1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474 |
- # -*- coding: utf-8 -*-
- """fontTools.misc.bezierTools.py -- tools for working with Bezier path segments.
- """
- from fontTools.misc.arrayTools import calcBounds, sectRect, rectArea
- from fontTools.misc.transform import Identity
- import math
- from collections import namedtuple
- try:
- import cython
- COMPILED = cython.compiled
- except (AttributeError, ImportError):
- # if cython not installed, use mock module with no-op decorators and types
- from fontTools.misc import cython
- COMPILED = False
- Intersection = namedtuple("Intersection", ["pt", "t1", "t2"])
- __all__ = [
- "approximateCubicArcLength",
- "approximateCubicArcLengthC",
- "approximateQuadraticArcLength",
- "approximateQuadraticArcLengthC",
- "calcCubicArcLength",
- "calcCubicArcLengthC",
- "calcQuadraticArcLength",
- "calcQuadraticArcLengthC",
- "calcCubicBounds",
- "calcQuadraticBounds",
- "splitLine",
- "splitQuadratic",
- "splitCubic",
- "splitQuadraticAtT",
- "splitCubicAtT",
- "splitCubicAtTC",
- "splitCubicIntoTwoAtTC",
- "solveQuadratic",
- "solveCubic",
- "quadraticPointAtT",
- "cubicPointAtT",
- "cubicPointAtTC",
- "linePointAtT",
- "segmentPointAtT",
- "lineLineIntersections",
- "curveLineIntersections",
- "curveCurveIntersections",
- "segmentSegmentIntersections",
- ]
- def calcCubicArcLength(pt1, pt2, pt3, pt4, tolerance=0.005):
- """Calculates the arc length for a cubic Bezier segment.
- Whereas :func:`approximateCubicArcLength` approximates the length, this
- function calculates it by "measuring", recursively dividing the curve
- until the divided segments are shorter than ``tolerance``.
- Args:
- pt1,pt2,pt3,pt4: Control points of the Bezier as 2D tuples.
- tolerance: Controls the precision of the calcuation.
- Returns:
- Arc length value.
- """
- return calcCubicArcLengthC(
- complex(*pt1), complex(*pt2), complex(*pt3), complex(*pt4), tolerance
- )
- def _split_cubic_into_two(p0, p1, p2, p3):
- mid = (p0 + 3 * (p1 + p2) + p3) * 0.125
- deriv3 = (p3 + p2 - p1 - p0) * 0.125
- return (
- (p0, (p0 + p1) * 0.5, mid - deriv3, mid),
- (mid, mid + deriv3, (p2 + p3) * 0.5, p3),
- )
- @cython.returns(cython.double)
- @cython.locals(
- p0=cython.complex,
- p1=cython.complex,
- p2=cython.complex,
- p3=cython.complex,
- )
- @cython.locals(mult=cython.double, arch=cython.double, box=cython.double)
- def _calcCubicArcLengthCRecurse(mult, p0, p1, p2, p3):
- arch = abs(p0 - p3)
- box = abs(p0 - p1) + abs(p1 - p2) + abs(p2 - p3)
- if arch * mult >= box:
- return (arch + box) * 0.5
- else:
- one, two = _split_cubic_into_two(p0, p1, p2, p3)
- return _calcCubicArcLengthCRecurse(mult, *one) + _calcCubicArcLengthCRecurse(
- mult, *two
- )
- @cython.returns(cython.double)
- @cython.locals(
- pt1=cython.complex,
- pt2=cython.complex,
- pt3=cython.complex,
- pt4=cython.complex,
- )
- @cython.locals(
- tolerance=cython.double,
- mult=cython.double,
- )
- def calcCubicArcLengthC(pt1, pt2, pt3, pt4, tolerance=0.005):
- """Calculates the arc length for a cubic Bezier segment.
- Args:
- pt1,pt2,pt3,pt4: Control points of the Bezier as complex numbers.
- tolerance: Controls the precision of the calcuation.
- Returns:
- Arc length value.
- """
- mult = 1.0 + 1.5 * tolerance # The 1.5 is a empirical hack; no math
- return _calcCubicArcLengthCRecurse(mult, pt1, pt2, pt3, pt4)
- epsilonDigits = 6
- epsilon = 1e-10
- @cython.cfunc
- @cython.inline
- @cython.returns(cython.double)
- @cython.locals(v1=cython.complex, v2=cython.complex)
- def _dot(v1, v2):
- return (v1 * v2.conjugate()).real
- @cython.cfunc
- @cython.inline
- @cython.returns(cython.double)
- @cython.locals(x=cython.double)
- def _intSecAtan(x):
- # In : sympy.integrate(sp.sec(sp.atan(x)))
- # Out: x*sqrt(x**2 + 1)/2 + asinh(x)/2
- return x * math.sqrt(x**2 + 1) / 2 + math.asinh(x) / 2
- def calcQuadraticArcLength(pt1, pt2, pt3):
- """Calculates the arc length for a quadratic Bezier segment.
- Args:
- pt1: Start point of the Bezier as 2D tuple.
- pt2: Handle point of the Bezier as 2D tuple.
- pt3: End point of the Bezier as 2D tuple.
- Returns:
- Arc length value.
- Example::
- >>> calcQuadraticArcLength((0, 0), (0, 0), (0, 0)) # empty segment
- 0.0
- >>> calcQuadraticArcLength((0, 0), (50, 0), (80, 0)) # collinear points
- 80.0
- >>> calcQuadraticArcLength((0, 0), (0, 50), (0, 80)) # collinear points vertical
- 80.0
- >>> calcQuadraticArcLength((0, 0), (50, 20), (100, 40)) # collinear points
- 107.70329614269008
- >>> calcQuadraticArcLength((0, 0), (0, 100), (100, 0))
- 154.02976155645263
- >>> calcQuadraticArcLength((0, 0), (0, 50), (100, 0))
- 120.21581243984076
- >>> calcQuadraticArcLength((0, 0), (50, -10), (80, 50))
- 102.53273816445825
- >>> calcQuadraticArcLength((0, 0), (40, 0), (-40, 0)) # collinear points, control point outside
- 66.66666666666667
- >>> calcQuadraticArcLength((0, 0), (40, 0), (0, 0)) # collinear points, looping back
- 40.0
- """
- return calcQuadraticArcLengthC(complex(*pt1), complex(*pt2), complex(*pt3))
- @cython.returns(cython.double)
- @cython.locals(
- pt1=cython.complex,
- pt2=cython.complex,
- pt3=cython.complex,
- d0=cython.complex,
- d1=cython.complex,
- d=cython.complex,
- n=cython.complex,
- )
- @cython.locals(
- scale=cython.double,
- origDist=cython.double,
- a=cython.double,
- b=cython.double,
- x0=cython.double,
- x1=cython.double,
- Len=cython.double,
- )
- def calcQuadraticArcLengthC(pt1, pt2, pt3):
- """Calculates the arc length for a quadratic Bezier segment.
