123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534 |
- # cython: language_level=3
- # distutils: define_macros=CYTHON_TRACE_NOGIL=1
- # Copyright 2015 Google Inc. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- try:
- import cython
- COMPILED = cython.compiled
- except (AttributeError, ImportError):
- # if cython not installed, use mock module with no-op decorators and types
- from fontTools.misc import cython
- COMPILED = False
- import math
- from .errors import Error as Cu2QuError, ApproxNotFoundError
- __all__ = ["curve_to_quadratic", "curves_to_quadratic"]
- MAX_N = 100
- NAN = float("NaN")
- @cython.cfunc
- @cython.inline
- @cython.returns(cython.double)
- @cython.locals(v1=cython.complex, v2=cython.complex)
- def dot(v1, v2):
- """Return the dot product of two vectors.
- Args:
- v1 (complex): First vector.
- v2 (complex): Second vector.
- Returns:
- double: Dot product.
- """
- return (v1 * v2.conjugate()).real
- @cython.cfunc
- @cython.inline
- @cython.locals(a=cython.complex, b=cython.complex, c=cython.complex, d=cython.complex)
- @cython.locals(
- _1=cython.complex, _2=cython.complex, _3=cython.complex, _4=cython.complex
- )
- def calc_cubic_points(a, b, c, d):
- _1 = d
- _2 = (c / 3.0) + d
- _3 = (b + c) / 3.0 + _2
- _4 = a + d + c + b
- return _1, _2, _3, _4
- @cython.cfunc
- @cython.inline
- @cython.locals(
- p0=cython.complex, p1=cython.complex, p2=cython.complex, p3=cython.complex
- )
- @cython.locals(a=cython.complex, b=cython.complex, c=cython.complex, d=cython.complex)
- def calc_cubic_parameters(p0, p1, p2, p3):
- c = (p1 - p0) * 3.0
- b = (p2 - p1) * 3.0 - c
- d = p0
- a = p3 - d - c - b
- return a, b, c, d
- @cython.cfunc
- @cython.inline
- @cython.locals(
- p0=cython.complex, p1=cython.complex, p2=cython.complex, p3=cython.complex
- )
- def split_cubic_into_n_iter(p0, p1, p2, p3, n):
- """Split a cubic Bezier into n equal parts.
- Splits the curve into `n` equal parts by curve time.
- (t=0..1/n, t=1/n..2/n, ...)
- Args:
- p0 (complex): Start point of curve.
- p1 (complex): First handle of curve.
- p2 (complex): Second handle of curve.
- p3 (complex): End point of curve.
- Returns:
- An iterator yielding the control points (four complex values) of the
- subcurves.
- """
- # Hand-coded special-cases
- if n == 2:
- return iter(split_cubic_into_two(p0, p1, p2, p3))
- if n == 3:
- return iter(split_cubic_into_three(p0, p1, p2, p3))
- if n == 4:
- a, b = split_cubic_into_two(p0, p1, p2, p3)
- return iter(
- split_cubic_into_two(a[0], a[1], a[2], a[3])
- + split_cubic_into_two(b[0], b[1], b[2], b[3])
- )
- if n == 6:
- a, b = split_cubic_into_two(p0, p1, p2, p3)
- return iter(
- split_cubic_into_three(a[0], a[1], a[2], a[3])
- + split_cubic_into_three(b[0], b[1], b[2], b[3])
- )
- return _split_cubic_into_n_gen(p0, p1, p2, p3, n)
- @cython.locals(
- p0=cython.complex,
- p1=cython.complex,
- p2=cython.complex,
- p3=cython.complex,
- n=cython.int,
- )
- @cython.locals(a=cython.complex, b=cython.complex, c=cython.complex, d=cython.complex)
- @cython.locals(
- dt=cython.double, delta_2=cython.double, delta_3=cython.double, i=cython.int
- )
- @cython.locals(
- a1=cython.complex, b1=cython.complex, c1=cython.complex, d1=cython.complex
- )
- def _split_cubic_into_n_gen(p0, p1, p2, p3, n):
- a, b, c, d = calc_cubic_parameters(p0, p1, p2, p3)
- dt = 1 / n
- delta_2 = dt * dt
- delta_3 = dt * delta_2
- for i in range(n):
- t1 = i * dt
- t1_2 = t1 * t1
- # calc new a, b, c and d
- a1 = a * delta_3
- b1 = (3 * a * t1 + b) * delta_2
- c1 = (2 * b * t1 + c + 3 * a * t1_2) * dt
- d1 = a * t1 * t1_2 + b * t1_2 + c * t1 + d
- yield calc_cubic_points(a1, b1, c1, d1)
- @cython.cfunc
- @cython.inline
- @cython.locals(
- p0=cython.complex, p1=cython.complex, p2=cython.complex, p3=cython.complex
- )
- @cython.locals(mid=cython.complex, deriv3=cython.complex)
- def split_cubic_into_two(p0, p1, p2, p3):
- """Split a cubic Bezier into two equal parts.
