123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899 |
- import datetime
- import platform
- import re
- from unittest import mock
- import contourpy
- import numpy as np
- from numpy.testing import (
- assert_array_almost_equal, assert_array_almost_equal_nulp, assert_array_equal)
- import matplotlib as mpl
- from matplotlib import pyplot as plt, rc_context, ticker
- from matplotlib.colors import LogNorm, same_color
- import matplotlib.patches as mpatches
- from matplotlib.testing.decorators import check_figures_equal, image_comparison
- import pytest
- # Helper to test the transition from ContourSets holding multiple Collections to being a
- # single Collection; remove once the deprecated old layout expires.
- def _maybe_split_collections(do_split):
- if not do_split:
- return
- for fig in map(plt.figure, plt.get_fignums()):
- for ax in fig.axes:
- for coll in ax.collections:
- if isinstance(coll, mpl.contour.ContourSet):
- with pytest.warns(mpl._api.MatplotlibDeprecationWarning):
- coll.collections
- def test_contour_shape_1d_valid():
- x = np.arange(10)
- y = np.arange(9)
- z = np.random.random((9, 10))
- fig, ax = plt.subplots()
- ax.contour(x, y, z)
- def test_contour_shape_2d_valid():
- x = np.arange(10)
- y = np.arange(9)
- xg, yg = np.meshgrid(x, y)
- z = np.random.random((9, 10))
- fig, ax = plt.subplots()
- ax.contour(xg, yg, z)
- @pytest.mark.parametrize("args, message", [
- ((np.arange(9), np.arange(9), np.empty((9, 10))),
- 'Length of x (9) must match number of columns in z (10)'),
- ((np.arange(10), np.arange(10), np.empty((9, 10))),
- 'Length of y (10) must match number of rows in z (9)'),
- ((np.empty((10, 10)), np.arange(10), np.empty((9, 10))),
- 'Number of dimensions of x (2) and y (1) do not match'),
- ((np.arange(10), np.empty((10, 10)), np.empty((9, 10))),
- 'Number of dimensions of x (1) and y (2) do not match'),
- ((np.empty((9, 9)), np.empty((9, 10)), np.empty((9, 10))),
- 'Shapes of x (9, 9) and z (9, 10) do not match'),
- ((np.empty((9, 10)), np.empty((9, 9)), np.empty((9, 10))),
- 'Shapes of y (9, 9) and z (9, 10) do not match'),
- ((np.empty((3, 3, 3)), np.empty((3, 3, 3)), np.empty((9, 10))),
- 'Inputs x and y must be 1D or 2D, not 3D'),
- ((np.empty((3, 3, 3)), np.empty((3, 3, 3)), np.empty((3, 3, 3))),
- 'Input z must be 2D, not 3D'),
- (([[0]],), # github issue 8197
- 'Input z must be at least a (2, 2) shaped array, but has shape (1, 1)'),
- (([0], [0], [[0]]),
- 'Input z must be at least a (2, 2) shaped array, but has shape (1, 1)'),
- ])
- def test_contour_shape_error(args, message):
- fig, ax = plt.subplots()
- with pytest.raises(TypeError, match=re.escape(message)):
- ax.contour(*args)
- def test_contour_no_valid_levels():
- fig, ax = plt.subplots()
- # no warning for empty levels.
- ax.contour(np.random.rand(9, 9), levels=[])
- # no warning if levels is given and is not within the range of z.
- cs = ax.contour(np.arange(81).reshape((9, 9)), levels=[100])
- # ... and if fmt is given.
- ax.clabel(cs, fmt={100: '%1.2f'})
- # no warning if z is uniform.
- ax.contour(np.ones((9, 9)))
- def test_contour_Nlevels():
- # A scalar levels arg or kwarg should trigger auto level generation.