- Args:
- pt1: Start point of the Bezier as a complex number.
- pt2: Handle point of the Bezier as a complex number.
- pt3: End point of the Bezier as a complex number.
- Returns:
- Arc length value.
- """
- # Analytical solution to the length of a quadratic bezier.
- # Documentation: https://github.com/fonttools/fonttools/issues/3055
- d0 = pt2 - pt1
- d1 = pt3 - pt2
- d = d1 - d0
- n = d * 1j
- scale = abs(n)
- if scale == 0.0:
- return abs(pt3 - pt1)
- origDist = _dot(n, d0)
- if abs(origDist) < epsilon:
- if _dot(d0, d1) >= 0:
- return abs(pt3 - pt1)
- a, b = abs(d0), abs(d1)
- return (a * a + b * b) / (a + b)
- x0 = _dot(d, d0) / origDist
- x1 = _dot(d, d1) / origDist
- Len = abs(2 * (_intSecAtan(x1) - _intSecAtan(x0)) * origDist / (scale * (x1 - x0)))
- return Len
- def approximateQuadraticArcLength(pt1, pt2, pt3):
- """Calculates the arc length for a quadratic Bezier segment.
- Uses Gauss-Legendre quadrature for a branch-free approximation.
- See :func:`calcQuadraticArcLength` for a slower but more accurate result.
- Args:
- pt1: Start point of the Bezier as 2D tuple.
- pt2: Handle point of the Bezier as 2D tuple.
- pt3: End point of the Bezier as 2D tuple.
- Returns:
- Approximate arc length value.
- """
- return approximateQuadraticArcLengthC(complex(*pt1), complex(*pt2), complex(*pt3))
- @cython.returns(cython.double)
- @cython.locals(
- pt1=cython.complex,
- pt2=cython.complex,
- pt3=cython.complex,
- )
- @cython.locals(
- v0=cython.double,
- v1=cython.double,
- v2=cython.double,
- )
- def approximateQuadraticArcLengthC(pt1, pt2, pt3):
- """Calculates the arc length for a quadratic Bezier segment.
- Uses Gauss-Legendre quadrature for a branch-free approximation.
- See :func:`calcQuadraticArcLength` for a slower but more accurate result.
- Args:
- pt1: Start point of the Bezier as a complex number.
- pt2: Handle point of the Bezier as a complex number.
- pt3: End point of the Bezier as a complex number.
- Returns:
- Approximate arc length value.
- """
- # This, essentially, approximates the length-of-derivative function
- # to be integrated with the best-matching fifth-degree polynomial
- # approximation of it.
- #
- # https://en.wikipedia.org/wiki/Gaussian_quadrature#Gauss.E2.80.93Legendre_quadrature
- # abs(BezierCurveC[2].diff(t).subs({t:T})) for T in sorted(.5, .5±sqrt(3/5)/2),
- # weighted 5/18, 8/18, 5/18 respectively.
- v0 = abs(
- -0.492943519233745 * pt1 + 0.430331482911935 * pt2 + 0.0626120363218102 * pt3
- )
- v1 = abs(pt3 - pt1) * 0.4444444444444444
- v2 = abs(
- -0.0626120363218102 * pt1 - 0.430331482911935 * pt2 + 0.492943519233745 * pt3
- )
- return v0 + v1 + v2
- def calcQuadraticBounds(pt1, pt2, pt3):
- """Calculates the bounding rectangle for a quadratic Bezier segment.
- Args:
- pt1: Start point of the Bezier as a 2D tuple.
- pt2: Handle point of the Bezier as a 2D tuple.
- pt3: End point of the Bezier as a 2D tuple.
- Returns:
- A four-item tuple representing the bounding rectangle ``(xMin, yMin, xMax, yMax)``.
- Example::
- >>> calcQuadraticBounds((0, 0), (50, 100), (100, 0))
- (0, 0, 100, 50.0)
- >>> calcQuadraticBounds((0, 0), (100, 0), (100, 100))
- (0.0, 0.0, 100, 100)
- """
- (ax, ay), (bx, by), (cx, cy) = calcQuadraticParameters(pt1, pt2, pt3)
- ax2 = ax * 2.0
- ay2 = ay * 2.0
- roots = []
- if ax2 != 0:
- roots.append(-bx / ax2)
- if ay2 != 0:
- roots.append(-by / ay2)
- points = [
- (ax * t * t + bx * t + cx, ay * t * t + by * t + cy)
- for t in roots
- if 0 <= t < 1
- ] + [pt1, pt3]
- return calcBounds(points)
- def approximateCubicArcLength(pt1, pt2, pt3, pt4):
- """Approximates the arc length for a cubic Bezier segment.
- Uses Gauss-Lobatto quadrature with n=5 points to approximate arc length.
- See :func:`calcCubicArcLength` for a slower but more accurate result.
- Args:
- pt1,pt2,pt3,pt4: Control points of the Bezier as 2D tuples.
- Returns:
- Arc length value.
- Example::
- >>> approximateCubicArcLength((0, 0), (25, 100), (75, 100), (100, 0))
- 190.04332968932817
- >>> approximateCubicArcLength((0, 0), (50, 0), (100, 50), (100, 100))
- 154.8852074945903
- >>> approximateCubicArcLength((0, 0), (50, 0), (100, 0), (150, 0)) # line; exact result should be 150.
- 149.99999999999991
- >>> approximateCubicArcLength((0, 0), (50, 0), (100, 0), (-50, 0)) # cusp; exact result should be 150.
- 136.9267662156362
- >>> approximateCubicArcLength((0, 0), (50, 0), (100, -50), (-50, 0)) # cusp
- 154.80848416537057
- """
- return approximateCubicArcLengthC(
- complex(*pt1), complex(*pt2), complex(*pt3), complex(*pt4)
- )
- @cython.returns(cython.double)
- @cython.locals(
- pt1=cython.complex,
- pt2=cython.complex,
- pt3=cython.complex,
- pt4=cython.complex,
- )
- @cython.locals(
- v0=cython.double,
- v1=cython.double,
- v2=cython.double,
- v3=cython.double,
- v4=cython.double,
- )
- def approximateCubicArcLengthC(pt1, pt2, pt3, pt4):
- """Approximates the arc length for a cubic Bezier segment.