- Splits the curve into two equal parts at t = 0.5
- Args:
- p0 (complex): Start point of curve.
- p1 (complex): First handle of curve.
- p2 (complex): Second handle of curve.
- p3 (complex): End point of curve.
- Returns:
- tuple: Two cubic Beziers (each expressed as a tuple of four complex
- values).
- """
- mid = (p0 + 3 * (p1 + p2) + p3) * 0.125
- deriv3 = (p3 + p2 - p1 - p0) * 0.125
- return (
- (p0, (p0 + p1) * 0.5, mid - deriv3, mid),
- (mid, mid + deriv3, (p2 + p3) * 0.5, p3),
- )
- @cython.cfunc
- @cython.inline
- @cython.locals(
- p0=cython.complex,
- p1=cython.complex,
- p2=cython.complex,
- p3=cython.complex,
- )
- @cython.locals(
- mid1=cython.complex,
- deriv1=cython.complex,
- mid2=cython.complex,
- deriv2=cython.complex,
- )
- def split_cubic_into_three(p0, p1, p2, p3):
- """Split a cubic Bezier into three equal parts.
- Splits the curve into three equal parts at t = 1/3 and t = 2/3
- Args:
- p0 (complex): Start point of curve.
- p1 (complex): First handle of curve.
- p2 (complex): Second handle of curve.
- p3 (complex): End point of curve.
- Returns:
- tuple: Three cubic Beziers (each expressed as a tuple of four complex
- values).
- """
- mid1 = (8 * p0 + 12 * p1 + 6 * p2 + p3) * (1 / 27)
- deriv1 = (p3 + 3 * p2 - 4 * p0) * (1 / 27)
- mid2 = (p0 + 6 * p1 + 12 * p2 + 8 * p3) * (1 / 27)
- deriv2 = (4 * p3 - 3 * p1 - p0) * (1 / 27)
- return (
- (p0, (2 * p0 + p1) / 3.0, mid1 - deriv1, mid1),
- (mid1, mid1 + deriv1, mid2 - deriv2, mid2),
- (mid2, mid2 + deriv2, (p2 + 2 * p3) / 3.0, p3),
- )
- @cython.cfunc
- @cython.inline
- @cython.returns(cython.complex)
- @cython.locals(
- t=cython.double,
- p0=cython.complex,
- p1=cython.complex,
- p2=cython.complex,
- p3=cython.complex,
- )
- @cython.locals(_p1=cython.complex, _p2=cython.complex)
- def cubic_approx_control(t, p0, p1, p2, p3):
- """Approximate a cubic Bezier using a quadratic one.
- Args:
- t (double): Position of control point.
- p0 (complex): Start point of curve.
- p1 (complex): First handle of curve.
- p2 (complex): Second handle of curve.
- p3 (complex): End point of curve.
- Returns:
- complex: Location of candidate control point on quadratic curve.
- """
- _p1 = p0 + (p1 - p0) * 1.5
- _p2 = p3 + (p2 - p3) * 1.5
- return _p1 + (_p2 - _p1) * t
- @cython.cfunc
- @cython.inline
- @cython.returns(cython.complex)
- @cython.locals(a=cython.complex, b=cython.complex, c=cython.complex, d=cython.complex)
- @cython.locals(ab=cython.complex, cd=cython.complex, p=cython.complex, h=cython.double)
- def calc_intersect(a, b, c, d):
- """Calculate the intersection of two lines.
- Args:
- a (complex): Start point of first line.
- b (complex): End point of first line.
- c (complex): Start point of second line.
- d (complex): End point of second line.
- Returns:
- complex: Location of intersection if one present, ``complex(NaN,NaN)``
- if no intersection was found.
