123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767 |
- from matplotlib.axes._base import _AxesBase
- from matplotlib.axes._secondary_axes import SecondaryAxis
- from matplotlib.artist import Artist
- from matplotlib.backend_bases import RendererBase
- from matplotlib.collections import (
- Collection,
- LineCollection,
- BrokenBarHCollection,
- PathCollection,
- PolyCollection,
- EventCollection,
- QuadMesh,
- )
- from matplotlib.colors import Colormap, Normalize
- from matplotlib.container import BarContainer, ErrorbarContainer, StemContainer
- from matplotlib.contour import ContourSet, QuadContourSet
- from matplotlib.image import AxesImage, PcolorImage
- from matplotlib.legend import Legend
- from matplotlib.legend_handler import HandlerBase
- from matplotlib.lines import Line2D
- from matplotlib.mlab import GaussianKDE
- from matplotlib.patches import Rectangle, FancyArrow, Polygon, StepPatch, Wedge
- from matplotlib.quiver import Quiver, QuiverKey, Barbs
- from matplotlib.text import Annotation, Text
- from matplotlib.transforms import Transform, Bbox
- import matplotlib.tri as mtri
- import matplotlib.table as mtable
- import matplotlib.stackplot as mstack
- import matplotlib.streamplot as mstream
- import datetime
- import PIL.Image
- from collections.abc import Callable, Sequence
- from typing import Any, Literal, overload
- import numpy as np
- from numpy.typing import ArrayLike
- from matplotlib.typing import ColorType, MarkerType, LineStyleType
- class Axes(_AxesBase):
- def get_title(self, loc: Literal["left", "center", "right"] = ...) -> str: ...
- def set_title(
- self,
- label: str,
- fontdict: dict[str, Any] | None = ...,
- loc: Literal["left", "center", "right"] | None = ...,
- pad: float | None = ...,
- *,
- y: float | None = ...,
- **kwargs
- ) -> Text: ...
- def get_legend_handles_labels(
- self, legend_handler_map: dict[type, HandlerBase] | None = ...
- ) -> tuple[list[Artist], list[Any]]: ...
- legend_: Legend | None
- @overload
- def legend(self) -> Legend: ...
- @overload
- def legend(self, handles: Sequence[Artist | tuple[Artist, ...]], labels: Sequence[str], **kwargs) -> Legend: ...
- @overload
- def legend(self, *, handles: Sequence[Artist | tuple[Artist, ...]], **kwargs) -> Legend: ...
- @overload
- def legend(self, labels: Sequence[str], **kwargs) -> Legend: ...
- @overload
- def legend(self, **kwargs) -> Legend: ...
- def inset_axes(
- self,
- bounds: tuple[float, float, float, float],
- *,
- transform: Transform | None = ...,
- zorder: float = ...,
- **kwargs
- ) -> Axes: ...
- def indicate_inset(
- self,
- bounds: tuple[float, float, float, float],
- inset_ax: Axes | None = ...,
- *,
- transform: Transform | None = ...,
- facecolor: ColorType = ...,
- edgecolor: ColorType = ...,
- alpha: float = ...,
- zorder: float = ...,
- **kwargs
- ) -> Rectangle: ...
- def indicate_inset_zoom(self, inset_ax: Axes, **kwargs) -> Rectangle: ...
- def secondary_xaxis(
- self,
- location: Literal["top", "bottom"] | float,
- *,
- functions: tuple[
- Callable[[ArrayLike], ArrayLike], Callable[[ArrayLike], ArrayLike]
- ]
- | Transform
- | None = ...,
- **kwargs
- ) -> SecondaryAxis: ...
- def secondary_yaxis(
- self,
- location: Literal["left", "right"] | float,
- *,
- functions: tuple[
- Callable[[ArrayLike], ArrayLike], Callable[[ArrayLike], ArrayLike]
- ]
- | Transform
- | None = ...,
- **kwargs
- ) -> SecondaryAxis: ...
- def text(
- self,
- x: float,
- y: float,
- s: str,
- fontdict: dict[str, Any] | None = ...,
- **kwargs
- ) -> Text: ...
- def annotate(
- self,
- text: str,
- xy: tuple[float, float],
- xytext: tuple[float, float] | None = ...,
- xycoords: str
- | Artist
- | Transform
- | Callable[[RendererBase], Bbox | Transform]
- | tuple[float, float] = ...,
- textcoords: str
- | Artist
- | Transform
- | Callable[[RendererBase], Bbox | Transform]
- | tuple[float, float]
- | None = ...,
- arrowprops: dict[str, Any] | None = ...,
- annotation_clip: bool | None = ...,
- **kwargs
- ) -> Annotation: ...