- Args:
- pt1,pt2,pt3,pt4: Control points of the Bezier as complex numbers.
- Returns:
- Arc length value.
- """
- # This, essentially, approximates the length-of-derivative function
- # to be integrated with the best-matching seventh-degree polynomial
- # approximation of it.
- #
- # https://en.wikipedia.org/wiki/Gaussian_quadrature#Gauss.E2.80.93Lobatto_rules
- # abs(BezierCurveC[3].diff(t).subs({t:T})) for T in sorted(0, .5±(3/7)**.5/2, .5, 1),
- # weighted 1/20, 49/180, 32/90, 49/180, 1/20 respectively.
- v0 = abs(pt2 - pt1) * 0.15
- v1 = abs(
- -0.558983582205757 * pt1
- + 0.325650248872424 * pt2
- + 0.208983582205757 * pt3
- + 0.024349751127576 * pt4
- )
- v2 = abs(pt4 - pt1 + pt3 - pt2) * 0.26666666666666666
- v3 = abs(
- -0.024349751127576 * pt1
- - 0.208983582205757 * pt2
- - 0.325650248872424 * pt3
- + 0.558983582205757 * pt4
- )
- v4 = abs(pt4 - pt3) * 0.15
- return v0 + v1 + v2 + v3 + v4
- def calcCubicBounds(pt1, pt2, pt3, pt4):
- """Calculates the bounding rectangle for a quadratic Bezier segment.
- Args:
- pt1,pt2,pt3,pt4: Control points of the Bezier as 2D tuples.
- Returns:
- A four-item tuple representing the bounding rectangle ``(xMin, yMin, xMax, yMax)``.
- Example::
- >>> calcCubicBounds((0, 0), (25, 100), (75, 100), (100, 0))
- (0, 0, 100, 75.0)
- >>> calcCubicBounds((0, 0), (50, 0), (100, 50), (100, 100))
- (0.0, 0.0, 100, 100)
- >>> print("%f %f %f %f" % calcCubicBounds((50, 0), (0, 100), (100, 100), (50, 0)))
- 35.566243 0.000000 64.433757 75.000000
- """
- (ax, ay), (bx, by), (cx, cy), (dx, dy) = calcCubicParameters(pt1, pt2, pt3, pt4)
- # calc first derivative
- ax3 = ax * 3.0
- ay3 = ay * 3.0
- bx2 = bx * 2.0
- by2 = by * 2.0
- xRoots = [t for t in solveQuadratic(ax3, bx2, cx) if 0 <= t < 1]
- yRoots = [t for t in solveQuadratic(ay3, by2, cy) if 0 <= t < 1]
- roots = xRoots + yRoots
- points = [
- (
- ax * t * t * t + bx * t * t + cx * t + dx,
- ay * t * t * t + by * t * t + cy * t + dy,
- )
- for t in roots
- ] + [pt1, pt4]
- return calcBounds(points)
- def splitLine(pt1, pt2, where, isHorizontal):
- """Split a line at a given coordinate.
- Args:
- pt1: Start point of line as 2D tuple.
- pt2: End point of line as 2D tuple.
- where: Position at which to split the line.
- isHorizontal: Direction of the ray splitting the line. If true,
- ``where`` is interpreted as a Y coordinate; if false, then
- ``where`` is interpreted as an X coordinate.
- Returns:
- A list of two line segments (each line segment being two 2D tuples)
- if the line was successfully split, or a list containing the original
- line.
- Example::
- >>> printSegments(splitLine((0, 0), (100, 100), 50, True))
- ((0, 0), (50, 50))
- ((50, 50), (100, 100))
- >>> printSegments(splitLine((0, 0), (100, 100), 100, True))
- ((0, 0), (100, 100))
- >>> printSegments(splitLine((0, 0), (100, 100), 0, True))
- ((0, 0), (0, 0))
- ((0, 0), (100, 100))
- >>> printSegments(splitLine((0, 0), (100, 100), 0, False))
- ((0, 0), (0, 0))
- ((0, 0), (100, 100))
- >>> printSegments(splitLine((100, 0), (0, 0), 50, False))
- ((100, 0), (50, 0))
- ((50, 0), (0, 0))
- >>> printSegments(splitLine((0, 100), (0, 0), 50, True))
- ((0, 100), (0, 50))
- ((0, 50), (0, 0))
- """
- pt1x, pt1y = pt1
- pt2x, pt2y = pt2
- ax = pt2x - pt1x
- ay = pt2y - pt1y
- bx = pt1x
- by = pt1y
- a = (ax, ay)[isHorizontal]
- if a == 0:
- return [(pt1, pt2)]
- t = (where - (bx, by)[isHorizontal]) / a
- if 0 <= t < 1:
- midPt = ax * t + bx, ay * t + by
- return [(pt1, midPt), (midPt, pt2)]
- else:
- return [(pt1, pt2)]
- def splitQuadratic(pt1, pt2, pt3, where, isHorizontal):
- """Split a quadratic Bezier curve at a given coordinate.
- Args:
- pt1,pt2,pt3: Control points of the Bezier as 2D tuples.
- where: Position at which to split the curve.
- isHorizontal: Direction of the ray splitting the curve. If true,
- ``where`` is interpreted as a Y coordinate; if false, then
- ``where`` is interpreted as an X coordinate.
- Returns:
- A list of two curve segments (each curve segment being three 2D tuples)
- if the curve was successfully split, or a list containing the original
- curve.
- Example::
- >>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 150, False))
- ((0, 0), (50, 100), (100, 0))
- >>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 50, False))
- ((0, 0), (25, 50), (50, 50))
- ((50, 50), (75, 50), (100, 0))
- >>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 25, False))
- ((0, 0), (12.5, 25), (25, 37.5))
- ((25, 37.5), (62.5, 75), (100, 0))
- >>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 25, True))
- ((0, 0), (7.32233, 14.6447), (14.6447, 25))
- ((14.6447, 25), (50, 75), (85.3553, 25))
- ((85.3553, 25), (92.6777, 14.6447), (100, -7.10543e-15))
- >>> # XXX I'm not at all sure if the following behavior is desirable:
- >>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 50, True))
- ((0, 0), (25, 50), (50, 50))
- ((50, 50), (50, 50), (50, 50))
- ((50, 50), (75, 50), (100, 0))
- """
- a, b, c = calcQuadraticParameters(pt1, pt2, pt3)
- solutions = solveQuadratic(
- a[isHorizontal], b[isHorizontal], c[isHorizontal] - where
- )
- solutions = sorted(t for t in solutions if 0 <= t < 1)
- if not solutions:
- return [(pt1, pt2, pt3)]
- return _splitQuadraticAtT(a, b, c, *solutions)
- def splitCubic(pt1, pt2, pt3, pt4, where, isHorizontal):
- """Split a cubic Bezier curve at a given coordinate.
