123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486 |
- try:
- import cython
- COMPILED = cython.compiled
- except (AttributeError, ImportError):
- # if cython not installed, use mock module with no-op decorators and types
- from fontTools.misc import cython
- COMPILED = False
- from typing import (
- Sequence,
- Tuple,
- Union,
- )
- from numbers import Integral, Real
- _Point = Tuple[Real, Real]
- _Delta = Tuple[Real, Real]
- _PointSegment = Sequence[_Point]
- _DeltaSegment = Sequence[_Delta]
- _DeltaOrNone = Union[_Delta, None]
- _DeltaOrNoneSegment = Sequence[_DeltaOrNone]
- _Endpoints = Sequence[Integral]
- MAX_LOOKBACK = 8
- @cython.cfunc
- @cython.locals(
- j=cython.int,
- n=cython.int,
- x1=cython.double,
- x2=cython.double,
- d1=cython.double,
- d2=cython.double,
- scale=cython.double,
- x=cython.double,
- d=cython.double,
- )
- def iup_segment(
- coords: _PointSegment, rc1: _Point, rd1: _Delta, rc2: _Point, rd2: _Delta
- ): # -> _DeltaSegment:
- """Given two reference coordinates `rc1` & `rc2` and their respective
- delta vectors `rd1` & `rd2`, returns interpolated deltas for the set of
- coordinates `coords`."""
- # rc1 = reference coord 1
- # rd1 = reference delta 1
- out_arrays = [None, None]
- for j in 0, 1:
- out_arrays[j] = out = []
- x1, x2, d1, d2 = rc1[j], rc2[j], rd1[j], rd2[j]
- if x1 == x2:
- n = len(coords)
- if d1 == d2:
- out.extend([d1] * n)
- else:
- out.extend([0] * n)
- continue
- if x1 > x2:
- x1, x2 = x2, x1
- d1, d2 = d2, d1
- # x1 < x2
- scale = (d2 - d1) / (x2 - x1)
- for pair in coords:
- x = pair[j]
- if x <= x1:
- d = d1
- elif x >= x2:
- d = d2
- else:
- # Interpolate
- d = d1 + (x - x1) * scale
- out.append(d)
- return zip(*out_arrays)
- def iup_contour(deltas: _DeltaOrNoneSegment, coords: _PointSegment) -> _DeltaSegment:
- """For the contour given in `coords`, interpolate any missing
- delta values in delta vector `deltas`.
- Returns fully filled-out delta vector."""
- assert len(deltas) == len(coords)
- if None not in deltas:
- return deltas
- n = len(deltas)
- # indices of points with explicit deltas
- indices = [i for i, v in enumerate(deltas) if v is not None]
- if not indices:
- # All deltas are None. Return 0,0 for all.
- return [(0, 0)] * n
- out = []
- it = iter(indices)
- start = next(it)
- if start != 0:
- # Initial segment that wraps around
- i1, i2, ri1, ri2 = 0, start, start, indices[-1]
- out.extend(
- iup_segment(
- coords[i1:i2], coords[ri1], deltas[ri1], coords[ri2], deltas[ri2]
- )
- )
- out.append(deltas[start])
- for end in it:
- if end - start > 1:
- i1, i2, ri1, ri2 = start + 1, end, start, end
- out.extend(
- iup_segment(
- coords[i1:i2], coords[ri1], deltas[ri1], coords[ri2], deltas[ri2]
- )
- )
- out.append(deltas[end])
- start = end
- if start != n - 1:
- # Final segment that wraps around
- i1, i2, ri1, ri2 = start + 1, n, start, indices[0]
- out.extend(
- iup_segment(
- coords[i1:i2], coords[ri1], deltas[ri1], coords[ri2], deltas[ri2]
- )
- )
- assert len(deltas) == len(out), (len(deltas), len(out))
- return out
- def iup_delta(
- deltas: _DeltaOrNoneSegment, coords: _PointSegment, ends: _Endpoints
- ) -> _DeltaSegment:
- """For the outline given in `coords`, with contour endpoints given
- in sorted increasing order in `ends`, interpolate any missing
- delta values in delta vector `deltas`.
- Returns fully filled-out delta vector."""
- assert sorted(ends) == ends and len(coords) == (ends[-1] + 1 if ends else 0) + 4
- n = len(coords)
- ends = ends + [n - 4, n - 3, n - 2, n - 1]
- out = []
- start = 0
- for end in ends:
- end += 1
- contour = iup_contour(deltas[start:end], coords[start:end])
- out.extend(contour)
- start = end
- return out
- # Optimizer
- @cython.cfunc
- @cython.inline
- @cython.locals(
- i=cython.int,
- j=cython.int,
- # tolerance=cython.double, # https://github.com/fonttools/fonttools/issues/3282
- x=cython.double,
- y=cython.double,
- p=cython.double,
- q=cython.double,
- )
- @cython.returns(int)
- def can_iup_in_between(
- deltas: _DeltaSegment,
- coords: _PointSegment,
- i: Integral,
- j: Integral,
- tolerance: Real,
- ): # -> bool:
- """Return true if the deltas for points at `i` and `j` (`i < j`) can be
- successfully used to interpolate deltas for points in between them within
- provided error tolerance."""
