.arange(ny, dtype=np.float64)
- x, y = np.meshgrid(x, y)
- xscale = nx - 1.0
- yscale = ny - 1.0
- # z is sum of 2D gaussians.
- amp = np.asarray([1.0, -1.0, 0.8, -0.9, 0.7])
- mid = np.asarray([[0.4, 0.2], [0.3, 0.8], [0.9, 0.75], [0.7, 0.3], [0.05, 0.7]])
- width = np.asarray([0.4, 0.2, 0.2, 0.2, 0.1])
- z = np.zeros_like(x)
- for i in range(len(amp)):
- z += amp[i]*np.exp(-((x/xscale - mid[i, 0])**2 + (y/yscale - mid[i, 1])**2) / width[i]**2)
- if want_mask:
- mask = np.logical_or(
- ((x/xscale - 1.0)**2 / 0.2 + (y/yscale - 0.0)**2 / 0.1) < 1.0,
- ((x/xscale - 0.2)**2 / 0.02 + (y/yscale - 0.45)**2 / 0.08) < 1.0,
- )
- z = np.ma.array(z, mask=mask) # type: ignore[no-untyped-call]
- return x, y, z
- def random(
- shape: tuple[int, int], seed: int = 2187, mask_fraction: float = 0.0,
- ) -> tuple[CoordinateArray, CoordinateArray, CoordinateArray | np.ma.MaskedArray[Any, Any]]:
- """Return random test data.
- Args:
- shape (tuple(int, int)): 2D shape of data to return.
- seed (int, optional): Seed for random number generator, default 2187.
- mask_fraction (float, optional): Fraction of elements to mask, default 0.
- Return:
- Tuple of 3 arrays: ``x``, ``y``, ``z`` test data, ``z`` will be masked if
- ``mask_fraction`` is greater than zero.
- """
- ny, nx = shape
- x = np.arange(nx, dtype=np.float64)
- y = np.arange(ny, dtype=np.float64)
- x, y = np.meshgrid(x, y)
- rng = np.random.default_rng(seed)
- z = rng.uniform(size=shape)
- if mask_fraction > 0.0:
- mask_fraction = min(mask_fraction, 0.99)
- mask = rng.uniform(size=shape) < mask_fraction
- z = np.ma.array(z, mask=mask) # type: ignore[no-untyped-call]
- return x, y, z
|