- Args:
- pt1,pt2,pt3,pt4: Control points of the Bezier as 2D tuples.
- where: Position at which to split the curve.
- isHorizontal: Direction of the ray splitting the curve. If true,
- ``where`` is interpreted as a Y coordinate; if false, then
- ``where`` is interpreted as an X coordinate.
- Returns:
- A list of two curve segments (each curve segment being four 2D tuples)
- if the curve was successfully split, or a list containing the original
- curve.
- Example::
- >>> printSegments(splitCubic((0, 0), (25, 100), (75, 100), (100, 0), 150, False))
- ((0, 0), (25, 100), (75, 100), (100, 0))
- >>> printSegments(splitCubic((0, 0), (25, 100), (75, 100), (100, 0), 50, False))
- ((0, 0), (12.5, 50), (31.25, 75), (50, 75))
- ((50, 75), (68.75, 75), (87.5, 50), (100, 0))
- >>> printSegments(splitCubic((0, 0), (25, 100), (75, 100), (100, 0), 25, True))
- ((0, 0), (2.29379, 9.17517), (4.79804, 17.5085), (7.47414, 25))
- ((7.47414, 25), (31.2886, 91.6667), (68.7114, 91.6667), (92.5259, 25))
- ((92.5259, 25), (95.202, 17.5085), (97.7062, 9.17517), (100, 1.77636e-15))
- """
- a, b, c, d = calcCubicParameters(pt1, pt2, pt3, pt4)
- solutions = solveCubic(
- a[isHorizontal], b[isHorizontal], c[isHorizontal], d[isHorizontal] - where
- )
- solutions = sorted(t for t in solutions if 0 <= t < 1)
- if not solutions:
- return [(pt1, pt2, pt3, pt4)]
- return _splitCubicAtT(a, b, c, d, *solutions)
- def splitQuadraticAtT(pt1, pt2, pt3, *ts):
- """Split a quadratic Bezier curve at one or more values of t.
- Args:
- pt1,pt2,pt3: Control points of the Bezier as 2D tuples.
- *ts: Positions at which to split the curve.
- Returns:
- A list of curve segments (each curve segment being three 2D tuples).
- Examples::
- >>> printSegments(splitQuadraticAtT((0, 0), (50, 100), (100, 0), 0.5))
- ((0, 0), (25, 50), (50, 50))
- ((50, 50), (75, 50), (100, 0))
- >>> printSegments(splitQuadraticAtT((0, 0), (50, 100), (100, 0), 0.5, 0.75))
- ((0, 0), (25, 50), (50, 50))
- ((50, 50), (62.5, 50), (75, 37.5))
- ((75, 37.5), (87.5, 25), (100, 0))
- """
- a, b, c = calcQuadraticParameters(pt1, pt2, pt3)
- return _splitQuadraticAtT(a, b, c, *ts)
- def splitCubicAtT(pt1, pt2, pt3, pt4, *ts):
- """Split a cubic Bezier curve at one or more values of t.
- Args:
- pt1,pt2,pt3,pt4: Control points of the Bezier as 2D tuples.
- *ts: Positions at which to split the curve.
- Returns:
- A list of curve segments (each curve segment being four 2D tuples).
- Examples::
- >>> printSegments(splitCubicAtT((0, 0), (25, 100), (75, 100), (100, 0), 0.5))
- ((0, 0), (12.5, 50), (31.25, 75), (50, 75))
- ((50, 75), (68.75, 75), (87.5, 50), (100, 0))
- >>> printSegments(splitCubicAtT((0, 0), (25, 100), (75, 100), (100, 0), 0.5, 0.75))
- ((0, 0), (12.5, 50), (31.25, 75), (50, 75))
- ((50, 75), (59.375, 75), (68.75, 68.75), (77.3438, 56.25))
- ((77.3438, 56.25), (85.9375, 43.75), (93.75, 25), (100, 0))
- """
- a, b, c, d = calcCubicParameters(pt1, pt2, pt3, pt4)
- return _splitCubicAtT(a, b, c, d, *ts)
- @cython.locals(
- pt1=cython.complex,
- pt2=cython.complex,
- pt3=cython.complex,
- pt4=cython.complex,
- a=cython.complex,
- b=cython.complex,
- c=cython.complex,
- d=cython.complex,
- )
- def splitCubicAtTC(pt1, pt2, pt3, pt4, *ts):
- """Split a cubic Bezier curve at one or more values of t.
- Args:
- pt1,pt2,pt3,pt4: Control points of the Bezier as complex numbers..
- *ts: Positions at which to split the curve.
- Yields:
- Curve segments (each curve segment being four complex numbers).
- """
- a, b, c, d = calcCubicParametersC(pt1, pt2, pt3, pt4)
- yield from _splitCubicAtTC(a, b, c, d, *ts)
- @cython.returns(cython.complex)
- @cython.locals(
- t=cython.double,
- pt1=cython.complex,
- pt2=cython.complex,
- pt3=cython.complex,
- pt4=cython.complex,
- pointAtT=cython.complex,
- off1=cython.complex,
- off2=cython.complex,
- )
- @cython.locals(
- t2=cython.double, _1_t=cython.double, _1_t_2=cython.double, _2_t_1_t=cython.double
- )
- def splitCubicIntoTwoAtTC(pt1, pt2, pt3, pt4, t):
- """Split a cubic Bezier curve at t.
- Args:
- pt1,pt2,pt3,pt4: Control points of the Bezier as complex numbers.
- t: Position at which to split the curve.
- Returns:
- A tuple of two curve segments (each curve segment being four complex numbers).