- # https://github.com/matplotlib/matplotlib/issues/11913
- z = np.arange(12).reshape((3, 4))
- fig, ax = plt.subplots()
- cs1 = ax.contour(z, 5)
- assert len(cs1.levels) > 1
- cs2 = ax.contour(z, levels=5)
- assert (cs1.levels == cs2.levels).all()
- @check_figures_equal(extensions=['png'])
- def test_contour_set_paths(fig_test, fig_ref):
- cs_test = fig_test.subplots().contour([[0, 1], [1, 2]])
- cs_ref = fig_ref.subplots().contour([[1, 0], [2, 1]])
- cs_test.set_paths(cs_ref.get_paths())
- @pytest.mark.parametrize("split_collections", [False, True])
- @image_comparison(['contour_manual_labels'], remove_text=True, style='mpl20', tol=0.26)
- def test_contour_manual_labels(split_collections):
- x, y = np.meshgrid(np.arange(0, 10), np.arange(0, 10))
- z = np.max(np.dstack([abs(x), abs(y)]), 2)
- plt.figure(figsize=(6, 2), dpi=200)
- cs = plt.contour(x, y, z)
- _maybe_split_collections(split_collections)
- pts = np.array([(1.0, 3.0), (1.0, 4.4), (1.0, 6.0)])
- plt.clabel(cs, manual=pts)
- pts = np.array([(2.0, 3.0), (2.0, 4.4), (2.0, 6.0)])
- plt.clabel(cs, manual=pts, fontsize='small', colors=('r', 'g'))
- def test_contour_manual_moveto():
- x = np.linspace(-10, 10)
- y = np.linspace(-10, 10)
- X, Y = np.meshgrid(x, y)
- Z = X**2 * 1 / Y**2 - 1
- contours = plt.contour(X, Y, Z, levels=[0, 100])
- # This point lies on the `MOVETO` line for the 100 contour
- # but is actually closest to the 0 contour
- point = (1.3, 1)
- clabels = plt.clabel(contours, manual=[point])
- # Ensure that the 0 contour was chosen, not the 100 contour
- assert clabels[0].get_text() == "0"
- @pytest.mark.parametrize("split_collections", [False, True])
- @image_comparison(['contour_disconnected_segments'],
- remove_text=True, style='mpl20', extensions=['png'])
- def test_contour_label_with_disconnected_segments(split_collections):
- x, y = np.mgrid[-1:1:21j, -1:1:21j]
- z = 1 / np.sqrt(0.01 + (x + 0.3) ** 2 + y ** 2)
- z += 1 / np.sqrt(0.01 + (x - 0.3) ** 2 + y ** 2)
- plt.figure()
- cs = plt.contour(x, y, z, levels=[7])
- # Adding labels should invalidate the old style
- _maybe_split_collections(split_collections)
- cs.clabel(manual=[(0.2, 0.1)])
- _maybe_split_collections(split_collections)
- @pytest.mark.parametrize("split_collections", [False, True])
- @image_comparison(['contour_manual_colors_and_levels.png'], remove_text=True)
- def test_given_colors_levels_and_extends(split_collections):
- # Remove this line when this test image is regenerated.
- plt.rcParams['pcolormesh.snap'] = False
- _, axs = plt.subplots(2, 4)
- data = np.arange(12).reshape(3, 4)
- colors = ['red', 'yellow', 'pink', 'blue', 'black']
- levels = [2, 4, 8, 10]
- for i, ax in enumerate(axs.flat):
- filled = i % 2 == 0.
