123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940 |
- from __future__ import annotations
- import itertools
- import pickle
- from typing import Any
- from unittest.mock import patch, Mock
- from datetime import datetime, date, timedelta
- import numpy as np
- from numpy.testing import (assert_array_equal, assert_approx_equal,
- assert_array_almost_equal)
- import pytest
- from matplotlib import _api, cbook
- import matplotlib.colors as mcolors
- from matplotlib.cbook import delete_masked_points, strip_math
- class Test_delete_masked_points:
- def test_bad_first_arg(self):
- with pytest.raises(ValueError):
- delete_masked_points('a string', np.arange(1.0, 7.0))
- def test_string_seq(self):
- a1 = ['a', 'b', 'c', 'd', 'e', 'f']
- a2 = [1, 2, 3, np.nan, np.nan, 6]
- result1, result2 = delete_masked_points(a1, a2)
- ind = [0, 1, 2, 5]
- assert_array_equal(result1, np.array(a1)[ind])
- assert_array_equal(result2, np.array(a2)[ind])
- def test_datetime(self):
- dates = [datetime(2008, 1, 1), datetime(2008, 1, 2),
- datetime(2008, 1, 3), datetime(2008, 1, 4),
- datetime(2008, 1, 5), datetime(2008, 1, 6)]
- a_masked = np.ma.array([1, 2, 3, np.nan, np.nan, 6],
- mask=[False, False, True, True, False, False])
- actual = delete_masked_points(dates, a_masked)
- ind = [0, 1, 5]
- assert_array_equal(actual[0], np.array(dates)[ind])
- assert_array_equal(actual[1], a_masked[ind].compressed())
- def test_rgba(self):
- a_masked = np.ma.array([1, 2, 3, np.nan, np.nan, 6],
- mask=[False, False, True, True, False, False])
- a_rgba = mcolors.to_rgba_array(['r', 'g', 'b', 'c', 'm', 'y'])
- actual = delete_masked_points(a_masked, a_rgba)
- ind = [0, 1, 5]
- assert_array_equal(actual[0], a_masked[ind].compressed())
- assert_array_equal(actual[1], a_rgba[ind])
- class Test_boxplot_stats:
- def setup_method(self):
- np.random.seed(937)
- self.nrows = 37
- self.ncols = 4
- self.data = np.random.lognormal(size=(self.nrows, self.ncols),
- mean=1.5, sigma=1.75)
- self.known_keys = sorted([
- 'mean', 'med', 'q1', 'q3', 'iqr',
- 'cilo', 'cihi', 'whislo', 'whishi',
- 'fliers', 'label'
- ])
- self.std_results = cbook.boxplot_stats(self.data)
- self.known_nonbootstrapped_res = {
- 'cihi': 6.8161283264444847,
- 'cilo': -0.1489815330368689,
- 'iqr': 13.492709959447094,
- 'mean': 13.00447442387868,
- 'med': 3.3335733967038079,
- 'fliers': np.array([
- 92.55467075, 87.03819018, 42.23204914, 39.29390996
- ]),
- 'q1': 1.3597529879465153,
- 'q3': 14.85246294739361,
- 'whishi': 27.899688243699629,
- 'whislo': 0.042143774965502923
- }
- self.known_bootstrapped_ci = {
- 'cihi': 8.939577523357828,
- 'cilo': 1.8692703958676578,
- }
- self.known_whis3_res = {
- 'whishi': 42.232049135969874,
- 'whislo': 0.042143774965502923,
- 'fliers': np.array([92.55467075, 87.03819018]),
- }
- self.known_res_percentiles = {
- 'whislo': 0.1933685896907924,
- 'whishi': 42.232049135969874
- }
- self.known_res_range = {
- 'whislo': 0.042143774965502923,
- 'whishi': 92.554670752188699
- }
- def test_form_main_list(self):
- assert isinstance(self.std_results, list)
- def test_form_each_dict(self):
- for res in self.std_results:
- assert isinstance(res, dict)
- def test_form_dict_keys(self):
- for res in self.std_results:
- assert set(res) <= set(self.known_keys)
- def test_results_baseline(self):
- res = self.std_results[0]
- for key, value in self.known_nonbootstrapped_res.items():
- assert_array_almost_equal(res[key], value)
- def test_results_bootstrapped(self):