- def axhline(
- self, y: float = ..., xmin: float = ..., xmax: float = ..., **kwargs
- ) -> Line2D: ...
- def axvline(
- self, x: float = ..., ymin: float = ..., ymax: float = ..., **kwargs
- ) -> Line2D: ...
- # TODO: Could separate the xy2 and slope signatures
- def axline(
- self,
- xy1: tuple[float, float],
- xy2: tuple[float, float] | None = ...,
- *,
- slope: float | None = ...,
- **kwargs
- ) -> Line2D: ...
- def axhspan(
- self, ymin: float, ymax: float, xmin: float = ..., xmax: float = ..., **kwargs
- ) -> Polygon: ...
- def axvspan(
- self, xmin: float, xmax: float, ymin: float = ..., ymax: float = ..., **kwargs
- ) -> Polygon: ...
- def hlines(
- self,
- y: float | ArrayLike,
- xmin: float | ArrayLike,
- xmax: float | ArrayLike,
- colors: ColorType | Sequence[ColorType] | None = ...,
- linestyles: LineStyleType = ...,
- label: str = ...,
- *,
- data=...,
- **kwargs
- ) -> LineCollection: ...
- def vlines(
- self,
- x: float | ArrayLike,
- ymin: float | ArrayLike,
- ymax: float | ArrayLike,
- colors: ColorType | Sequence[ColorType] | None = ...,
- linestyles: LineStyleType = ...,
- label: str = ...,
- *,
- data=...,
- **kwargs
- ) -> LineCollection: ...
- def eventplot(
- self,
- positions: ArrayLike | Sequence[ArrayLike],
- orientation: Literal["horizontal", "vertical"] = ...,
- lineoffsets: float | Sequence[float] = ...,
- linelengths: float | Sequence[float] = ...,
- linewidths: float | Sequence[float] | None = ...,
- colors: ColorType | Sequence[ColorType] | None = ...,
- alpha: float | Sequence[float] | None = ...,
- linestyles: LineStyleType | Sequence[LineStyleType] = ...,
- *,
- data=...,
- **kwargs
- ) -> EventCollection: ...
- def plot(
- self,
- *args: float | ArrayLike | str,
- scalex: bool = ...,
- scaley: bool = ...,
- data = ...,
- **kwargs
- ) -> list[Line2D]: ...
- def plot_date(
- self,
- x: ArrayLike,
- y: ArrayLike,
- fmt: str = ...,
- tz: str | datetime.tzinfo | None = ...,
- xdate: bool = ...,
- ydate: bool = ...,
- *,
- data=...,
- **kwargs
- ) -> list[Line2D]: ...
- def loglog(self, *args, **kwargs) -> list[Line2D]: ...
- def semilogx(self, *args, **kwargs) -> list[Line2D]: ...
- def semilogy(self, *args, **kwargs) -> list[Line2D]: ...
- def acorr(
- self, x: ArrayLike, *, data=..., **kwargs
- ) -> tuple[np.ndarray, np.ndarray, LineCollection | Line2D, Line2D | None]: ...
- def xcorr(
- self,
- x: ArrayLike,
- y: ArrayLike,
- normed: bool = ...,
- detrend: Callable[[ArrayLike], ArrayLike] = ...,
- usevlines: bool = ...,
- maxlags: int = ...,
- *,
- data = ...,
- **kwargs
- ) -> tuple[np.ndarray, np.ndarray, LineCollection | Line2D, Line2D | None]: ...
- def step(
- self,
- x: ArrayLike,
- y: ArrayLike,
- *args,
- where: Literal["pre", "post", "mid"] = ...,
- data = ...,
- **kwargs
- ) -> list[Line2D]: ...
- def bar(
- self,
- x: float | ArrayLike,
- height: float | ArrayLike,
- width: float | ArrayLike = ...,
- bottom: float | ArrayLike | None = ...,
- *,
- align: Literal["center", "edge"] = ...,
- data = ...,
- **kwargs
- ) -> BarContainer: ...
- def barh(
- self,
- y: float | ArrayLike,
- width: float | ArrayLike,
- height: float | ArrayLike = ...,
- left: float | ArrayLike | None = ...,
- *,
- align: Literal["center", "edge"] = ...,
- data = ...,
- **kwargs
- ) -> BarContainer: ...
