123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153 |
- """Convert SVG Path's elliptical arcs to Bezier curves.
- The code is mostly adapted from Blink's SVGPathNormalizer::DecomposeArcToCubic
- https://github.com/chromium/chromium/blob/93831f2/third_party/
- blink/renderer/core/svg/svg_path_parser.cc#L169-L278
- """
- from fontTools.misc.transform import Identity, Scale
- from math import atan2, ceil, cos, fabs, isfinite, pi, radians, sin, sqrt, tan
- TWO_PI = 2 * pi
- PI_OVER_TWO = 0.5 * pi
- def _map_point(matrix, pt):
- # apply Transform matrix to a point represented as a complex number
- r = matrix.transformPoint((pt.real, pt.imag))
- return r[0] + r[1] * 1j
- class EllipticalArc(object):
- def __init__(self, current_point, rx, ry, rotation, large, sweep, target_point):
- self.current_point = current_point
- self.rx = rx
- self.ry = ry
- self.rotation = rotation
- self.large = large
- self.sweep = sweep
- self.target_point = target_point
- # SVG arc's rotation angle is expressed in degrees, whereas Transform.rotate
- # uses radians
- self.angle = radians(rotation)
- # these derived attributes are computed by the _parametrize method
- self.center_point = self.theta1 = self.theta2 = self.theta_arc = None
- def _parametrize(self):
- # convert from endopoint to center parametrization:
- # https://www.w3.org/TR/SVG/implnote.html#ArcConversionEndpointToCenter
- # If rx = 0 or ry = 0 then this arc is treated as a straight line segment (a
- # "lineto") joining the endpoints.
- # http://www.w3.org/TR/SVG/implnote.html#ArcOutOfRangeParameters
- rx = fabs(self.rx)
- ry = fabs(self.ry)
- if not (rx and ry):
- return False
- # If the current point and target point for the arc are identical, it should
- # be treated as a zero length path. This ensures continuity in animations.
- if self.target_point == self.current_point:
- return False
- mid_point_distance = (self.current_point - self.target_point) * 0.5
- point_transform = Identity.rotate(-self.angle)
- transformed_mid_point = _map_point(point_transform, mid_point_distance)
- square_rx = rx * rx
- square_ry = ry * ry
- square_x = transformed_mid_point.real * transformed_mid_point.real
- square_y = transformed_mid_point.imag * transformed_mid_point.imag
- # Check if the radii are big enough to draw the arc, scale radii if not.
- # http://www.w3.org/TR/SVG/implnote.html#ArcCorrectionOutOfRangeRadii
- radii_scale = square_x / square_rx + square_y / square_ry
- if radii_scale > 1:
- rx *= sqrt(radii_scale)
- ry *= sqrt(radii_scale)
- self.rx, self.ry = rx, ry
- point_transform = Scale(1 / rx, 1 / ry).rotate(-self.angle)
- point1 = _map_point(point_transform, self.current_point)
- point2 = _map_point(point_transform, self.target_point)
- delta = point2 - point1
- d = delta.real * delta.real + delta.imag * delta.imag
- scale_factor_squared = max(1 / d - 0.25, 0.0)
- scale_factor = sqrt(scale_factor_squared)
- if self.sweep == self.large:
- scale_factor = -scale_factor
- delta *= scale_factor
- center_point = (point1 + point2) * 0.5
- center_point += complex(-delta.imag, delta.real)
- point1 -= center_point
- point2 -= center_point
- theta1 = atan2(point1.imag, point1.real)
- theta2 = atan2(point2.imag, point2.real)
- theta_arc = theta2 - theta1
- if theta_arc < 0 and self.sweep:
- theta_arc += TWO_PI
- elif theta_arc > 0 and not self.sweep:
- theta_arc -= TWO_PI
- self.theta1 = theta1
- self.theta2 = theta1 + theta_arc
- self.theta_arc = theta_arc
- self.center_point = center_point
- return True
- def _decompose_to_cubic_curves(self):
- if self.center_point is None and not self._parametrize():
- return
- point_transform = Identity.rotate(self.angle).scale(self.rx, self.ry)
- # Some results of atan2 on some platform implementations are not exact
- # enough. So that we get more cubic curves than expected here. Adding 0.001f
- # reduces the count of sgements to the correct count.
- num_segments = int(ceil(fabs(self.theta_arc / (PI_OVER_TWO + 0.001))))
- for i in range(num_segments):
- start_theta = self.theta1 + i * self.theta_arc / num_segments
- end_theta = self.theta1 + (i + 1) * self.theta_arc / num_segments
- t = (4 / 3) * tan(0.25 * (end_theta - start_theta))
- if not isfinite(t):
- return
- sin_start_theta = sin(start_theta)
- cos_start_theta = cos(start_theta)
- sin_end_theta = sin(end_theta)
- cos_end_theta = cos(end_theta)
- point1 = complex(
- cos_start_theta - t * sin_start_theta,
- sin_start_theta + t * cos_start_theta,
- )
- point1 += self.center_point
- target_point = complex(cos_end_theta, sin_end_theta)
- target_point += self.center_point
- point2 = target_point
- point2 += complex(t * sin_end_theta, -t * cos_end_theta)
- point1 = _map_point(point_transform, point1)
- point2 = _map_point(point_transform, point2)
- target_point = _map_point(point_transform, target_point)
- yield point1, point2, target_point
- def draw(self, pen):
- for point1, point2, target_point in self._decompose_to_cubic_curves():
- pen.curveTo(
- (point1.real, point1.imag),
- (point2.real, point2.imag),
- (target_point.real, target_point.imag),
- )
|