- """
- t2 = t * t
- _1_t = 1 - t
- _1_t_2 = _1_t * _1_t
- _2_t_1_t = 2 * t * _1_t
- pointAtT = (
- _1_t_2 * _1_t * pt1 + 3 * (_1_t_2 * t * pt2 + _1_t * t2 * pt3) + t2 * t * pt4
- )
- off1 = _1_t_2 * pt1 + _2_t_1_t * pt2 + t2 * pt3
- off2 = _1_t_2 * pt2 + _2_t_1_t * pt3 + t2 * pt4
- pt2 = pt1 + (pt2 - pt1) * t
- pt3 = pt4 + (pt3 - pt4) * _1_t
- return ((pt1, pt2, off1, pointAtT), (pointAtT, off2, pt3, pt4))
- def _splitQuadraticAtT(a, b, c, *ts):
- ts = list(ts)
- segments = []
- ts.insert(0, 0.0)
- ts.append(1.0)
- ax, ay = a
- bx, by = b
- cx, cy = c
- for i in range(len(ts) - 1):
- t1 = ts[i]
- t2 = ts[i + 1]
- delta = t2 - t1
- # calc new a, b and c
- delta_2 = delta * delta
- a1x = ax * delta_2
- a1y = ay * delta_2
- b1x = (2 * ax * t1 + bx) * delta
- b1y = (2 * ay * t1 + by) * delta
- t1_2 = t1 * t1
- c1x = ax * t1_2 + bx * t1 + cx
- c1y = ay * t1_2 + by * t1 + cy
- pt1, pt2, pt3 = calcQuadraticPoints((a1x, a1y), (b1x, b1y), (c1x, c1y))
- segments.append((pt1, pt2, pt3))
- return segments
- def _splitCubicAtT(a, b, c, d, *ts):
- ts = list(ts)
- ts.insert(0, 0.0)
- ts.append(1.0)
- segments = []
- ax, ay = a
- bx, by = b
- cx, cy = c
- dx, dy = d
- for i in range(len(ts) - 1):
- t1 = ts[i]
- t2 = ts[i + 1]
- delta = t2 - t1
- delta_2 = delta * delta
- delta_3 = delta * delta_2
- t1_2 = t1 * t1
- t1_3 = t1 * t1_2
- # calc new a, b, c and d
- a1x = ax * delta_3
- a1y = ay * delta_3
- b1x = (3 * ax * t1 + bx) * delta_2
- b1y = (3 * ay * t1 + by) * delta_2
- c1x = (2 * bx * t1 + cx + 3 * ax * t1_2) * delta
- c1y = (2 * by * t1 + cy + 3 * ay * t1_2) * delta
- d1x = ax * t1_3 + bx * t1_2 + cx * t1 + dx
- d1y = ay * t1_3 + by * t1_2 + cy * t1 + dy
- pt1, pt2, pt3, pt4 = calcCubicPoints(
- (a1x, a1y), (b1x, b1y), (c1x, c1y), (d1x, d1y)
- )
- segments.append((pt1, pt2, pt3, pt4))
- return segments
- @cython.locals(
- a=cython.complex,
- b=cython.complex,
- c=cython.complex,
- d=cython.complex,
- t1=cython.double,
- t2=cython.double,
- delta=cython.double,
- delta_2=cython.double,
- delta_3=cython.double,
- a1=cython.complex,
- b1=cython.complex,
- c1=cython.complex,
- d1=cython.complex,
- )
- def _splitCubicAtTC(a, b, c, d, *ts):
- ts = list(ts)
- ts.insert(0, 0.0)
- ts.append(1.0)
- for i in range(len(ts) - 1):
- t1 = ts[i]
- t2 = ts[i + 1]
- delta = t2 - t1
- delta_2 = delta * delta
- delta_3 = delta * delta_2
- t1_2 = t1 * t1
- t1_3 = t1 * t1_2
- # calc new a, b, c and d
- a1 = a * delta_3
- b1 = (3 * a * t1 + b) * delta_2
- c1 = (2 * b * t1 + c + 3 * a * t1_2) * delta
- d1 = a * t1_3 + b * t1_2 + c * t1 + d
- pt1, pt2, pt3, pt4 = calcCubicPointsC(a1, b1, c1, d1)
- yield (pt1, pt2, pt3, pt4)
- #
- # Equation solvers.
- #
- from math import sqrt, acos, cos, pi
- def solveQuadratic(a, b, c, sqrt=sqrt):
- """Solve a quadratic equation.
- Solves *a*x*x + b*x + c = 0* where a, b and c are real.
- Args:
- a: coefficient of *x²*
- b: coefficient of *x*
- c: constant term
- Returns:
- A list of roots. Note that the returned list is neither guaranteed to
- be sorted nor to contain unique values!
- """
- if abs(a) < epsilon:
- if abs(b) < epsilon:
- # We have a non-equation; therefore, we have no valid solution
- roots = []
- else:
- # We have a linear equation with 1 root.
- roots = [-c / b]
- else:
- # We have a true quadratic equation. Apply the quadratic formula to find two roots.
- DD = b * b - 4.0 * a * c
- if DD >= 0.0:
- rDD = sqrt(DD)
- roots = [(-b + rDD) / 2.0 / a, (-b - rDD) / 2.0 / a]
- else:
- # complex roots, ignore
- roots = []
- return roots
- def solveCubic(a, b, c, d):
- """Solve a cubic equation.
- Solves *a*x*x*x + b*x*x + c*x + d = 0* where a, b, c and d are real.
- Args:
- a: coefficient of *x³*
- b: coefficient of *x²*
- c: coefficient of *x*
- d: constant term
- Returns:
- A list of roots. Note that the returned list is neither guaranteed to
- be sorted nor to contain unique values!
- Examples::
- >>> solveCubic(1, 1, -6, 0)
- [-3.0, -0.0, 2.0]
- >>> solveCubic(-10.0, -9.0, 48.0, -29.0)
- [-2.9, 1.0, 1.0]
- >>> solveCubic(-9.875, -9.0, 47.625, -28.75)
- [-2.911392, 1.0, 1.0]
- >>> solveCubic(1.0, -4.5, 6.75, -3.375)
- [1.5, 1.5, 1.5]
- >>> solveCubic(-12.0, 18.0, -9.0, 1.50023651123)
- [0.5, 0.5, 0.5]
- >>> solveCubic(
- ... 9.0, 0.0, 0.0, -7.62939453125e-05
- ... ) == [-0.0, -0.0, -0.0]
- True
- """
- #
- # adapted from:
- # CUBIC.C - Solve a cubic polynomial
- # public domain by Ross Cottrell
- # found at: http://www.strangecreations.com/library/snippets/Cubic.C
- #
- if abs(a) < epsilon:
- # don't just test for zero; for very small values of 'a' solveCubic()
- # returns unreliable results, so we fall back to quad.
- return solveQuadratic(b, c, d)
- a = float(a)
- a1 = b / a
- a2 = c / a
- a3 = d / a
- Q = (a1 * a1 - 3.0 * a2) / 9.0
- R = (2.0 * a1 * a1 * a1 - 9.0 * a1 * a2 + 27.0 * a3) / 54.0
- R2 = R * R
- Q3 = Q * Q * Q
- R2 = 0 if R2 < epsilon else R2
- Q3 = 0 if abs(Q3) < epsilon else Q3
- R2_Q3 = R2 - Q3
- if R2 == 0.0 and Q3 == 0.0:
- x = round(-a1 / 3.0, epsilonDigits)
- return [x, x, x]
- elif R2_Q3 <= epsilon * 0.5:
- # The epsilon * .5 above ensures that Q3 is not zero.