- def bar_label(
- self,
- container: BarContainer,
- labels: ArrayLike | None = ...,
- *,
- fmt: str | Callable[[float], str] = ...,
- label_type: Literal["center", "edge"] = ...,
- padding: float = ...,
- **kwargs
- ) -> list[Annotation]: ...
- def broken_barh(
- self,
- xranges: Sequence[tuple[float, float]],
- yrange: tuple[float, float],
- *,
- data=...,
- **kwargs
- ) -> BrokenBarHCollection: ...
- def stem(
- self,
- *args: ArrayLike | str,
- linefmt: str | None = ...,
- markerfmt: str | None = ...,
- basefmt: str | None = ...,
- bottom: float = ...,
- label: str | None = ...,
- orientation: Literal["vertical", "horizontal"] = ...,
- data=...,
- ) -> StemContainer: ...
- # TODO: data kwarg preprocessor?
- def pie(
- self,
- x: ArrayLike,
- explode: ArrayLike | None = ...,
- labels: Sequence[str] | None = ...,
- colors: ColorType | Sequence[ColorType] | None = ...,
- autopct: str | Callable[[float], str] | None = ...,
- pctdistance: float = ...,
- shadow: bool = ...,
- labeldistance: float | None = ...,
- startangle: float = ...,
- radius: float = ...,
- counterclock: bool = ...,
- wedgeprops: dict[str, Any] | None = ...,
- textprops: dict[str, Any] | None = ...,
- center: tuple[float, float] = ...,
- frame: bool = ...,
- rotatelabels: bool = ...,
- *,
- normalize: bool = ...,
- hatch: str | Sequence[str] | None = ...,
- data=...,
- ) -> tuple[list[Wedge], list[Text]] | tuple[
- list[Wedge], list[Text], list[Text]
- ]: ...
- def errorbar(
- self,
- x: float | ArrayLike,
- y: float | ArrayLike,
- yerr: float | ArrayLike | None = ...,
- xerr: float | ArrayLike | None = ...,
- fmt: str = ...,
- ecolor: ColorType | None = ...,
- elinewidth: float | None = ...,
- capsize: float | None = ...,
- barsabove: bool = ...,
- lolims: bool | ArrayLike = ...,
- uplims: bool | ArrayLike = ...,
- xlolims: bool | ArrayLike = ...,
- xuplims: bool | ArrayLike = ...,
- errorevery: int | tuple[int, int] = ...,
- capthick: float | None = ...,
- *,
- data=...,
- **kwargs
- ) -> ErrorbarContainer: ...
- def boxplot(
- self,
- x: ArrayLike | Sequence[ArrayLike],
- notch: bool | None = ...,
- sym: str | None = ...,
- vert: bool | None = ...,
- whis: float | tuple[float, float] | None = ...,
- positions: ArrayLike | None = ...,
- widths: float | ArrayLike | None = ...,
- patch_artist: bool | None = ...,
- bootstrap: int | None = ...,
- usermedians: ArrayLike | None = ...,
- conf_intervals: ArrayLike | None = ...,
- meanline: bool | None = ...,
- showmeans: bool | None = ...,
- showcaps: bool | None = ...,
- showbox: bool | None = ...,
- showfliers: bool | None = ...,
- boxprops: dict[str, Any] | None = ...,
- labels: Sequence[str] | None = ...,
- flierprops: dict[str, Any] | None = ...,
- medianprops: dict[str, Any] | None = ...,
- meanprops: dict[str, Any] | None = ...,
- capprops: dict[str, Any] | None = ...,
- whiskerprops: dict[str, Any] | None = ...,
- manage_ticks: bool = ...,
- autorange: bool = ...,
- zorder: float | None = ...,
- capwidths: float | ArrayLike | None = ...,
- *,
- data=...,
- ) -> dict[str, Any]: ...
- def bxp(
- self,
- bxpstats: Sequence[dict[str, Any]],
- positions: ArrayLike | None = ...,
- widths: float | ArrayLike | None = ...,
- vert: bool = ...,
- patch_artist: bool = ...,
- shownotches: bool = ...,
- showmeans: bool = ...,
- showcaps: bool = ...,
- showbox: bool = ...,
- showfliers: bool = ...,
- boxprops: dict[str, Any] | None = ...,
- whiskerprops: dict[str, Any] | None = ...,
- flierprops: dict[str, Any] | None = ...,
- medianprops: dict[str, Any] | None = ...,
- capprops: dict[str, Any] | None = ...,
- meanprops: dict[str, Any] | None = ...,
- meanline: bool = ...,
- manage_ticks: bool = ...,
- zorder: float | None = ...,
- capwidths: float | ArrayLike | None = ...,
- ) -> dict[str, Any]: ...