- results = cbook.boxplot_stats(self.data, bootstrap=10000)
- res = results[0]
- for key, value in self.known_bootstrapped_ci.items():
- assert_approx_equal(res[key], value)
- def test_results_whiskers_float(self):
- results = cbook.boxplot_stats(self.data, whis=3)
- res = results[0]
- for key, value in self.known_whis3_res.items():
- assert_array_almost_equal(res[key], value)
- def test_results_whiskers_range(self):
- results = cbook.boxplot_stats(self.data, whis=[0, 100])
- res = results[0]
- for key, value in self.known_res_range.items():
- assert_array_almost_equal(res[key], value)
- def test_results_whiskers_percentiles(self):
- results = cbook.boxplot_stats(self.data, whis=[5, 95])
- res = results[0]
- for key, value in self.known_res_percentiles.items():
- assert_array_almost_equal(res[key], value)
- def test_results_withlabels(self):
- labels = ['Test1', 2, 'Aardvark', 4]
- results = cbook.boxplot_stats(self.data, labels=labels)
- for lab, res in zip(labels, results):
- assert res['label'] == lab
- results = cbook.boxplot_stats(self.data)
- for res in results:
- assert 'label' not in res
- def test_label_error(self):
- labels = [1, 2]
- with pytest.raises(ValueError):
- cbook.boxplot_stats(self.data, labels=labels)
- def test_bad_dims(self):
- data = np.random.normal(size=(34, 34, 34))
- with pytest.raises(ValueError):
- cbook.boxplot_stats(data)
- def test_boxplot_stats_autorange_false(self):
- x = np.zeros(shape=140)
- x = np.hstack([-25, x, 25])
- bstats_false = cbook.boxplot_stats(x, autorange=False)
- bstats_true = cbook.boxplot_stats(x, autorange=True)
- assert bstats_false[0]['whislo'] == 0
- assert bstats_false[0]['whishi'] == 0
- assert_array_almost_equal(bstats_false[0]['fliers'], [-25, 25])
- assert bstats_true[0]['whislo'] == -25
- assert bstats_true[0]['whishi'] == 25
- assert_array_almost_equal(bstats_true[0]['fliers'], [])
- class Test_callback_registry:
- def setup_method(self):
- self.signal = 'test'
- self.callbacks = cbook.CallbackRegistry()
- def connect(self, s, func, pickle):
- if pickle:
- return self.callbacks.connect(s, func)
- else:
- return self.callbacks._connect_picklable(s, func)
- def disconnect(self, cid):
- return self.callbacks.disconnect(cid)
- def count(self):
- count1 = len(self.callbacks._func_cid_map.get(self.signal, []))
- count2 = len(self.callbacks.callbacks.get(self.signal))
- assert count1 == count2
- return count1
- def is_empty(self):
- np.testing.break_cycles()
- assert self.callbacks._func_cid_map == {}
- assert self.callbacks.callbacks == {}
- assert self.callbacks._pickled_cids == set()
- def is_not_empty(self):
- np.testing.break_cycles()
- assert self.callbacks._func_cid_map != {}
- assert self.callbacks.callbacks != {}
- def test_cid_restore(self):
- cb = cbook.CallbackRegistry()
- cb.connect('a', lambda: None)
- cb2 = pickle.loads(pickle.dumps(cb))
- cid = cb2.connect('c', lambda: None)
- assert cid == 1
- @pytest.mark.parametrize('pickle', [True, False])
- def test_callback_complete(self, pickle):
- # ensure we start with an empty registry
- self.is_empty()
- # create a class for testing
- mini_me = Test_callback_registry()
- # test that we can add a callback
- cid1 = self.connect(self.signal, mini_me.dummy, pickle)
- assert type(cid1) is int
- self.is_not_empty()
- # test that we don't add a second callback
- cid2 = self.connect(self.signal, mini_me.dummy, pickle)
- assert cid1 == cid2
- self.is_not_empty()
- assert len(self.callbacks._func_cid_map) == 1