- extend = ['neither', 'min', 'max', 'both'][i // 2]
- if filled:
- # If filled, we have 3 colors with no extension,
- # 4 colors with one extension, and 5 colors with both extensions
- first_color = 1 if extend in ['max', 'neither'] else None
- last_color = -1 if extend in ['min', 'neither'] else None
- c = ax.contourf(data, colors=colors[first_color:last_color],
- levels=levels, extend=extend)
- else:
- # If not filled, we have 4 levels and 4 colors
- c = ax.contour(data, colors=colors[:-1],
- levels=levels, extend=extend)
- plt.colorbar(c, ax=ax)
- _maybe_split_collections(split_collections)
- @pytest.mark.parametrize("split_collections", [False, True])
- @image_comparison(['contour_log_locator.svg'], style='mpl20', remove_text=False)
- def test_log_locator_levels(split_collections):
- fig, ax = plt.subplots()
- N = 100
- x = np.linspace(-3.0, 3.0, N)
- y = np.linspace(-2.0, 2.0, N)
- X, Y = np.meshgrid(x, y)
- Z1 = np.exp(-X**2 - Y**2)
- Z2 = np.exp(-(X * 10)**2 - (Y * 10)**2)
- data = Z1 + 50 * Z2
- c = ax.contourf(data, locator=ticker.LogLocator())
- assert_array_almost_equal(c.levels, np.power(10.0, np.arange(-6, 3)))
- cb = fig.colorbar(c, ax=ax)
- assert_array_almost_equal(cb.ax.get_yticks(), c.levels)
- _maybe_split_collections(split_collections)
- @pytest.mark.parametrize("split_collections", [False, True])
- @image_comparison(['contour_datetime_axis.png'], style='mpl20')
- def test_contour_datetime_axis(split_collections):
- fig = plt.figure()
- fig.subplots_adjust(hspace=0.4, top=0.98, bottom=.15)
- base = datetime.datetime(2013, 1, 1)
- x = np.array([base + datetime.timedelta(days=d) for d in range(20)])
- y = np.arange(20)
- z1, z2 = np.meshgrid(np.arange(20), np.arange(20))
- z = z1 * z2
- plt.subplot(221)
- plt.contour(x, y, z)
- plt.subplot(222)
- plt.contourf(x, y, z)
- x = np.repeat(x[np.newaxis], 20, axis=0)
- y = np.repeat(y[:, np.newaxis], 20, axis=1)
- plt.subplot(223)
- plt.contour(x, y, z)
- plt.subplot(224)
- plt.contourf(x, y, z)
- for ax in fig.get_axes():
- for label in ax.get_xticklabels():
- label.set_ha('right')
- label.set_rotation(30)
- _maybe_split_collections(split_collections)
- @pytest.mark.parametrize("split_collections", [False, True])
- @image_comparison(['contour_test_label_transforms.png'],
- remove_text=True, style='mpl20', tol=1.1)
- def test_labels(split_collections):
- # Adapted from pylab_examples example code: contour_demo.py
- # see issues #2475, #2843, and #2818 for explanation
- delta = 0.025
- x = np.arange(-3.0, 3.0, delta)
- y = np.arange(-2.0, 2.0, delta)
- X, Y = np.meshgrid(x, y)
- Z1 = np.exp(-(X**2 + Y**2) / 2) / (2 * np.pi)
- Z2 = (np.exp(-(((X - 1) / 1.5)**2 + ((Y - 1) / 0.5)**2) / 2) /
- (2 * np.pi * 0.5 * 1.5))
- # difference of Gaussians
- Z = 10.0 * (Z2 - Z1)
- fig, ax = plt.subplots(1, 1)
- CS = ax.contour(X, Y, Z)
- disp_units = [(216, 177), (359, 290), (521, 406)]
- data_units = [(-2, .5), (0, -1.5), (2.8, 1)]
- # Adding labels should invalidate the old style
- _maybe_split_collections(split_collections)
- CS.clabel()
- for x, y in data_units:
- CS.add_label_near(x, y, inline=True, transform=None)
- for x, y in disp_units:
- CS.add_label_near(x, y, inline=True, transform=False)
- _maybe_split_collections(split_collections)
- def test_label_contour_start():
- # Set up data and figure/axes that result in automatic labelling adding the
- # label to the start of a contour
- _, ax = plt.subplots(dpi=100)
- lats = lons = np.linspace(-np.pi / 2, np.pi / 2, 50)
- lons, lats = np.meshgrid(lons, lats)
- wave = 0.75 * (np.sin(2 * lats) ** 8) * np.cos(4 * lons)
- mean = 0.5 * np.cos(2 * lats) * ((np.sin(2 * lats)) ** 2 + 2)
- data = wave + mean
- cs = ax.contour(lons, lats, data)
- with mock.patch.object(
- cs, '_split_path_and_get_label_rotation',
- wraps=cs._split_path_and_get_label_rotation) as mocked_splitter:
- # Smoke test that we can add the labels
- cs.clabel(fontsize=9)
- # Verify at least one label was added to the start of a contour. I.e. the
- # splitting method was called with idx=0 at least once.