- assert j - i >= 2
- interp = iup_segment(coords[i + 1 : j], coords[i], deltas[i], coords[j], deltas[j])
- deltas = deltas[i + 1 : j]
- return all(
- abs(complex(x - p, y - q)) <= tolerance
- for (x, y), (p, q) in zip(deltas, interp)
- )
- @cython.locals(
- cj=cython.double,
- dj=cython.double,
- lcj=cython.double,
- ldj=cython.double,
- ncj=cython.double,
- ndj=cython.double,
- force=cython.int,
- forced=set,
- )
- def _iup_contour_bound_forced_set(
- deltas: _DeltaSegment, coords: _PointSegment, tolerance: Real = 0
- ) -> set:
- """The forced set is a conservative set of points on the contour that must be encoded
- explicitly (ie. cannot be interpolated). Calculating this set allows for significantly
- speeding up the dynamic-programming, as well as resolve circularity in DP.
- The set is precise; that is, if an index is in the returned set, then there is no way
- that IUP can generate delta for that point, given `coords` and `deltas`.
- """
- assert len(deltas) == len(coords)
- n = len(deltas)
- forced = set()
- # Track "last" and "next" points on the contour as we sweep.
- for i in range(len(deltas) - 1, -1, -1):
- ld, lc = deltas[i - 1], coords[i - 1]
- d, c = deltas[i], coords[i]
- nd, nc = deltas[i - n + 1], coords[i - n + 1]
- for j in (0, 1): # For X and for Y
- cj = c[j]
- dj = d[j]
- lcj = lc[j]
- ldj = ld[j]
- ncj = nc[j]
- ndj = nd[j]
- if lcj <= ncj:
- c1, c2 = lcj, ncj
- d1, d2 = ldj, ndj
- else:
- c1, c2 = ncj, lcj
- d1, d2 = ndj, ldj
- force = False
- # If the two coordinates are the same, then the interpolation
- # algorithm produces the same delta if both deltas are equal,
- # and zero if they differ.
- #
- # This test has to be before the next one.
- if c1 == c2:
- if abs(d1 - d2) > tolerance and abs(dj) > tolerance:
- force = True
- # If coordinate for current point is between coordinate of adjacent
- # points on the two sides, but the delta for current point is NOT
- # between delta for those adjacent points (considering tolerance
- # allowance), then there is no way that current point can be IUP-ed.
- # Mark it forced.
- elif c1 <= cj <= c2: # and c1 != c2
- if not (min(d1, d2) - tolerance <= dj <= max(d1, d2) + tolerance):
- force = True
- # Otherwise, the delta should either match the closest, or have the
- # same sign as the interpolation of the two deltas.
- else: # cj < c1 or c2 < cj
- if d1 != d2:
- if cj < c1:
- if (
- abs(dj) > tolerance
- and abs(dj - d1) > tolerance
- and ((dj - tolerance < d1) != (d1 < d2))
- ):
- force = True
- else: # c2 < cj
- if (
- abs(dj) > tolerance
- and abs(dj - d2) > tolerance
- and ((d2 < dj + tolerance) != (d1 < d2))
- ):
- force = True
- if force:
- forced.add(i)
- break
- return forced
- @cython.locals(
- i=cython.int,
- j=cython.int,
- best_cost=cython.double,
- best_j=cython.int,
- cost=cython.double,
- forced=set,
- tolerance=cython.double,
- )
- def _iup_contour_optimize_dp(
- deltas: _DeltaSegment,
- coords: _PointSegment,
- forced=set(),
- tolerance: Real = 0,
- lookback: Integral = None,
- ):
- """Straightforward Dynamic-Programming. For each index i, find least-costly encoding of
- points 0 to i where i is explicitly encoded. We find this by considering all previous
- explicit points j and check whether interpolation can fill points between j and i.
- Note that solution always encodes last point explicitly. Higher-level is responsible
- for removing that restriction.
- As major speedup, we stop looking further whenever we see a "forced" point."""