- theta = acos(max(min(R / sqrt(Q3), 1.0), -1.0))
- rQ2 = -2.0 * sqrt(Q)
- a1_3 = a1 / 3.0
- x0 = rQ2 * cos(theta / 3.0) - a1_3
- x1 = rQ2 * cos((theta + 2.0 * pi) / 3.0) - a1_3
- x2 = rQ2 * cos((theta + 4.0 * pi) / 3.0) - a1_3
- x0, x1, x2 = sorted([x0, x1, x2])
- # Merge roots that are close-enough
- if x1 - x0 < epsilon and x2 - x1 < epsilon:
- x0 = x1 = x2 = round((x0 + x1 + x2) / 3.0, epsilonDigits)
- elif x1 - x0 < epsilon:
- x0 = x1 = round((x0 + x1) / 2.0, epsilonDigits)
- x2 = round(x2, epsilonDigits)
- elif x2 - x1 < epsilon:
- x0 = round(x0, epsilonDigits)
- x1 = x2 = round((x1 + x2) / 2.0, epsilonDigits)
- else:
- x0 = round(x0, epsilonDigits)
- x1 = round(x1, epsilonDigits)
- x2 = round(x2, epsilonDigits)
- return [x0, x1, x2]
- else:
- x = pow(sqrt(R2_Q3) + abs(R), 1 / 3.0)
- x = x + Q / x
- if R >= 0.0:
- x = -x
- x = round(x - a1 / 3.0, epsilonDigits)
- return [x]
- #
- # Conversion routines for points to parameters and vice versa
- #
- def calcQuadraticParameters(pt1, pt2, pt3):
- x2, y2 = pt2
- x3, y3 = pt3
- cx, cy = pt1
- bx = (x2 - cx) * 2.0
- by = (y2 - cy) * 2.0
- ax = x3 - cx - bx
- ay = y3 - cy - by
- return (ax, ay), (bx, by), (cx, cy)
- def calcCubicParameters(pt1, pt2, pt3, pt4):
- x2, y2 = pt2
- x3, y3 = pt3
- x4, y4 = pt4
- dx, dy = pt1
- cx = (x2 - dx) * 3.0
- cy = (y2 - dy) * 3.0
- bx = (x3 - x2) * 3.0 - cx
- by = (y3 - y2) * 3.0 - cy
- ax = x4 - dx - cx - bx
- ay = y4 - dy - cy - by
- return (ax, ay), (bx, by), (cx, cy), (dx, dy)
- @cython.cfunc
- @cython.inline
- @cython.locals(
- pt1=cython.complex,
- pt2=cython.complex,
- pt3=cython.complex,
- pt4=cython.complex,
- a=cython.complex,
- b=cython.complex,
- c=cython.complex,
- )
- def calcCubicParametersC(pt1, pt2, pt3, pt4):
- c = (pt2 - pt1) * 3.0
- b = (pt3 - pt2) * 3.0 - c
- a = pt4 - pt1 - c - b
- return (a, b, c, pt1)
- def calcQuadraticPoints(a, b, c):
- ax, ay = a
- bx, by = b
- cx, cy = c
- x1 = cx
- y1 = cy
- x2 = (bx * 0.5) + cx
- y2 = (by * 0.5) + cy
- x3 = ax + bx + cx
- y3 = ay + by + cy
- return (x1, y1), (x2, y2), (x3, y3)
- def calcCubicPoints(a, b, c, d):
- ax, ay = a
- bx, by = b
- cx, cy = c
- dx, dy = d
- x1 = dx
- y1 = dy
- x2 = (cx / 3.0) + dx
- y2 = (cy / 3.0) + dy
- x3 = (bx + cx) / 3.0 + x2
- y3 = (by + cy) / 3.0 + y2
- x4 = ax + dx + cx + bx
- y4 = ay + dy + cy + by
- return (x1, y1), (x2, y2), (x3, y3), (x4, y4)
- @cython.cfunc
- @cython.inline
- @cython.locals(
- a=cython.complex,
- b=cython.complex,
- c=cython.complex,
- d=cython.complex,
- p2=cython.complex,
- p3=cython.complex,
- p4=cython.complex,
- )
- def calcCubicPointsC(a, b, c, d):
- p2 = c * (1 / 3) + d
- p3 = (b + c) * (1 / 3) + p2
- p4 = a + b + c + d
- return (d, p2, p3, p4)
- #
- # Point at time
- #
- def linePointAtT(pt1, pt2, t):
- """Finds the point at time `t` on a line.
- Args:
- pt1, pt2: Coordinates of the line as 2D tuples.
- t: The time along the line.
- Returns:
- A 2D tuple with the coordinates of the point.
- """
- return ((pt1[0] * (1 - t) + pt2[0] * t), (pt1[1] * (1 - t) + pt2[1] * t))
- def quadraticPointAtT(pt1, pt2, pt3, t):
- """Finds the point at time `t` on a quadratic curve.
- Args:
- pt1, pt2, pt3: Coordinates of the curve as 2D tuples.
- t: The time along the curve.
- Returns:
- A 2D tuple with the coordinates of the point.
- """
- x = (1 - t) * (1 - t) * pt1[0] + 2 * (1 - t) * t * pt2[0] + t * t * pt3[0]
- y = (1 - t) * (1 - t) * pt1[1] + 2 * (1 - t) * t * pt2[1] + t * t * pt3[1]
- return (x, y)
- def cubicPointAtT(pt1, pt2, pt3, pt4, t):
- """Finds the point at time `t` on a cubic curve.
- Args:
- pt1, pt2, pt3, pt4: Coordinates of the curve as 2D tuples.
- t: The time along the curve.
- Returns:
- A 2D tuple with the coordinates of the point.
- """
- t2 = t * t
- _1_t = 1 - t
- _1_t_2 = _1_t * _1_t
- x = (
- _1_t_2 * _1_t * pt1[0]
- + 3 * (_1_t_2 * t * pt2[0] + _1_t * t2 * pt3[0])
- + t2 * t * pt4[0]
- )
- y = (
- _1_t_2 * _1_t * pt1[1]
- + 3 * (_1_t_2 * t * pt2[1] + _1_t * t2 * pt3[1])
- + t2 * t * pt4[1]
- )
- return (x, y)
- @cython.returns(cython.complex)
- @cython.locals(
- t=cython.double,
- pt1=cython.complex,
- pt2=cython.complex,
- pt3=cython.complex,
- pt4=cython.complex,
- )
- @cython.locals(t2=cython.double, _1_t=cython.double, _1_t_2=cython.double)
- def cubicPointAtTC(pt1, pt2, pt3, pt4, t):
- """Finds the point at time `t` on a cubic curve.