- assert len(self.callbacks.callbacks) == 1
- del mini_me
- # check we now have no callbacks registered
- self.is_empty()
- @pytest.mark.parametrize('pickle', [True, False])
- def test_callback_disconnect(self, pickle):
- # ensure we start with an empty registry
- self.is_empty()
- # create a class for testing
- mini_me = Test_callback_registry()
- # test that we can add a callback
- cid1 = self.connect(self.signal, mini_me.dummy, pickle)
- assert type(cid1) is int
- self.is_not_empty()
- self.disconnect(cid1)
- # check we now have no callbacks registered
- self.is_empty()
- @pytest.mark.parametrize('pickle', [True, False])
- def test_callback_wrong_disconnect(self, pickle):
- # ensure we start with an empty registry
- self.is_empty()
- # create a class for testing
- mini_me = Test_callback_registry()
- # test that we can add a callback
- cid1 = self.connect(self.signal, mini_me.dummy, pickle)
- assert type(cid1) is int
- self.is_not_empty()
- self.disconnect("foo")
- # check we still have callbacks registered
- self.is_not_empty()
- @pytest.mark.parametrize('pickle', [True, False])
- def test_registration_on_non_empty_registry(self, pickle):
- # ensure we start with an empty registry
- self.is_empty()
- # setup the registry with a callback
- mini_me = Test_callback_registry()
- self.connect(self.signal, mini_me.dummy, pickle)
- # Add another callback
- mini_me2 = Test_callback_registry()
- self.connect(self.signal, mini_me2.dummy, pickle)
- # Remove and add the second callback
- mini_me2 = Test_callback_registry()
- self.connect(self.signal, mini_me2.dummy, pickle)
- # We still have 2 references
- self.is_not_empty()
- assert self.count() == 2
- # Removing the last 2 references
- mini_me = None
- mini_me2 = None
- self.is_empty()
- def dummy(self):
- pass
- def test_pickling(self):
- assert hasattr(pickle.loads(pickle.dumps(cbook.CallbackRegistry())),
- "callbacks")
- def test_callbackregistry_default_exception_handler(capsys, monkeypatch):
- cb = cbook.CallbackRegistry()
- cb.connect("foo", lambda: None)
- monkeypatch.setattr(
- cbook, "_get_running_interactive_framework", lambda: None)
- with pytest.raises(TypeError):
- cb.process("foo", "argument mismatch")
- outerr = capsys.readouterr()
- assert outerr.out == outerr.err == ""
- monkeypatch.setattr(
- cbook, "_get_running_interactive_framework", lambda: "not-none")
- cb.process("foo", "argument mismatch") # No error in that case.
- outerr = capsys.readouterr()
- assert outerr.out == ""
- assert "takes 0 positional arguments but 1 was given" in outerr.err
- def raising_cb_reg(func):
- class TestException(Exception):
- pass
- def raise_runtime_error():
- raise RuntimeError
- def raise_value_error():
- raise ValueError
- def transformer(excp):
- if isinstance(excp, RuntimeError):
- raise TestException
- raise excp
- # old default
- cb_old = cbook.CallbackRegistry(exception_handler=None)
- cb_old.connect('foo', raise_runtime_error)
- # filter
- cb_filt = cbook.CallbackRegistry(exception_handler=transformer)
- cb_filt.connect('foo', raise_runtime_error)
- # filter
- cb_filt_pass = cbook.CallbackRegistry(exception_handler=transformer)
- cb_filt_pass.connect('foo', raise_value_error)
- return pytest.mark.parametrize('cb, excp',
- [[cb_old, RuntimeError],
- [cb_filt, TestException],
- [cb_filt_pass, ValueError]])(func)
- @raising_cb_reg
- def test_callbackregistry_custom_exception_handler(monkeypatch, cb, excp):
- monkeypatch.setattr(
- cbook, "_get_running_interactive_framework", lambda: None)