- def scatter(
- self,
- x: float | ArrayLike,
- y: float | ArrayLike,
- s: float | ArrayLike | None = ...,
- c: ArrayLike | Sequence[ColorType] | ColorType | None = ...,
- marker: MarkerType | None = ...,
- cmap: str | Colormap | None = ...,
- norm: str | Normalize | None = ...,
- vmin: float | None = ...,
- vmax: float | None = ...,
- alpha: float | None = ...,
- linewidths: float | Sequence[float] | None = ...,
- *,
- edgecolors: Literal["face", "none"] | ColorType | Sequence[ColorType] | None = ...,
- plotnonfinite: bool = ...,
- data=...,
- **kwargs
- ) -> PathCollection: ...
- def hexbin(
- self,
- x: ArrayLike,
- y: ArrayLike,
- C: ArrayLike | None = ...,
- gridsize: int | tuple[int, int] = ...,
- bins: Literal["log"] | int | Sequence[float] | None = ...,
- xscale: Literal["linear", "log"] = ...,
- yscale: Literal["linear", "log"] = ...,
- extent: tuple[float, float, float, float] | None = ...,
- cmap: str | Colormap | None = ...,
- norm: str | Normalize | None = ...,
- vmin: float | None = ...,
- vmax: float | None = ...,
- alpha: float | None = ...,
- linewidths: float | None = ...,
- edgecolors: Literal["face", "none"] | ColorType = ...,
- reduce_C_function: Callable[[np.ndarray | list[float]], float] = ...,
- mincnt: int | None = ...,
- marginals: bool = ...,
- *,
- data=...,
- **kwargs
- ) -> PolyCollection: ...
- def arrow(
- self, x: float, y: float, dx: float, dy: float, **kwargs
- ) -> FancyArrow: ...
- def quiverkey(
- self, Q: Quiver, X: float, Y: float, U: float, label: str, **kwargs
- ) -> QuiverKey: ...
- def quiver(self, *args, data=..., **kwargs) -> Quiver: ...
- def barbs(self, *args, data=..., **kwargs) -> Barbs: ...
- def fill(self, *args, data=..., **kwargs) -> list[Polygon]: ...
- def fill_between(
- self,
- x: ArrayLike,
- y1: ArrayLike | float,
- y2: ArrayLike | float = ...,
- where: Sequence[bool] | None = ...,
- interpolate: bool = ...,
- step: Literal["pre", "post", "mid"] | None = ...,
- *,
- data=...,
- **kwargs
- ) -> PolyCollection: ...
- def fill_betweenx(
- self,
- y: ArrayLike,
- x1: ArrayLike | float,
- x2: ArrayLike | float = ...,
- where: Sequence[bool] | None = ...,
- step: Literal["pre", "post", "mid"] | None = ...,
- interpolate: bool = ...,
- *,
- data=...,
- **kwargs
- ) -> PolyCollection: ...
- def imshow(
- self,
- X: ArrayLike | PIL.Image.Image,
- cmap: str | Colormap | None = ...,
- norm: str | Normalize | None = ...,
- *,
- aspect: Literal["equal", "auto"] | float | None = ...,
- interpolation: str | None = ...,
- alpha: float | ArrayLike | None = ...,
- vmin: float | None = ...,
- vmax: float | None = ...,
- origin: Literal["upper", "lower"] | None = ...,
- extent: tuple[float, float, float, float] | None = ...,
- interpolation_stage: Literal["data", "rgba"] | None = ...,
- filternorm: bool = ...,
- filterrad: float = ...,
- resample: bool | None = ...,
- url: str | None = ...,
- data=...,
- **kwargs
- ) -> AxesImage: ...
- def pcolor(
- self,
- *args: ArrayLike,
- shading: Literal["flat", "nearest", "auto"] | None = ...,
- alpha: float | None = ...,
- norm: str | Normalize | None = ...,
- cmap: str | Colormap | None = ...,
- vmin: float | None = ...,
- vmax: float | None = ...,
- data=...,
- **kwargs
- ) -> Collection: ...