- idxs = [cargs[0][1] for cargs in mocked_splitter.call_args_list]
- assert 0 in idxs
- @pytest.mark.parametrize("split_collections", [False, True])
- @image_comparison(['contour_corner_mask_False.png', 'contour_corner_mask_True.png'],
- remove_text=True, tol=1.88)
- def test_corner_mask(split_collections):
- n = 60
- mask_level = 0.95
- noise_amp = 1.0
- np.random.seed([1])
- x, y = np.meshgrid(np.linspace(0, 2.0, n), np.linspace(0, 2.0, n))
- z = np.cos(7*x)*np.sin(8*y) + noise_amp*np.random.rand(n, n)
- mask = np.random.rand(n, n) >= mask_level
- z = np.ma.array(z, mask=mask)
- for corner_mask in [False, True]:
- plt.figure()
- plt.contourf(z, corner_mask=corner_mask)
- _maybe_split_collections(split_collections)
- def test_contourf_decreasing_levels():
- # github issue 5477.
- z = [[0.1, 0.3], [0.5, 0.7]]
- plt.figure()
- with pytest.raises(ValueError):
- plt.contourf(z, [1.0, 0.0])
- def test_contourf_symmetric_locator():
- # github issue 7271
- z = np.arange(12).reshape((3, 4))
- locator = plt.MaxNLocator(nbins=4, symmetric=True)
- cs = plt.contourf(z, locator=locator)
- assert_array_almost_equal(cs.levels, np.linspace(-12, 12, 5))
- def test_circular_contour_warning():
- # Check that almost circular contours don't throw a warning
- x, y = np.meshgrid(np.linspace(-2, 2, 4), np.linspace(-2, 2, 4))
- r = np.hypot(x, y)
- plt.figure()
- cs = plt.contour(x, y, r)
- plt.clabel(cs)
- @pytest.mark.parametrize("use_clabeltext, contour_zorder, clabel_zorder",
- [(True, 123, 1234), (False, 123, 1234),
- (True, 123, None), (False, 123, None)])
- def test_clabel_zorder(use_clabeltext, contour_zorder, clabel_zorder):
- x, y = np.meshgrid(np.arange(0, 10), np.arange(0, 10))
- z = np.max(np.dstack([abs(x), abs(y)]), 2)
- fig, (ax1, ax2) = plt.subplots(ncols=2)
- cs = ax1.contour(x, y, z, zorder=contour_zorder)
- cs_filled = ax2.contourf(x, y, z, zorder=contour_zorder)
- clabels1 = cs.clabel(zorder=clabel_zorder, use_clabeltext=use_clabeltext)
- clabels2 = cs_filled.clabel(zorder=clabel_zorder,
- use_clabeltext=use_clabeltext)
- if clabel_zorder is None:
- expected_clabel_zorder = 2+contour_zorder
- else:
- expected_clabel_zorder = clabel_zorder
- for clabel in clabels1:
- assert clabel.get_zorder() == expected_clabel_zorder
- for clabel in clabels2:
- assert clabel.get_zorder() == expected_clabel_zorder
- def test_clabel_with_large_spacing():
- # When the inline spacing is large relative to the contour, it may cause the
- # entire contour to be removed. In current implementation, one line segment is
- # retained between the identified points.
- # This behavior may be worth reconsidering, but check to be sure we do not produce
- # an invalid path, which results in an error at clabel call time.
- # see gh-27045 for more information
- x = y = np.arange(-3.0, 3.01, 0.05)
- X, Y = np.meshgrid(x, y)
- Z = np.exp(-X**2 - Y**2)
- fig, ax = plt.subplots()
- contourset = ax.contour(X, Y, Z, levels=[0.01, 0.2, .5, .8])
- ax.clabel(contourset, inline_spacing=100)
- # tol because ticks happen to fall on pixel boundaries so small
- # floating point changes in tick location flip which pixel gets
- # the tick.
- @pytest.mark.parametrize("split_collections", [False, True])
- @image_comparison(['contour_log_extension.png'],
- remove_text=True, style='mpl20',
- tol=1.444)
- def test_contourf_log_extension(split_collections):
- # Remove this line when this test image is regenerated.
- plt.rcParams['pcolormesh.snap'] = False
- # Test that contourf with lognorm is extended correctly
- fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(10, 5))
- fig.subplots_adjust(left=0.05, right=0.95)
- # make data set with large range e.g. between 1e-8 and 1e10
- data_exp = np.linspace(-7.5, 9.5, 1200)
- data = np.power(10, data_exp).reshape(30, 40)
- # make manual levels e.g. between 1e-4 and 1e-6
- levels_exp = np.arange(-4., 7.)
