123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100 |
- from collections.abc import Callable
- import functools
- from typing import Literal
- import numpy as np
- from numpy.typing import ArrayLike
- def window_hanning(x: ArrayLike) -> ArrayLike: ...
- def window_none(x: ArrayLike) -> ArrayLike: ...
- def detrend(
- x: ArrayLike,
- key: Literal["default", "constant", "mean", "linear", "none"]
- | Callable[[ArrayLike, int | None], ArrayLike]
- | None = ...,
- axis: int | None = ...,
- ) -> ArrayLike: ...
- def detrend_mean(x: ArrayLike, axis: int | None = ...) -> ArrayLike: ...
- def detrend_none(x: ArrayLike, axis: int | None = ...) -> ArrayLike: ...
- def detrend_linear(y: ArrayLike) -> ArrayLike: ...
- def psd(
- x: ArrayLike,
- NFFT: int | None = ...,
- Fs: float | None = ...,
- detrend: Literal["none", "mean", "linear"]
- | Callable[[ArrayLike, int | None], ArrayLike]
- | None = ...,
- window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ...,
- noverlap: int | None = ...,
- pad_to: int | None = ...,
- sides: Literal["default", "onesided", "twosided"] | None = ...,
- scale_by_freq: bool | None = ...,
- ) -> tuple[ArrayLike, ArrayLike]: ...
- def csd(
- x: ArrayLike,
- y: ArrayLike | None,
- NFFT: int | None = ...,
- Fs: float | None = ...,
- detrend: Literal["none", "mean", "linear"]
- | Callable[[ArrayLike, int | None], ArrayLike]
- | None = ...,
- window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ...,
- noverlap: int | None = ...,
- pad_to: int | None = ...,
- sides: Literal["default", "onesided", "twosided"] | None = ...,
- scale_by_freq: bool | None = ...,
- ) -> tuple[ArrayLike, ArrayLike]: ...
- complex_spectrum = functools.partial(tuple[ArrayLike, ArrayLike])
- magnitude_spectrum = functools.partial(tuple[ArrayLike, ArrayLike])
- angle_spectrum = functools.partial(tuple[ArrayLike, ArrayLike])
- phase_spectrum = functools.partial(tuple[ArrayLike, ArrayLike])
- def specgram(
- x: ArrayLike,
- NFFT: int | None = ...,
- Fs: float | None = ...,
- detrend: Literal["none", "mean", "linear"] | Callable[[ArrayLike, int | None], ArrayLike] | None = ...,
- window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ...,
- noverlap: int | None = ...,
- pad_to: int | None = ...,
- sides: Literal["default", "onesided", "twosided"] | None = ...,
- scale_by_freq: bool | None = ...,
- mode: Literal["psd", "complex", "magnitude", "angle", "phase"] | None = ...,
- ) -> tuple[ArrayLike, ArrayLike, ArrayLike]: ...
- def cohere(
- x: ArrayLike,
- y: ArrayLike,
- NFFT: int = ...,
- Fs: float = ...,
- detrend: Literal["none", "mean", "linear"] | Callable[[ArrayLike, int | None], ArrayLike] = ...,
- window: Callable[[ArrayLike], ArrayLike] | ArrayLike = ...,
- noverlap: int = ...,
- pad_to: int | None = ...,
- sides: Literal["default", "onesided", "twosided"] = ...,
- scale_by_freq: bool | None = ...,
- ) -> tuple[ArrayLike, ArrayLike]: ...
- class GaussianKDE:
- dataset: ArrayLike
- dim: int
- num_dp: int
- factor: float
- data_covariance: ArrayLike
- data_inv_cov: ArrayLike
- covariance: ArrayLike
- inv_cov: ArrayLike
- norm_factor: float
- def __init__(
- self,
- dataset: ArrayLike,
- bw_method: Literal["scott", "silverman"]
- | float
- | Callable[[GaussianKDE], float]
- | None = ...,
- ) -> None: ...
- def scotts_factor(self) -> float: ...
- def silverman_factor(self) -> float: ...
- def covariance_factor(self) -> float: ...
- def evaluate(self, points: ArrayLike) -> np.ndarray: ...
- def __call__(self, points: ArrayLike) -> np.ndarray: ...
|