- def pcolormesh(
- self,
- *args: ArrayLike,
- alpha: float | None = ...,
- norm: str | Normalize | None = ...,
- cmap: str | Colormap | None = ...,
- vmin: float | None = ...,
- vmax: float | None = ...,
- shading: Literal["flat", "nearest", "gouraud", "auto"] | None = ...,
- antialiased: bool = ...,
- data=...,
- **kwargs
- ) -> QuadMesh: ...
- def pcolorfast(
- self,
- *args: ArrayLike | tuple[float, float],
- alpha: float | None = ...,
- norm: str | Normalize | None = ...,
- cmap: str | Colormap | None = ...,
- vmin: float | None = ...,
- vmax: float | None = ...,
- data=...,
- **kwargs
- ) -> AxesImage | PcolorImage | QuadMesh: ...
- def contour(self, *args, data=..., **kwargs) -> QuadContourSet: ...
- def contourf(self, *args, data=..., **kwargs) -> QuadContourSet: ...
- def clabel(
- self, CS: ContourSet, levels: ArrayLike | None = ..., **kwargs
- ) -> list[Text]: ...
- def hist(
- self,
- x: ArrayLike | Sequence[ArrayLike],
- bins: int | Sequence[float] | str | None = ...,
- range: tuple[float, float] | None = ...,
- density: bool = ...,
- weights: ArrayLike | None = ...,
- cumulative: bool | float = ...,
- bottom: ArrayLike | float | None = ...,
- histtype: Literal["bar", "barstacked", "step", "stepfilled"] = ...,
- align: Literal["left", "mid", "right"] = ...,
- orientation: Literal["vertical", "horizontal"] = ...,
- rwidth: float | None = ...,
- log: bool = ...,
- color: ColorType | Sequence[ColorType] | None = ...,
- label: str | Sequence[str] | None = ...,
- stacked: bool = ...,
- *,
- data=...,
- **kwargs
- ) -> tuple[
- np.ndarray | list[np.ndarray],
- np.ndarray,
- BarContainer | Polygon | list[BarContainer | Polygon],
- ]: ...
- def stairs(
- self,
- values: ArrayLike,
- edges: ArrayLike | None = ...,
- *,
- orientation: Literal["vertical", "horizontal"] = ...,
- baseline: float | ArrayLike | None = ...,
- fill: bool = ...,
- data=...,
- **kwargs
- ) -> StepPatch: ...
- def hist2d(
- self,
- x: ArrayLike,
- y: ArrayLike,
- bins: None
- | int
- | tuple[int, int]
- | ArrayLike
- | tuple[ArrayLike, ArrayLike] = ...,
- range: ArrayLike | None = ...,
- density: bool = ...,
- weights: ArrayLike | None = ...,
- cmin: float | None = ...,
- cmax: float | None = ...,
- *,
- data=...,
- **kwargs
- ) -> tuple[np.ndarray, np.ndarray, np.ndarray, QuadMesh]: ...
- def ecdf(
- self,
- x: ArrayLike,
- weights: ArrayLike | None = ...,
- *,
- complementary: bool=...,
- orientation: Literal["vertical", "horizonatal"]=...,
- compress: bool=...,
- data=...,
- **kwargs
- ) -> Line2D: ...
- def psd(
- self,
- x: ArrayLike,
- NFFT: int | None = ...,
- Fs: float | None = ...,
- Fc: int | None = ...,
- detrend: Literal["none", "mean", "linear"]
- | Callable[[ArrayLike], ArrayLike]
- | None = ...,
- window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ...,
- noverlap: int | None = ...,
- pad_to: int | None = ...,
- sides: Literal["default", "onesided", "twosided"] | None = ...,
- scale_by_freq: bool | None = ...,
- return_line: bool | None = ...,
- *,
- data=...,
- **kwargs
- ) -> tuple[np.ndarray, np.ndarray] | tuple[np.ndarray, np.ndarray, Line2D]: ...
- def csd(
- self,
- x: ArrayLike,
- y: ArrayLike,
- NFFT: int | None = ...,
- Fs: float | None = ...,
- Fc: int | None = ...,
- detrend: Literal["none", "mean", "linear"]
- | Callable[[ArrayLike], ArrayLike]
- | None = ...,
- window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ...,
- noverlap: int | None = ...,
- pad_to: int | None = ...,
- sides: Literal["default", "onesided", "twosided"] | None = ...,
- scale_by_freq: bool | None = ...,
- return_line: bool | None = ...,
- *,
- data=...,
- **kwargs
- ) -> tuple[np.ndarray, np.ndarray] | tuple[np.ndarray, np.ndarray, Line2D]: ...
