123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338 |
- import io
- import numpy as np
- from numpy.testing import assert_array_almost_equal
- from PIL import Image, TiffTags
- import pytest
- from matplotlib import (
- collections, patheffects, pyplot as plt, transforms as mtransforms,
- rcParams, rc_context)
- from matplotlib.backends.backend_agg import RendererAgg
- from matplotlib.figure import Figure
- from matplotlib.image import imread
- from matplotlib.path import Path
- from matplotlib.testing.decorators import image_comparison
- from matplotlib.transforms import IdentityTransform
- def test_repeated_save_with_alpha():
- # We want an image which has a background color of bluish green, with an
- # alpha of 0.25.
- fig = Figure([1, 0.4])
- fig.set_facecolor((0, 1, 0.4))
- fig.patch.set_alpha(0.25)
- # The target color is fig.patch.get_facecolor()
- buf = io.BytesIO()
- fig.savefig(buf,
- facecolor=fig.get_facecolor(),
- edgecolor='none')
- # Save the figure again to check that the
- # colors don't bleed from the previous renderer.
- buf.seek(0)
- fig.savefig(buf,
- facecolor=fig.get_facecolor(),
- edgecolor='none')
- # Check the first pixel has the desired color & alpha
- # (approx: 0, 1.0, 0.4, 0.25)
- buf.seek(0)
- assert_array_almost_equal(tuple(imread(buf)[0, 0]),
- (0.0, 1.0, 0.4, 0.250),
- decimal=3)
- def test_large_single_path_collection():
- buff = io.BytesIO()
- # Generates a too-large single path in a path collection that
- # would cause a segfault if the draw_markers optimization is
- # applied.
- f, ax = plt.subplots()
- collection = collections.PathCollection(
- [Path([[-10, 5], [10, 5], [10, -5], [-10, -5], [-10, 5]])])
- ax.add_artist(collection)
- ax.set_xlim(10**-3, 1)
- plt.savefig(buff)
- def test_marker_with_nan():
- # This creates a marker with nans in it, which was segfaulting the
- # Agg backend (see #3722)
- fig, ax = plt.subplots(1)
- steps = 1000
- data = np.arange(steps)
- ax.semilogx(data)
- ax.fill_between(data, data*0.8, data*1.2)
- buf = io.BytesIO()
- fig.savefig(buf, format='png')
- def test_long_path():
- buff = io.BytesIO()
- fig = Figure()
- ax = fig.subplots()
- points = np.ones(100_000)
- points[::2] *= -1
- ax.plot(points)
- fig.savefig(buff, format='png')
- @image_comparison(['agg_filter.png'], remove_text=True)
- def test_agg_filter():
- def smooth1d(x, window_len):
- # copied from https://scipy-cookbook.readthedocs.io/
- s = np.r_[
- 2*x[0] - x[window_len:1:-1], x, 2*x[-1] - x[-1:-window_len:-1]]
- w = np.hanning(window_len)
- y = np.convolve(w/w.sum(), s, mode='same')
- return y[window_len-1:-window_len+1]
- def smooth2d(A, sigma=3):
- window_len = max(int(sigma), 3) * 2 + 1
- A = np.apply_along_axis(smooth1d, 0, A, window_len)
- A = np.apply_along_axis(smooth1d, 1, A, window_len)
- return A
- class BaseFilter:
- def get_pad(self, dpi):
- return 0
- def process_image(self, padded_src, dpi):
- raise NotImplementedError("Should be overridden by subclasses")
- def __call__(self, im, dpi):
- pad = self.get_pad(dpi)
- padded_src = np.pad(im, [(pad, pad), (pad, pad), (0, 0)],
- "constant")
- tgt_image = self.process_image(padded_src, dpi)
- return tgt_image, -pad, -pad
- class OffsetFilter(BaseFilter):
- def __init__(self, offsets=(0, 0)):
- self.offsets = offsets
- def get_pad(self, dpi):
- return int(max(self.offsets) / 72 * dpi)
- def process_image(self, padded_src, dpi):
- ox, oy = self.offsets
- a1 = np.roll(padded_src, int(ox / 72 * dpi), axis=1)
- a2 = np.roll(a1, -int(oy / 72 * dpi), axis=0)
- return a2
- class GaussianFilter(BaseFilter):
- """Simple Gaussian filter."""