- Args:
- pt1, pt2, pt3, pt4: Coordinates of the curve as complex numbers.
- t: The time along the curve.
- Returns:
- A complex number with the coordinates of the point.
- """
- t2 = t * t
- _1_t = 1 - t
- _1_t_2 = _1_t * _1_t
- return _1_t_2 * _1_t * pt1 + 3 * (_1_t_2 * t * pt2 + _1_t * t2 * pt3) + t2 * t * pt4
- def segmentPointAtT(seg, t):
- if len(seg) == 2:
- return linePointAtT(*seg, t)
- elif len(seg) == 3:
- return quadraticPointAtT(*seg, t)
- elif len(seg) == 4:
- return cubicPointAtT(*seg, t)
- raise ValueError("Unknown curve degree")
- #
- # Intersection finders
- #
- def _line_t_of_pt(s, e, pt):
- sx, sy = s
- ex, ey = e
- px, py = pt
- if abs(sx - ex) < epsilon and abs(sy - ey) < epsilon:
- # Line is a point!
- return -1
- # Use the largest
- if abs(sx - ex) > abs(sy - ey):
- return (px - sx) / (ex - sx)
- else:
- return (py - sy) / (ey - sy)
- def _both_points_are_on_same_side_of_origin(a, b, origin):
- xDiff = (a[0] - origin[0]) * (b[0] - origin[0])
- yDiff = (a[1] - origin[1]) * (b[1] - origin[1])
- return not (xDiff <= 0.0 and yDiff <= 0.0)
- def lineLineIntersections(s1, e1, s2, e2):
- """Finds intersections between two line segments.
- Args:
- s1, e1: Coordinates of the first line as 2D tuples.
- s2, e2: Coordinates of the second line as 2D tuples.
- Returns:
- A list of ``Intersection`` objects, each object having ``pt``, ``t1``
- and ``t2`` attributes containing the intersection point, time on first
- segment and time on second segment respectively.
- Examples::
- >>> a = lineLineIntersections( (310,389), (453, 222), (289, 251), (447, 367))
- >>> len(a)
- 1
- >>> intersection = a[0]
- >>> intersection.pt
- (374.44882952482897, 313.73458370177315)
- >>> (intersection.t1, intersection.t2)
- (0.45069111555824465, 0.5408153767394238)
- """
- s1x, s1y = s1
- e1x, e1y = e1
- s2x, s2y = s2
- e2x, e2y = e2
- if (
- math.isclose(s2x, e2x) and math.isclose(s1x, e1x) and not math.isclose(s1x, s2x)
- ): # Parallel vertical
- return []
- if (
- math.isclose(s2y, e2y) and math.isclose(s1y, e1y) and not math.isclose(s1y, s2y)
- ): # Parallel horizontal
- return []
- if math.isclose(s2x, e2x) and math.isclose(s2y, e2y): # Line segment is tiny
- return []
- if math.isclose(s1x, e1x) and math.isclose(s1y, e1y): # Line segment is tiny
- return []
- if math.isclose(e1x, s1x):
- x = s1x
- slope34 = (e2y - s2y) / (e2x - s2x)
- y = slope34 * (x - s2x) + s2y
- pt = (x, y)
- return [
- Intersection(
- pt=pt, t1=_line_t_of_pt(s1, e1, pt), t2=_line_t_of_pt(s2, e2, pt)
- )
- ]
- if math.isclose(s2x, e2x):
- x = s2x
- slope12 = (e1y - s1y) / (e1x - s1x)
- y = slope12 * (x - s1x) + s1y
- pt = (x, y)
- return [
- Intersection(
- pt=pt, t1=_line_t_of_pt(s1, e1, pt), t2=_line_t_of_pt(s2, e2, pt)
- )
- ]
- slope12 = (e1y - s1y) / (e1x - s1x)
- slope34 = (e2y - s2y) / (e2x - s2x)
- if math.isclose(slope12, slope34):
- return []
- x = (slope12 * s1x - s1y - slope34 * s2x + s2y) / (slope12 - slope34)
- y = slope12 * (x - s1x) + s1y
- pt = (x, y)
- if _both_points_are_on_same_side_of_origin(
- pt, e1, s1
- ) and _both_points_are_on_same_side_of_origin(pt, s2, e2):
- return [
- Intersection(
- pt=pt, t1=_line_t_of_pt(s1, e1, pt), t2=_line_t_of_pt(s2, e2, pt)
- )
- ]
- return []
- def _alignment_transformation(segment):
- # Returns a transformation which aligns a segment horizontally at the
- # origin. Apply this transformation to curves and root-find to find
- # intersections with the segment.
- start = segment[0]
- end = segment[-1]
- angle = math.atan2(end[1] - start[1], end[0] - start[0])
- return Identity.rotate(-angle).translate(-start[0], -start[1])
- def _curve_line_intersections_t(curve, line):
- aligned_curve = _alignment_transformation(line).transformPoints(curve)
- if len(curve) == 3:
- a, b, c = calcQuadraticParameters(*aligned_curve)
- intersections = solveQuadratic(a[1], b[1], c[1])
- elif len(curve) == 4:
- a, b, c, d = calcCubicParameters(*aligned_curve)
- intersections = solveCubic(a[1], b[1], c[1], d[1])
- else:
- raise ValueError("Unknown curve degree")
- return sorted(i for i in intersections if 0.0 <= i <= 1)
- def curveLineIntersections(curve, line):
- """Finds intersections between a curve and a line.
- Args:
- curve: List of coordinates of the curve segment as 2D tuples.
- line: List of coordinates of the line segment as 2D tuples.
- Returns:
- A list of ``Intersection`` objects, each object having ``pt``, ``t1``
- and ``t2`` attributes containing the intersection point, time on first
- segment and time on second segment respectively.