- """
- ab = b - a
- cd = d - c
- p = ab * 1j
- try:
- h = dot(p, a - c) / dot(p, cd)
- except ZeroDivisionError:
- return complex(NAN, NAN)
- return c + cd * h
- @cython.cfunc
- @cython.returns(cython.int)
- @cython.locals(
- tolerance=cython.double,
- p0=cython.complex,
- p1=cython.complex,
- p2=cython.complex,
- p3=cython.complex,
- )
- @cython.locals(mid=cython.complex, deriv3=cython.complex)
- def cubic_farthest_fit_inside(p0, p1, p2, p3, tolerance):
- """Check if a cubic Bezier lies within a given distance of the origin.
- "Origin" means *the* origin (0,0), not the start of the curve. Note that no
- checks are made on the start and end positions of the curve; this function
- only checks the inside of the curve.
- Args:
- p0 (complex): Start point of curve.
- p1 (complex): First handle of curve.
- p2 (complex): Second handle of curve.
- p3 (complex): End point of curve.
- tolerance (double): Distance from origin.
- Returns:
- bool: True if the cubic Bezier ``p`` entirely lies within a distance
- ``tolerance`` of the origin, False otherwise.
- """
- # First check p2 then p1, as p2 has higher error early on.
- if abs(p2) <= tolerance and abs(p1) <= tolerance:
- return True
- # Split.
- mid = (p0 + 3 * (p1 + p2) + p3) * 0.125
- if abs(mid) > tolerance:
- return False
- deriv3 = (p3 + p2 - p1 - p0) * 0.125
- return cubic_farthest_fit_inside(
- p0, (p0 + p1) * 0.5, mid - deriv3, mid, tolerance
- ) and cubic_farthest_fit_inside(mid, mid + deriv3, (p2 + p3) * 0.5, p3, tolerance)
- @cython.cfunc
- @cython.inline
- @cython.locals(tolerance=cython.double)
- @cython.locals(
- q1=cython.complex,
- c0=cython.complex,
- c1=cython.complex,
- c2=cython.complex,
- c3=cython.complex,
- )
- def cubic_approx_quadratic(cubic, tolerance):
- """Approximate a cubic Bezier with a single quadratic within a given tolerance.
- Args:
- cubic (sequence): Four complex numbers representing control points of
- the cubic Bezier curve.
- tolerance (double): Permitted deviation from the original curve.
- Returns:
- Three complex numbers representing control points of the quadratic
- curve if it fits within the given tolerance, or ``None`` if no suitable
- curve could be calculated.
- """
- q1 = calc_intersect(cubic[0], cubic[1], cubic[2], cubic[3])
- if math.isnan(q1.imag):
- return None
- c0 = cubic[0]
- c3 = cubic[3]
- c1 = c0 + (q1 - c0) * (2 / 3)
- c2 = c3 + (q1 - c3) * (2 / 3)
- if not cubic_farthest_fit_inside(0, c1 - cubic[1], c2 - cubic[2], 0, tolerance):
- return None
- return c0, q1, c3
- @cython.cfunc
- @cython.locals(n=cython.int, tolerance=cython.double)
- @cython.locals(i=cython.int)
- @cython.locals(all_quadratic=cython.int)
- @cython.locals(
- c0=cython.complex, c1=cython.complex, c2=cython.complex, c3=cython.complex
- )
- @cython.locals(
- q0=cython.complex,
- q1=cython.complex,
- next_q1=cython.complex,
- q2=cython.complex,
- d1=cython.complex,
- )
- def cubic_approx_spline(cubic, n, tolerance, all_quadratic):
- """Approximate a cubic Bezier curve with a spline of n quadratics.
- Args:
- cubic (sequence): Four complex numbers representing control points of
- the cubic Bezier curve.
- n (int): Number of quadratic Bezier curves in the spline.
- tolerance (double): Permitted deviation from the original curve.
- Returns:
- A list of ``n+2`` complex numbers, representing control points of the
- quadratic spline if it fits within the given tolerance, or ``None`` if
- no suitable spline could be calculated.
- """
- if n == 1:
- return cubic_approx_quadratic(cubic, tolerance)
- if n == 2 and all_quadratic == False:
- return cubic
- cubics = split_cubic_into_n_iter(cubic[0], cubic[1], cubic[2], cubic[3], n)
- # calculate the spline of quadratics and check errors at the same time.