- def __init__(self, sigma, alpha=0.5, color=(0, 0, 0)):
- self.sigma = sigma
- self.alpha = alpha
- self.color = color
- def get_pad(self, dpi):
- return int(self.sigma*3 / 72 * dpi)
- def process_image(self, padded_src, dpi):
- tgt_image = np.empty_like(padded_src)
- tgt_image[:, :, :3] = self.color
- tgt_image[:, :, 3] = smooth2d(padded_src[:, :, 3] * self.alpha,
- self.sigma / 72 * dpi)
- return tgt_image
- class DropShadowFilter(BaseFilter):
- def __init__(self, sigma, alpha=0.3, color=(0, 0, 0), offsets=(0, 0)):
- self.gauss_filter = GaussianFilter(sigma, alpha, color)
- self.offset_filter = OffsetFilter(offsets)
- def get_pad(self, dpi):
- return max(self.gauss_filter.get_pad(dpi),
- self.offset_filter.get_pad(dpi))
- def process_image(self, padded_src, dpi):
- t1 = self.gauss_filter.process_image(padded_src, dpi)
- t2 = self.offset_filter.process_image(t1, dpi)
- return t2
- fig, ax = plt.subplots()
- # draw lines
- line1, = ax.plot([0.1, 0.5, 0.9], [0.1, 0.9, 0.5], "bo-",
- mec="b", mfc="w", lw=5, mew=3, ms=10, label="Line 1")
- line2, = ax.plot([0.1, 0.5, 0.9], [0.5, 0.2, 0.7], "ro-",
- mec="r", mfc="w", lw=5, mew=3, ms=10, label="Line 1")
- gauss = DropShadowFilter(4)
- for line in [line1, line2]:
- # draw shadows with same lines with slight offset.
- xx = line.get_xdata()
- yy = line.get_ydata()
- shadow, = ax.plot(xx, yy)
- shadow.update_from(line)
- # offset transform
- transform = mtransforms.offset_copy(line.get_transform(), ax.figure,
- x=4.0, y=-6.0, units='points')
- shadow.set_transform(transform)
- # adjust zorder of the shadow lines so that it is drawn below the
- # original lines
- shadow.set_zorder(line.get_zorder() - 0.5)
- shadow.set_agg_filter(gauss)
- shadow.set_rasterized(True) # to support mixed-mode renderers
- ax.set_xlim(0., 1.)
- ax.set_ylim(0., 1.)
- ax.xaxis.set_visible(False)
- ax.yaxis.set_visible(False)
- def test_too_large_image():
- fig = plt.figure(figsize=(300, 1000))
- buff = io.BytesIO()
- with pytest.raises(ValueError):
- fig.savefig(buff)
- def test_chunksize():
- x = range(200)
- # Test without chunksize
- fig, ax = plt.subplots()
- ax.plot(x, np.sin(x))
- fig.canvas.draw()
- # Test with chunksize
- fig, ax = plt.subplots()
- rcParams['agg.path.chunksize'] = 105
- ax.plot(x, np.sin(x))
- fig.canvas.draw()
- @pytest.mark.backend('Agg')
- def test_jpeg_dpi():
- # Check that dpi is set correctly in jpg files.