- with pytest.raises(excp):
- cb.process('foo')
- def test_callbackregistry_signals():
- cr = cbook.CallbackRegistry(signals=["foo"])
- results = []
- def cb(x): results.append(x)
- cr.connect("foo", cb)
- with pytest.raises(ValueError):
- cr.connect("bar", cb)
- cr.process("foo", 1)
- with pytest.raises(ValueError):
- cr.process("bar", 1)
- assert results == [1]
- def test_callbackregistry_blocking():
- # Needs an exception handler for interactive testing environments
- # that would only print this out instead of raising the exception
- def raise_handler(excp):
- raise excp
- cb = cbook.CallbackRegistry(exception_handler=raise_handler)
- def test_func1():
- raise ValueError("1 should be blocked")
- def test_func2():
- raise ValueError("2 should be blocked")
- cb.connect("test1", test_func1)
- cb.connect("test2", test_func2)
- # block all of the callbacks to make sure they aren't processed
- with cb.blocked():
- cb.process("test1")
- cb.process("test2")
- # block individual callbacks to make sure the other is still processed
- with cb.blocked(signal="test1"):
- # Blocked
- cb.process("test1")
- # Should raise
- with pytest.raises(ValueError, match="2 should be blocked"):
- cb.process("test2")
- # Make sure the original callback functions are there after blocking
- with pytest.raises(ValueError, match="1 should be blocked"):
- cb.process("test1")
- with pytest.raises(ValueError, match="2 should be blocked"):
- cb.process("test2")
- @pytest.mark.parametrize('line, result', [
- ('a : no_comment', 'a : no_comment'),
- ('a : "quoted str"', 'a : "quoted str"'),
- ('a : "quoted str" # comment', 'a : "quoted str"'),
- ('a : "#000000"', 'a : "#000000"'),
- ('a : "#000000" # comment', 'a : "#000000"'),
- ('a : ["#000000", "#FFFFFF"]', 'a : ["#000000", "#FFFFFF"]'),
- ('a : ["#000000", "#FFFFFF"] # comment', 'a : ["#000000", "#FFFFFF"]'),
- ('a : val # a comment "with quotes"', 'a : val'),
- ('# only comment "with quotes" xx', ''),
- ])
- def test_strip_comment(line, result):
- """Strip everything from the first unquoted #."""
- assert cbook._strip_comment(line) == result
- def test_strip_comment_invalid():
- with pytest.raises(ValueError, match="Missing closing quote"):
- cbook._strip_comment('grid.color: "aa')
- def test_sanitize_sequence():
- d = {'a': 1, 'b': 2, 'c': 3}
- k = ['a', 'b', 'c']
- v = [1, 2, 3]
- i = [('a', 1), ('b', 2), ('c', 3)]
- assert k == sorted(cbook.sanitize_sequence(d.keys()))
- assert v == sorted(cbook.sanitize_sequence(d.values()))
- assert i == sorted(cbook.sanitize_sequence(d.items()))
- assert i == cbook.sanitize_sequence(i)
- assert k == cbook.sanitize_sequence(k)
- fail_mapping: tuple[tuple[dict, dict], ...] = (
- ({'a': 1, 'b': 2}, {'alias_mapping': {'a': ['b']}}),
- ({'a': 1, 'b': 2}, {'alias_mapping': {'a': ['a', 'b']}}),
- )
- pass_mapping: tuple[tuple[Any, dict, dict], ...] = (
- (None, {}, {}),
- ({'a': 1, 'b': 2}, {'a': 1, 'b': 2}, {}),
- ({'b': 2}, {'a': 2}, {'alias_mapping': {'a': ['a', 'b']}}),
- )
- @pytest.mark.parametrize('inp, kwargs_to_norm', fail_mapping)
- def test_normalize_kwargs_fail(inp, kwargs_to_norm):
- with pytest.raises(TypeError), \
- _api.suppress_matplotlib_deprecation_warning():
- cbook.normalize_kwargs(inp, **kwargs_to_norm)
- @pytest.mark.parametrize('inp, expected, kwargs_to_norm',
- pass_mapping)
- def test_normalize_kwargs_pass(inp, expected, kwargs_to_norm):
- with _api.suppress_matplotlib_deprecation_warning():
- # No other warning should be emitted.