- Examples::
- >>> curve = [ (100, 240), (30, 60), (210, 230), (160, 30) ]
- >>> line = [ (25, 260), (230, 20) ]
- >>> intersections = curveLineIntersections(curve, line)
- >>> len(intersections)
- 3
- >>> intersections[0].pt
- (84.9000930760723, 189.87306176459828)
- """
- if len(curve) == 3:
- pointFinder = quadraticPointAtT
- elif len(curve) == 4:
- pointFinder = cubicPointAtT
- else:
- raise ValueError("Unknown curve degree")
- intersections = []
- for t in _curve_line_intersections_t(curve, line):
- pt = pointFinder(*curve, t)
- # Back-project the point onto the line, to avoid problems with
- # numerical accuracy in the case of vertical and horizontal lines
- line_t = _line_t_of_pt(*line, pt)
- pt = linePointAtT(*line, line_t)
- intersections.append(Intersection(pt=pt, t1=t, t2=line_t))
- return intersections
- def _curve_bounds(c):
- if len(c) == 3:
- return calcQuadraticBounds(*c)
- elif len(c) == 4:
- return calcCubicBounds(*c)
- raise ValueError("Unknown curve degree")
- def _split_segment_at_t(c, t):
- if len(c) == 2:
- s, e = c
- midpoint = linePointAtT(s, e, t)
- return [(s, midpoint), (midpoint, e)]
- if len(c) == 3:
- return splitQuadraticAtT(*c, t)
- elif len(c) == 4:
- return splitCubicAtT(*c, t)
- raise ValueError("Unknown curve degree")
- def _curve_curve_intersections_t(
- curve1, curve2, precision=1e-3, range1=None, range2=None
- ):
- bounds1 = _curve_bounds(curve1)
- bounds2 = _curve_bounds(curve2)
- if not range1:
- range1 = (0.0, 1.0)
- if not range2:
- range2 = (0.0, 1.0)
- # If bounds don't intersect, go home
- intersects, _ = sectRect(bounds1, bounds2)
- if not intersects:
- return []
- def midpoint(r):
- return 0.5 * (r[0] + r[1])
- # If they do overlap but they're tiny, approximate
- if rectArea(bounds1) < precision and rectArea(bounds2) < precision:
- return [(midpoint(range1), midpoint(range2))]
- c11, c12 = _split_segment_at_t(curve1, 0.5)
- c11_range = (range1[0], midpoint(range1))
- c12_range = (midpoint(range1), range1[1])
- c21, c22 = _split_segment_at_t(curve2, 0.5)
- c21_range = (range2[0], midpoint(range2))
- c22_range = (midpoint(range2), range2[1])
- found = []
- found.extend(
- _curve_curve_intersections_t(
- c11, c21, precision, range1=c11_range, range2=c21_range
- )
- )
- found.extend(
- _curve_curve_intersections_t(
- c12, c21, precision, range1=c12_range, range2=c21_range
- )
- )
- found.extend(
- _curve_curve_intersections_t(
- c11, c22, precision, range1=c11_range, range2=c22_range
- )
- )
- found.extend(
- _curve_curve_intersections_t(
- c12, c22, precision, range1=c12_range, range2=c22_range
- )
- )
- unique_key = lambda ts: (int(ts[0] / precision), int(ts[1] / precision))
- seen = set()
- unique_values = []
- for ts in found:
- key = unique_key(ts)
- if key in seen:
- continue
- seen.add(key)
- unique_values.append(ts)
- return unique_values
- def curveCurveIntersections(curve1, curve2):
- """Finds intersections between a curve and a curve.
- Args:
- curve1: List of coordinates of the first curve segment as 2D tuples.
- curve2: List of coordinates of the second curve segment as 2D tuples.
- Returns:
- A list of ``Intersection`` objects, each object having ``pt``, ``t1``
- and ``t2`` attributes containing the intersection point, time on first
- segment and time on second segment respectively.
- Examples::
- >>> curve1 = [ (10,100), (90,30), (40,140), (220,220) ]
- >>> curve2 = [ (5,150), (180,20), (80,250), (210,190) ]
- >>> intersections = curveCurveIntersections(curve1, curve2)
- >>> len(intersections)
- 3
- >>> intersections[0].pt
- (81.7831487395506, 109.88904552375288)
- """
- intersection_ts = _curve_curve_intersections_t(curve1, curve2)
- return [
- Intersection(pt=segmentPointAtT(curve1, ts[0]), t1=ts[0], t2=ts[1])
- for ts in intersection_ts
- ]
- def segmentSegmentIntersections(seg1, seg2):
- """Finds intersections between two segments.
- Args:
- seg1: List of coordinates of the first segment as 2D tuples.
- seg2: List of coordinates of the second segment as 2D tuples.
- Returns:
- A list of ``Intersection`` objects, each object having ``pt``, ``t1``
- and ``t2`` attributes containing the intersection point, time on first
- segment and time on second segment respectively.
- Examples::
- >>> curve1 = [ (10,100), (90,30), (40,140), (220,220) ]
- >>> curve2 = [ (5,150), (180,20), (80,250), (210,190) ]
- >>> intersections = segmentSegmentIntersections(curve1, curve2)
- >>> len(intersections)
- 3
- >>> intersections[0].pt
- (81.7831487395506, 109.88904552375288)
- >>> curve3 = [ (100, 240), (30, 60), (210, 230), (160, 30) ]
- >>> line = [ (25, 260), (230, 20) ]
- >>> intersections = segmentSegmentIntersections(curve3, line)
- >>> len(intersections)
- 3
- >>> intersections[0].pt
- (84.9000930760723, 189.87306176459828)
- """
- # Arrange by degree
- swapped = False
- if len(seg2) > len(seg1):
- seg2, seg1 = seg1, seg2
- swapped = True
- if len(seg1) > 2:
- if len(seg2) > 2:
- intersections = curveCurveIntersections(seg1, seg2)
- else:
- intersections = curveLineIntersections(seg1, seg2)
- elif len(seg1) == 2 and len(seg2) == 2:
- intersections = lineLineIntersections(*seg1, *seg2)
- else:
- raise ValueError("Couldn't work out which intersection function to use")
- if not swapped:
- return intersections
- return [Intersection(pt=i.pt, t1=i.t2, t2=i.t1) for i in intersections]
- def _segmentrepr(obj):
- """
- >>> _segmentrepr([1, [2, 3], [], [[2, [3, 4], [0.1, 2.2]]]])
- '(1, (2, 3), (), ((2, (3, 4), (0.1, 2.2))))'
- """
- try:
- it = iter(obj)
- except TypeError:
- return "%g" % obj
- else:
- return "(%s)" % ", ".join(_segmentrepr(x) for x in it)
- def printSegments(segments):
- """Helper for the doctests, displaying each segment in a list of
- segments on a single line as a tuple.
- """
- for segment in segments:
- print(_segmentrepr(segment))
- if __name__ == "__main__":
- import sys
- import doctest
- sys.exit(doctest.testmod().failed)
|