- def magnitude_spectrum(
- self,
- x: ArrayLike,
- Fs: float | None = ...,
- Fc: int | None = ...,
- window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ...,
- pad_to: int | None = ...,
- sides: Literal["default", "onesided", "twosided"] | None = ...,
- scale: Literal["default", "linear", "dB"] | None = ...,
- *,
- data=...,
- **kwargs
- ) -> tuple[np.ndarray, np.ndarray, Line2D]: ...
- def angle_spectrum(
- self,
- x: ArrayLike,
- Fs: float | None = ...,
- Fc: int | None = ...,
- window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ...,
- pad_to: int | None = ...,
- sides: Literal["default", "onesided", "twosided"] | None = ...,
- *,
- data=...,
- **kwargs
- ) -> tuple[np.ndarray, np.ndarray, Line2D]: ...
- def phase_spectrum(
- self,
- x: ArrayLike,
- Fs: float | None = ...,
- Fc: int | None = ...,
- window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ...,
- pad_to: int | None = ...,
- sides: Literal["default", "onesided", "twosided"] | None = ...,
- *,
- data=...,
- **kwargs
- ) -> tuple[np.ndarray, np.ndarray, Line2D]: ...
- def cohere(
- self,
- x: ArrayLike,
- y: ArrayLike,
- NFFT: int = ...,
- Fs: float = ...,
- Fc: int = ...,
- detrend: Literal["none", "mean", "linear"]
- | Callable[[ArrayLike], ArrayLike] = ...,
- window: Callable[[ArrayLike], ArrayLike] | ArrayLike = ...,
- noverlap: int = ...,
- pad_to: int | None = ...,
- sides: Literal["default", "onesided", "twosided"] = ...,
- scale_by_freq: bool | None = ...,
- *,
- data=...,
- **kwargs
- ) -> tuple[np.ndarray, np.ndarray]: ...
- def specgram(
- self,
- x: ArrayLike,
- NFFT: int | None = ...,
- Fs: float | None = ...,
- Fc: int | None = ...,
- detrend: Literal["none", "mean", "linear"]
- | Callable[[ArrayLike], ArrayLike]
- | None = ...,
- window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ...,
- noverlap: int | None = ...,
- cmap: str | Colormap | None = ...,
- xextent: tuple[float, float] | None = ...,
- pad_to: int | None = ...,
- sides: Literal["default", "onesided", "twosided"] | None = ...,
- scale_by_freq: bool | None = ...,
- mode: Literal["default", "psd", "magnitude", "angle", "phase"] | None = ...,
- scale: Literal["default", "linear", "dB"] | None = ...,
- vmin: float | None = ...,
- vmax: float | None = ...,
- *,
- data=...,
- **kwargs
- ) -> tuple[np.ndarray, np.ndarray, np.ndarray, AxesImage]: ...
- def spy(
- self,
- Z: ArrayLike,
- precision: float | Literal["present"] = ...,
- marker: str | None = ...,
- markersize: float | None = ...,
- aspect: Literal["equal", "auto"] | float | None = ...,
- origin: Literal["upper", "lower"] = ...,
- **kwargs
- ) -> AxesImage: ...
- def matshow(self, Z: ArrayLike, **kwargs) -> AxesImage: ...
- def violinplot(
- self,
- dataset: ArrayLike | Sequence[ArrayLike],
- positions: ArrayLike | None = ...,
- vert: bool = ...,
- widths: float | ArrayLike = ...,
- showmeans: bool = ...,
- showextrema: bool = ...,
- showmedians: bool = ...,
- quantiles: Sequence[float | Sequence[float]] | None = ...,
- points: int = ...,
- bw_method: Literal["scott", "silverman"]
- | float
- | Callable[[GaussianKDE], float]
- | None = ...,
- *,
- data=...,
- ) -> dict[str, Collection]: ...
- def violin(
- self,
- vpstats: Sequence[dict[str, Any]],
- positions: ArrayLike | None = ...,
- vert: bool = ...,
- widths: float | ArrayLike = ...,
- showmeans: bool = ...,
- showextrema: bool = ...,
- showmedians: bool = ...,
- ) -> dict[str, Collection]: ...
- table = mtable.table
- stackplot = mstack.stackplot
- streamplot = mstream.streamplot
- tricontour = mtri.tricontour
- tricontourf = mtri.tricontourf
- tripcolor = mtri.tripcolor
- triplot = mtri.triplot
|