- assert expected == cbook.normalize_kwargs(inp, **kwargs_to_norm)
- def test_warn_external_frame_embedded_python():
- with patch.object(cbook, "sys") as mock_sys:
- mock_sys._getframe = Mock(return_value=None)
- with pytest.warns(UserWarning, match=r"\Adummy\Z"):
- _api.warn_external("dummy")
- def test_to_prestep():
- x = np.arange(4)
- y1 = np.arange(4)
- y2 = np.arange(4)[::-1]
- xs, y1s, y2s = cbook.pts_to_prestep(x, y1, y2)
- x_target = np.asarray([0, 0, 1, 1, 2, 2, 3], dtype=float)
- y1_target = np.asarray([0, 1, 1, 2, 2, 3, 3], dtype=float)
- y2_target = np.asarray([3, 2, 2, 1, 1, 0, 0], dtype=float)
- assert_array_equal(x_target, xs)
- assert_array_equal(y1_target, y1s)
- assert_array_equal(y2_target, y2s)
- xs, y1s = cbook.pts_to_prestep(x, y1)
- assert_array_equal(x_target, xs)
- assert_array_equal(y1_target, y1s)
- def test_to_prestep_empty():
- steps = cbook.pts_to_prestep([], [])
- assert steps.shape == (2, 0)
- def test_to_poststep():
- x = np.arange(4)
- y1 = np.arange(4)
- y2 = np.arange(4)[::-1]
- xs, y1s, y2s = cbook.pts_to_poststep(x, y1, y2)
- x_target = np.asarray([0, 1, 1, 2, 2, 3, 3], dtype=float)
- y1_target = np.asarray([0, 0, 1, 1, 2, 2, 3], dtype=float)
- y2_target = np.asarray([3, 3, 2, 2, 1, 1, 0], dtype=float)
- assert_array_equal(x_target, xs)
- assert_array_equal(y1_target, y1s)
- assert_array_equal(y2_target, y2s)
- xs, y1s = cbook.pts_to_poststep(x, y1)
- assert_array_equal(x_target, xs)
- assert_array_equal(y1_target, y1s)
- def test_to_poststep_empty():
- steps = cbook.pts_to_poststep([], [])
- assert steps.shape == (2, 0)
- def test_to_midstep():
- x = np.arange(4)
- y1 = np.arange(4)
- y2 = np.arange(4)[::-1]
- xs, y1s, y2s = cbook.pts_to_midstep(x, y1, y2)
- x_target = np.asarray([0, .5, .5, 1.5, 1.5, 2.5, 2.5, 3], dtype=float)
- y1_target = np.asarray([0, 0, 1, 1, 2, 2, 3, 3], dtype=float)
- y2_target = np.asarray([3, 3, 2, 2, 1, 1, 0, 0], dtype=float)
- assert_array_equal(x_target, xs)
- assert_array_equal(y1_target, y1s)
- assert_array_equal(y2_target, y2s)
- xs, y1s = cbook.pts_to_midstep(x, y1)
- assert_array_equal(x_target, xs)
- assert_array_equal(y1_target, y1s)
- def test_to_midstep_empty():
- steps = cbook.pts_to_midstep([], [])
- assert steps.shape == (2, 0)
- @pytest.mark.parametrize(
- "args",
- [(np.arange(12).reshape(3, 4), 'a'),
- (np.arange(12), 'a'),
- (np.arange(12), np.arange(3))])
- def test_step_fails(args):
- with pytest.raises(ValueError):
- cbook.pts_to_prestep(*args)
- def test_grouper():
- class Dummy:
- pass
- a, b, c, d, e = objs = [Dummy() for _ in range(5)]
- g = cbook.Grouper()
- g.join(*objs)
- assert set(list(g)[0]) == set(objs)
- assert set(g.get_siblings(a)) == set(objs)
- for other in objs[1:]:
- assert g.joined(a, other)
- g.remove(a)
- for other in objs[1:]:
- assert not g.joined(a, other)
- for A, B in itertools.product(objs[1:], objs[1:]):
- assert g.joined(A, B)
- def test_grouper_private():
- class Dummy:
- pass
- objs = [Dummy() for _ in range(5)]
- g = cbook.Grouper()
- g.join(*objs)
- # reach in and touch the internals !