- next_cubic = next(cubics)
- next_q1 = cubic_approx_control(
- 0, next_cubic[0], next_cubic[1], next_cubic[2], next_cubic[3]
- )
- q2 = cubic[0]
- d1 = 0j
- spline = [cubic[0], next_q1]
- for i in range(1, n + 1):
- # Current cubic to convert
- c0, c1, c2, c3 = next_cubic
- # Current quadratic approximation of current cubic
- q0 = q2
- q1 = next_q1
- if i < n:
- next_cubic = next(cubics)
- next_q1 = cubic_approx_control(
- i / (n - 1), next_cubic[0], next_cubic[1], next_cubic[2], next_cubic[3]
- )
- spline.append(next_q1)
- q2 = (q1 + next_q1) * 0.5
- else:
- q2 = c3
- # End-point deltas
- d0 = d1
- d1 = q2 - c3
- if abs(d1) > tolerance or not cubic_farthest_fit_inside(
- d0,
- q0 + (q1 - q0) * (2 / 3) - c1,
- q2 + (q1 - q2) * (2 / 3) - c2,
- d1,
- tolerance,
- ):
- return None
- spline.append(cubic[3])
- return spline
- @cython.locals(max_err=cython.double)
- @cython.locals(n=cython.int)
- @cython.locals(all_quadratic=cython.int)
- def curve_to_quadratic(curve, max_err, all_quadratic=True):
- """Approximate a cubic Bezier curve with a spline of n quadratics.
- Args:
- cubic (sequence): Four 2D tuples representing control points of
- the cubic Bezier curve.
- max_err (double): Permitted deviation from the original curve.
- all_quadratic (bool): If True (default) returned value is a
- quadratic spline. If False, it's either a single quadratic
- curve or a single cubic curve.
- Returns:
- If all_quadratic is True: A list of 2D tuples, representing
- control points of the quadratic spline if it fits within the
- given tolerance, or ``None`` if no suitable spline could be
- calculated.
- If all_quadratic is False: Either a quadratic curve (if length
- of output is 3), or a cubic curve (if length of output is 4).
- """
- curve = [complex(*p) for p in curve]
- for n in range(1, MAX_N + 1):
- spline = cubic_approx_spline(curve, n, max_err, all_quadratic)
- if spline is not None:
- # done. go home
- return [(s.real, s.imag) for s in spline]
- raise ApproxNotFoundError(curve)
- @cython.locals(l=cython.int, last_i=cython.int, i=cython.int)
- @cython.locals(all_quadratic=cython.int)
- def curves_to_quadratic(curves, max_errors, all_quadratic=True):
- """Return quadratic Bezier splines approximating the input cubic Beziers.
- Args:
- curves: A sequence of *n* curves, each curve being a sequence of four
- 2D tuples.
- max_errors: A sequence of *n* floats representing the maximum permissible
- deviation from each of the cubic Bezier curves.
- all_quadratic (bool): If True (default) returned values are a
- quadratic spline. If False, they are either a single quadratic
- curve or a single cubic curve.
- Example::
- >>> curves_to_quadratic( [
- ... [ (50,50), (100,100), (150,100), (200,50) ],
- ... [ (75,50), (120,100), (150,75), (200,60) ]
- ... ], [1,1] )
- [[(50.0, 50.0), (75.0, 75.0), (125.0, 91.66666666666666), (175.0, 75.0), (200.0, 50.0)], [(75.0, 50.0), (97.5, 75.0), (135.41666666666666, 82.08333333333333), (175.0, 67.5), (200.0, 60.0)]]
- The returned splines have "implied oncurve points" suitable for use in
- TrueType ``glif`` outlines - i.e. in the first spline returned above,
- the first quadratic segment runs from (50,50) to
- ( (75 + 125)/2 , (120 + 91.666..)/2 ) = (100, 83.333...).
- Returns:
- If all_quadratic is True, a list of splines, each spline being a list
- of 2D tuples.
- If all_quadratic is False, a list of curves, each curve being a quadratic
- (length 3), or cubic (length 4).
- Raises:
- fontTools.cu2qu.Errors.ApproxNotFoundError: if no suitable approximation
- can be found for all curves with the given parameters.
- """
- curves = [[complex(*p) for p in curve] for curve in curves]
- assert len(max_errors) == len(curves)
- l = len(curves)
- splines = [None] * l
- last_i = i = 0
- n = 1
- while True:
- spline = cubic_approx_spline(curves[i], n, max_errors[i], all_quadratic)
- if spline is None:
- if n == MAX_N:
- break
- n += 1
- last_i = i
- continue
- splines[i] = spline
- i = (i + 1) % l
- if i == last_i:
- # done. go home
- return [[(s.real, s.imag) for s in spline] for spline in splines]
- raise ApproxNotFoundError(curves)
|