- levels = np.power(10., levels_exp)
- # original data
- c1 = ax1.contourf(data,
- norm=LogNorm(vmin=data.min(), vmax=data.max()))
- # just show data in levels
- c2 = ax2.contourf(data, levels=levels,
- norm=LogNorm(vmin=levels.min(), vmax=levels.max()),
- extend='neither')
- # extend data from levels
- c3 = ax3.contourf(data, levels=levels,
- norm=LogNorm(vmin=levels.min(), vmax=levels.max()),
- extend='both')
- cb = plt.colorbar(c1, ax=ax1)
- assert cb.ax.get_ylim() == (1e-8, 1e10)
- cb = plt.colorbar(c2, ax=ax2)
- assert_array_almost_equal_nulp(cb.ax.get_ylim(), np.array((1e-4, 1e6)))
- cb = plt.colorbar(c3, ax=ax3)
- _maybe_split_collections(split_collections)
- @pytest.mark.parametrize("split_collections", [False, True])
- @image_comparison(
- ['contour_addlines.png'], remove_text=True, style='mpl20',
- tol=0.15 if platform.machine() in ('aarch64', 'ppc64le', 's390x')
- else 0.03)
- # tolerance is because image changed minutely when tick finding on
- # colorbars was cleaned up...
- def test_contour_addlines(split_collections):
- # Remove this line when this test image is regenerated.
- plt.rcParams['pcolormesh.snap'] = False
- fig, ax = plt.subplots()
- np.random.seed(19680812)
- X = np.random.rand(10, 10)*10000
- pcm = ax.pcolormesh(X)
- # add 1000 to make colors visible...
- cont = ax.contour(X+1000)
- cb = fig.colorbar(pcm)
- cb.add_lines(cont)
- assert_array_almost_equal(cb.ax.get_ylim(), [114.3091, 9972.30735], 3)
- _maybe_split_collections(split_collections)
- @pytest.mark.parametrize("split_collections", [False, True])
- @image_comparison(baseline_images=['contour_uneven'],
- extensions=['png'], remove_text=True, style='mpl20')
- def test_contour_uneven(split_collections):
- # Remove this line when this test image is regenerated.
- plt.rcParams['pcolormesh.snap'] = False
- z = np.arange(24).reshape(4, 6)
- fig, axs = plt.subplots(1, 2)
- ax = axs[0]
- cs = ax.contourf(z, levels=[2, 4, 6, 10, 20])
- fig.colorbar(cs, ax=ax, spacing='proportional')
- ax = axs[1]
- cs = ax.contourf(z, levels=[2, 4, 6, 10, 20])
- fig.colorbar(cs, ax=ax, spacing='uniform')
- _maybe_split_collections(split_collections)
- @pytest.mark.parametrize(
- "rc_lines_linewidth, rc_contour_linewidth, call_linewidths, expected", [
- (1.23, None, None, 1.23),
- (1.23, 4.24, None, 4.24),
- (1.23, 4.24, 5.02, 5.02)
- ])
- def test_contour_linewidth(
- rc_lines_linewidth, rc_contour_linewidth, call_linewidths, expected):
- with rc_context(rc={"lines.linewidth": rc_lines_linewidth,
- "contour.linewidth": rc_contour_linewidth}):
- fig, ax = plt.subplots()
- X = np.arange(4*3).reshape(4, 3)
- cs = ax.contour(X, linewidths=call_linewidths)
- assert cs.get_linewidths()[0] == expected
- with pytest.warns(mpl.MatplotlibDeprecationWarning, match="tlinewidths"):
- assert cs.tlinewidths[0][0] == expected
- @pytest.mark.backend("pdf")
- def test_label_nonagg():
- # This should not crash even if the canvas doesn't have a get_renderer().
- plt.clabel(plt.contour([[1, 2], [3, 4]]))
- @pytest.mark.parametrize("split_collections", [False, True])
- @image_comparison(baseline_images=['contour_closed_line_loop'],
- extensions=['png'], remove_text=True)
- def test_contour_closed_line_loop(split_collections):
- # github issue 19568.