- mapping = g._mapping
- for o in objs:
- assert o in mapping
- base_set = mapping[objs[0]]
- for o in objs[1:]:
- assert mapping[o] is base_set
- def test_flatiter():
- x = np.arange(5)
- it = x.flat
- assert 0 == next(it)
- assert 1 == next(it)
- ret = cbook._safe_first_finite(it)
- assert ret == 0
- assert 0 == next(it)
- assert 1 == next(it)
- def test__safe_first_finite_all_nan():
- arr = np.full(2, np.nan)
- ret = cbook._safe_first_finite(arr)
- assert np.isnan(ret)
- def test__safe_first_finite_all_inf():
- arr = np.full(2, np.inf)
- ret = cbook._safe_first_finite(arr)
- assert np.isinf(ret)
- def test_reshape2d():
- class Dummy:
- pass
- xnew = cbook._reshape_2D([], 'x')
- assert np.shape(xnew) == (1, 0)
- x = [Dummy() for _ in range(5)]
- xnew = cbook._reshape_2D(x, 'x')
- assert np.shape(xnew) == (1, 5)
- x = np.arange(5)
- xnew = cbook._reshape_2D(x, 'x')
- assert np.shape(xnew) == (1, 5)
- x = [[Dummy() for _ in range(5)] for _ in range(3)]
- xnew = cbook._reshape_2D(x, 'x')
- assert np.shape(xnew) == (3, 5)
- # this is strange behaviour, but...
- x = np.random.rand(3, 5)
- xnew = cbook._reshape_2D(x, 'x')
- assert np.shape(xnew) == (5, 3)
- # Test a list of lists which are all of length 1
- x = [[1], [2], [3]]
- xnew = cbook._reshape_2D(x, 'x')
- assert isinstance(xnew, list)
- assert isinstance(xnew[0], np.ndarray) and xnew[0].shape == (1,)
- assert isinstance(xnew[1], np.ndarray) and xnew[1].shape == (1,)
- assert isinstance(xnew[2], np.ndarray) and xnew[2].shape == (1,)
- # Test a list of zero-dimensional arrays
- x = [np.array(0), np.array(1), np.array(2)]
- xnew = cbook._reshape_2D(x, 'x')
- assert isinstance(xnew, list)
- assert len(xnew) == 1
- assert isinstance(xnew[0], np.ndarray) and xnew[0].shape == (3,)
- # Now test with a list of lists with different lengths, which means the
- # array will internally be converted to a 1D object array of lists
- x = [[1, 2, 3], [3, 4], [2]]
- xnew = cbook._reshape_2D(x, 'x')
- assert isinstance(xnew, list)
- assert isinstance(xnew[0], np.ndarray) and xnew[0].shape == (3,)
- assert isinstance(xnew[1], np.ndarray) and xnew[1].shape == (2,)
- assert isinstance(xnew[2], np.ndarray) and xnew[2].shape == (1,)
- # We now need to make sure that this works correctly for Numpy subclasses
- # where iterating over items can return subclasses too, which may be
- # iterable even if they are scalars. To emulate this, we make a Numpy
- # array subclass that returns Numpy 'scalars' when iterating or accessing
- # values, and these are technically iterable if checking for example
- # isinstance(x, collections.abc.Iterable).
- class ArraySubclass(np.ndarray):
- def __iter__(self):
- for value in super().__iter__():
- yield np.array(value)
- def __getitem__(self, item):
- return np.array(super().__getitem__(item))
- v = np.arange(10, dtype=float)
- x = ArraySubclass((10,), dtype=float, buffer=v.data)
- xnew = cbook._reshape_2D(x, 'x')
- # We check here that the array wasn't split up into many individual
- # ArraySubclass, which is what used to happen due to a bug in _reshape_2D
- assert len(xnew) == 1
- assert isinstance(xnew[0], ArraySubclass)
- # check list of strings:
- x = ['a', 'b', 'c', 'c', 'dd', 'e', 'f', 'ff', 'f']
- xnew = cbook._reshape_2D(x, 'x')
- assert len(xnew[0]) == len(x)
- assert isinstance(xnew[0], np.ndarray)
- def test_reshape2d_pandas(pd):
- # separate to allow the rest of the tests to run if no pandas...