- plt.plot([0, 1, 2], [0, 1, 0])
- buf = io.BytesIO()
- plt.savefig(buf, format="jpg", dpi=200)
- im = Image.open(buf)
- assert im.info['dpi'] == (200, 200)
- def test_pil_kwargs_png():
- from PIL.PngImagePlugin import PngInfo
- buf = io.BytesIO()
- pnginfo = PngInfo()
- pnginfo.add_text("Software", "test")
- plt.figure().savefig(buf, format="png", pil_kwargs={"pnginfo": pnginfo})
- im = Image.open(buf)
- assert im.info["Software"] == "test"
- def test_pil_kwargs_tiff():
- buf = io.BytesIO()
- pil_kwargs = {"description": "test image"}
- plt.figure().savefig(buf, format="tiff", pil_kwargs=pil_kwargs)
- im = Image.open(buf)
- tags = {TiffTags.TAGS_V2[k].name: v for k, v in im.tag_v2.items()}
- assert tags["ImageDescription"] == "test image"
- def test_pil_kwargs_webp():
- plt.plot([0, 1, 2], [0, 1, 0])
- buf_small = io.BytesIO()
- pil_kwargs_low = {"quality": 1}
- plt.savefig(buf_small, format="webp", pil_kwargs=pil_kwargs_low)
- assert len(pil_kwargs_low) == 1
- buf_large = io.BytesIO()
- pil_kwargs_high = {"quality": 100}
- plt.savefig(buf_large, format="webp", pil_kwargs=pil_kwargs_high)
- assert len(pil_kwargs_high) == 1
- assert buf_large.getbuffer().nbytes > buf_small.getbuffer().nbytes
- def test_webp_alpha():
- plt.plot([0, 1, 2], [0, 1, 0])
- buf = io.BytesIO()
- plt.savefig(buf, format="webp", transparent=True)
- im = Image.open(buf)
- assert im.mode == "RGBA"
- def test_draw_path_collection_error_handling():
- fig, ax = plt.subplots()
- ax.scatter([1], [1]).set_paths(Path([(0, 1), (2, 3)]))
- with pytest.raises(TypeError):
- fig.canvas.draw()
- def test_chunksize_fails():
- # NOTE: This test covers multiple independent test scenarios in a single
- # function, because each scenario uses ~2GB of memory and we don't
- # want parallel test executors to accidentally run multiple of these
- # at the same time.
- N = 100_000
- dpi = 500
- w = 5*dpi
- h = 6*dpi
- # make a Path that spans the whole w-h rectangle
- x = np.linspace(0, w, N)
- y = np.ones(N) * h
- y[::2] = 0
- path = Path(np.vstack((x, y)).T)
- # effectively disable path simplification (but leaving it "on")
- path.simplify_threshold = 0
- # setup the minimal GraphicsContext to draw a Path
- ra = RendererAgg(w, h, dpi)
- gc = ra.new_gc()
- gc.set_linewidth(1)
- gc.set_foreground('r')
- gc.set_hatch('/')
- with pytest.raises(OverflowError, match='cannot split hatched path'):
- ra.draw_path(gc, path, IdentityTransform())
- gc.set_hatch(None)
- with pytest.raises(OverflowError, match='cannot split filled path'):
- ra.draw_path(gc, path, IdentityTransform(), (1, 0, 0))
- # Set to zero to disable, currently defaults to 0, but let's be sure.
- with rc_context({'agg.path.chunksize': 0}):
- with pytest.raises(OverflowError, match='Please set'):
- ra.draw_path(gc, path, IdentityTransform())
- # Set big enough that we do not try to chunk.
- with rc_context({'agg.path.chunksize': 1_000_000}):
- with pytest.raises(OverflowError, match='Please reduce'):
- ra.draw_path(gc, path, IdentityTransform())
- # Small enough we will try to chunk, but big enough we will fail to render.
- with rc_context({'agg.path.chunksize': 90_000}):
- with pytest.raises(OverflowError, match='Please reduce'):
- ra.draw_path(gc, path, IdentityTransform())
- path.should_simplify = False
- with pytest.raises(OverflowError, match="should_simplify is False"):
- ra.draw_path(gc, path, IdentityTransform())
- def test_non_tuple_rgbaface():
- # This passes rgbaFace as a ndarray to draw_path.
- fig = plt.figure()
- fig.add_subplot(projection="3d").scatter(
- [0, 1, 2], [0, 1, 2], path_effects=[patheffects.Stroke(linewidth=4)])
- fig.canvas.draw()
|