- n = len(deltas)
- if lookback is None:
- lookback = n
- lookback = min(lookback, MAX_LOOKBACK)
- costs = {-1: 0}
- chain = {-1: None}
- for i in range(0, n):
- best_cost = costs[i - 1] + 1
- costs[i] = best_cost
- chain[i] = i - 1
- if i - 1 in forced:
- continue
- for j in range(i - 2, max(i - lookback, -2), -1):
- cost = costs[j] + 1
- if cost < best_cost and can_iup_in_between(deltas, coords, j, i, tolerance):
- costs[i] = best_cost = cost
- chain[i] = j
- if j in forced:
- break
- return chain, costs
- def _rot_list(l: list, k: int):
- """Rotate list by k items forward. Ie. item at position 0 will be
- at position k in returned list. Negative k is allowed."""
- n = len(l)
- k %= n
- if not k:
- return l
- return l[n - k :] + l[: n - k]
- def _rot_set(s: set, k: int, n: int):
- k %= n
- if not k:
- return s
- return {(v + k) % n for v in s}
- def iup_contour_optimize(
- deltas: _DeltaSegment, coords: _PointSegment, tolerance: Real = 0.0
- ) -> _DeltaOrNoneSegment:
- """For contour with coordinates `coords`, optimize a set of delta
- values `deltas` within error `tolerance`.
- Returns delta vector that has most number of None items instead of
- the input delta.
- """
- n = len(deltas)
- # Get the easy cases out of the way:
- # If all are within tolerance distance of 0, encode nothing:
- if all(abs(complex(*p)) <= tolerance for p in deltas):
- return [None] * n
- # If there's exactly one point, return it:
- if n == 1:
- return deltas
- # If all deltas are exactly the same, return just one (the first one):
- d0 = deltas[0]
- if all(d0 == d for d in deltas):
- return [d0] + [None] * (n - 1)
- # Else, solve the general problem using Dynamic Programming.
- forced = _iup_contour_bound_forced_set(deltas, coords, tolerance)
- # The _iup_contour_optimize_dp() routine returns the optimal encoding
- # solution given the constraint that the last point is always encoded.
- # To remove this constraint, we use two different methods, depending on
- # whether forced set is non-empty or not:
- # Debugging: Make the next if always take the second branch and observe
- # if the font size changes (reduced); that would mean the forced-set
- # has members it should not have.
- if forced:
- # Forced set is non-empty: rotate the contour start point
- # such that the last point in the list is a forced point.
- k = (n - 1) - max(forced)
- assert k >= 0
- deltas = _rot_list(deltas, k)
- coords = _rot_list(coords, k)
- forced = _rot_set(forced, k, n)
- # Debugging: Pass a set() instead of forced variable to the next call
- # to exercise forced-set computation for under-counting.
- chain, costs = _iup_contour_optimize_dp(deltas, coords, forced, tolerance)
- # Assemble solution.
- solution = set()
- i = n - 1
- while i is not None:
- solution.add(i)
- i = chain[i]
- solution.remove(-1)
- # if not forced <= solution:
- # print("coord", coords)
- # print("deltas", deltas)
- # print("len", len(deltas))
- assert forced <= solution, (forced, solution)
- deltas = [deltas[i] if i in solution else None for i in range(n)]
- deltas = _rot_list(deltas, -k)
- else:
- # Repeat the contour an extra time, solve the new case, then look for solutions of the
- # circular n-length problem in the solution for new linear case. I cannot prove that
- # this always produces the optimal solution...
- chain, costs = _iup_contour_optimize_dp(
- deltas + deltas, coords + coords, forced, tolerance, n
- )
- best_sol, best_cost = None, n + 1
- for start in range(n - 1, len(costs) - 1):
- # Assemble solution.
- solution = set()
- i = start
- while i > start - n:
- solution.add(i % n)
- i = chain[i]
- if i == start - n:
- cost = costs[start] - costs[start - n]
- if cost <= best_cost:
- best_sol, best_cost = solution, cost
- # if not forced <= best_sol:
- # print("coord", coords)
- # print("deltas", deltas)
- # print("len", len(deltas))
- assert forced <= best_sol, (forced, best_sol)
- deltas = [deltas[i] if i in best_sol else None for i in range(n)]
- return deltas
- def iup_delta_optimize(
- deltas: _DeltaSegment,
- coords: _PointSegment,
- ends: _Endpoints,
- tolerance: Real = 0.0,
- ) -> _DeltaOrNoneSegment:
- """For the outline given in `coords`, with contour endpoints given
- in sorted increasing order in `ends`, optimize a set of delta
- values `deltas` within error `tolerance`.
- Returns delta vector that has most number of None items instead of
- the input delta.
- """
- assert sorted(ends) == ends and len(coords) == (ends[-1] + 1 if ends else 0) + 4
- n = len(coords)
- ends = ends + [n - 4, n - 3, n - 2, n - 1]
- out = []
- start = 0
- for end in ends:
- contour = iup_contour_optimize(
- deltas[start : end + 1], coords[start : end + 1], tolerance
- )
- assert len(contour) == end - start + 1
- out.extend(contour)
- start = end + 1
- return out
|