- X = np.arange(30).reshape(10, 3)
- x = pd.DataFrame(X, columns=["a", "b", "c"])
- Xnew = cbook._reshape_2D(x, 'x')
- # Need to check each row because _reshape_2D returns a list of arrays:
- for x, xnew in zip(X.T, Xnew):
- np.testing.assert_array_equal(x, xnew)
- def test_reshape2d_xarray(xr):
- # separate to allow the rest of the tests to run if no xarray...
- X = np.arange(30).reshape(10, 3)
- x = xr.DataArray(X, dims=["x", "y"])
- Xnew = cbook._reshape_2D(x, 'x')
- # Need to check each row because _reshape_2D returns a list of arrays:
- for x, xnew in zip(X.T, Xnew):
- np.testing.assert_array_equal(x, xnew)
- def test_index_of_pandas(pd):
- # separate to allow the rest of the tests to run if no pandas...
- X = np.arange(30).reshape(10, 3)
- x = pd.DataFrame(X, columns=["a", "b", "c"])
- Idx, Xnew = cbook.index_of(x)
- np.testing.assert_array_equal(X, Xnew)
- IdxRef = np.arange(10)
- np.testing.assert_array_equal(Idx, IdxRef)
- def test_index_of_xarray(xr):
- # separate to allow the rest of the tests to run if no xarray...
- X = np.arange(30).reshape(10, 3)
- x = xr.DataArray(X, dims=["x", "y"])
- Idx, Xnew = cbook.index_of(x)
- np.testing.assert_array_equal(X, Xnew)
- IdxRef = np.arange(10)
- np.testing.assert_array_equal(Idx, IdxRef)
- def test_contiguous_regions():
- a, b, c = 3, 4, 5
- # Starts and ends with True
- mask = [True]*a + [False]*b + [True]*c
- expected = [(0, a), (a+b, a+b+c)]
- assert cbook.contiguous_regions(mask) == expected
- d, e = 6, 7
- # Starts with True ends with False
- mask = mask + [False]*e
- assert cbook.contiguous_regions(mask) == expected
- # Starts with False ends with True
- mask = [False]*d + mask[:-e]
- expected = [(d, d+a), (d+a+b, d+a+b+c)]
- assert cbook.contiguous_regions(mask) == expected
- # Starts and ends with False
- mask = mask + [False]*e
- assert cbook.contiguous_regions(mask) == expected
- # No True in mask
- assert cbook.contiguous_regions([False]*5) == []
- # Empty mask
- assert cbook.contiguous_regions([]) == []
- def test_safe_first_element_pandas_series(pd):
- # deliberately create a pandas series with index not starting from 0
- s = pd.Series(range(5), index=range(10, 15))
- actual = cbook._safe_first_finite(s)
- assert actual == 0
- def test_warn_external(recwarn):
- _api.warn_external("oops")
- assert len(recwarn) == 1
- assert recwarn[0].filename == __file__
- def test_array_patch_perimeters():
- # This compares the old implementation as a reference for the
- # vectorized one.
- def check(x, rstride, cstride):
- rows, cols = x.shape
- row_inds = [*range(0, rows-1, rstride), rows-1]
- col_inds = [*range(0, cols-1, cstride), cols-1]
- polys = []
- for rs, rs_next in zip(row_inds[:-1], row_inds[1:]):
- for cs, cs_next in zip(col_inds[:-1], col_inds[1:]):
- # +1 ensures we share edges between polygons
- ps = cbook._array_perimeter(x[rs:rs_next+1, cs:cs_next+1]).T
- polys.append(ps)
- polys = np.asarray(polys)
- assert np.array_equal(polys,
- cbook._array_patch_perimeters(
- x, rstride=rstride, cstride=cstride))
- def divisors(n):
- return [i for i in range(1, n + 1) if n % i == 0]
- for rows, cols in [(5, 5), (7, 14), (13, 9)]:
- x = np.arange(rows * cols).reshape(rows, cols)
- for rstride, cstride in itertools.product(divisors(rows - 1),
- divisors(cols - 1)):
- check(x, rstride=rstride, cstride=cstride)
- def test_setattr_cm():
- class A:
- cls_level = object()
- override = object()
- def __init__(self):
- self.aardvark = 'aardvark'
- self.override = 'override'
- self._p = 'p'
- def meth(self):
- ...
- @classmethod
- def classy(cls):
- ...
- @staticmethod
- def static():
- ...
- @property
- def prop(self):
- return self._p
- @prop.setter
- def prop(self, val):
- self._p = val
- class B(A):
- ...
- other = A()
- def verify_pre_post_state(obj):
- # When you access a Python method the function is bound
- # to the object at access time so you get a new instance
- # of MethodType every time.
- #
- # https://docs.python.org/3/howto/descriptor.html#functions-and-methods
- assert obj.meth is not obj.meth
- # normal attribute should give you back the same instance every time
- assert obj.aardvark is obj.aardvark
- assert a.aardvark == 'aardvark'
- # and our property happens to give the same instance every time
- assert obj.prop is obj.prop
- assert obj.cls_level is A.cls_level
- assert obj.override == 'override'
- assert not hasattr(obj, 'extra')
- assert obj.prop == 'p'
- assert obj.monkey == other.meth
- assert obj.cls_level is A.cls_level
- assert 'cls_level' not in obj.__dict__
- assert 'classy' not in obj.__dict__
- assert 'static' not in obj.__dict__
- a = B()
- a.monkey = other.meth
- verify_pre_post_state(a)
- with cbook._setattr_cm(
- a, prop='squirrel',
- aardvark='moose', meth=lambda: None,
- override='boo', extra='extra',
- monkey=lambda: None, cls_level='bob',
- classy='classy', static='static'):
- # because we have set a lambda, it is normal attribute access
- # and the same every time
- assert a.meth is a.meth
- assert a.aardvark is a.aardvark
- assert a.aardvark == 'moose'
- assert a.override == 'boo'
- assert a.extra == 'extra'
- assert a.prop == 'squirrel'
- assert a.monkey != other.meth
- assert a.cls_level == 'bob'
- assert a.classy == 'classy'
- assert a.static == 'static'
- verify_pre_post_state(a)
- def test_format_approx():
- f = cbook._format_approx
- assert f(0, 1) == '0'
- assert f(0, 2) == '0'
- assert f(0, 3) == '0'
- assert f(-0.0123, 1) == '-0'
- assert f(1e-7, 5) == '0'
- assert f(0.0012345600001, 5) == '0.00123'
- assert f(-0.0012345600001, 5) == '-0.00123'
- assert f(0.0012345600001, 8) == f(0.0012345600001, 10) == '0.00123456'
- def test_safe_first_element_with_none():
- datetime_lst = [date.today() + timedelta(days=i) for i in range(10)]
- datetime_lst[0] = None
- actual = cbook._safe_first_finite(datetime_lst)
- assert actual is not None and actual == datetime_lst[1]
- def test_strip_math():
- assert strip_math(r'1 \times 2') == r'1 \times 2'
- assert strip_math(r'$1 \times 2$') == '1 x 2'
- assert strip_math(r'$\rm{hi}$') == 'hi'
- @pytest.mark.parametrize('fmt, value, result', [
- ('%.2f m', 0.2, '0.20 m'),
- ('{:.2f} m', 0.2, '0.20 m'),
- ('{} m', 0.2, '0.2 m'),
- ('const', 0.2, 'const'),
- ('%d or {}', 0.2, '0 or {}'),
- ('{{{:,.0f}}}', 2e5, '{200,000}'),
- ('{:.2%}', 2/3, '66.67%'),
- ('$%g', 2.54, '$2.54'),
- ])
- def test_auto_format_str(fmt, value, result):
- """Apply *value* to the format string *fmt*."""
- assert cbook._auto_format_str(fmt, value) == result
- assert cbook._auto_format_str(fmt, np.float64(value)) == result
|