- z = [[0, 0, 0], [0, 2, 0], [0, 0, 0], [2, 1, 2]]
- fig, ax = plt.subplots(figsize=(2, 2))
- ax.contour(z, [0.5], linewidths=[20], alpha=0.7)
- ax.set_xlim(-0.1, 2.1)
- ax.set_ylim(-0.1, 3.1)
- _maybe_split_collections(split_collections)
- def test_quadcontourset_reuse():
- # If QuadContourSet returned from one contour(f) call is passed as first
- # argument to another the underlying C++ contour generator will be reused.
- x, y = np.meshgrid([0.0, 1.0], [0.0, 1.0])
- z = x + y
- fig, ax = plt.subplots()
- qcs1 = ax.contourf(x, y, z)
- qcs2 = ax.contour(x, y, z)
- assert qcs2._contour_generator != qcs1._contour_generator
- qcs3 = ax.contour(qcs1, z)
- assert qcs3._contour_generator == qcs1._contour_generator
- @pytest.mark.parametrize("split_collections", [False, True])
- @image_comparison(baseline_images=['contour_manual'],
- extensions=['png'], remove_text=True, tol=0.89)
- def test_contour_manual(split_collections):
- # Manually specifying contour lines/polygons to plot.
- from matplotlib.contour import ContourSet
- fig, ax = plt.subplots(figsize=(4, 4))
- cmap = 'viridis'
- # Segments only (no 'kind' codes).
- lines0 = [[[2, 0], [1, 2], [1, 3]]] # Single line.
- lines1 = [[[3, 0], [3, 2]], [[3, 3], [3, 4]]] # Two lines.
- filled01 = [[[0, 0], [0, 4], [1, 3], [1, 2], [2, 0]]]
- filled12 = [[[2, 0], [3, 0], [3, 2], [1, 3], [1, 2]], # Two polygons.
- [[1, 4], [3, 4], [3, 3]]]
- ContourSet(ax, [0, 1, 2], [filled01, filled12], filled=True, cmap=cmap)
- ContourSet(ax, [1, 2], [lines0, lines1], linewidths=3, colors=['r', 'k'])
- # Segments and kind codes (1 = MOVETO, 2 = LINETO, 79 = CLOSEPOLY).
- segs = [[[4, 0], [7, 0], [7, 3], [4, 3], [4, 0],
- [5, 1], [5, 2], [6, 2], [6, 1], [5, 1]]]
- kinds = [[1, 2, 2, 2, 79, 1, 2, 2, 2, 79]] # Polygon containing hole.
- ContourSet(ax, [2, 3], [segs], [kinds], filled=True, cmap=cmap)
- ContourSet(ax, [2], [segs], [kinds], colors='k', linewidths=3)
- _maybe_split_collections(split_collections)
- @pytest.mark.parametrize("split_collections", [False, True])
- @image_comparison(baseline_images=['contour_line_start_on_corner_edge'],
- extensions=['png'], remove_text=True)
- def test_contour_line_start_on_corner_edge(split_collections):
- fig, ax = plt.subplots(figsize=(6, 5))
- x, y = np.meshgrid([0, 1, 2, 3, 4], [0, 1, 2])
- z = 1.2 - (x - 2)**2 + (y - 1)**2
- mask = np.zeros_like(z, dtype=bool)
- mask[1, 1] = mask[1, 3] = True
- z = np.ma.array(z, mask=mask)
- filled = ax.contourf(x, y, z, corner_mask=True)
- cbar = fig.colorbar(filled)
- lines = ax.contour(x, y, z, corner_mask=True, colors='k')
- cbar.add_lines(lines)
- _maybe_split_collections(split_collections)
- def test_find_nearest_contour():
- xy = np.indices((15, 15))
- img = np.exp(-np.pi * (np.sum((xy - 5)**2, 0)/5.**2))
- cs = plt.contour(img, 10)
- nearest_contour = cs.find_nearest_contour(1, 1, pixel=False)
- expected_nearest = (1, 0, 33, 1.965966, 1.965966, 1.866183)
- assert_array_almost_equal(nearest_contour, expected_nearest)
- nearest_contour = cs.find_nearest_contour(8, 1, pixel=False)
- expected_nearest = (1, 0, 5, 7.550173, 1.587542, 0.547550)
- assert_array_almost_equal(nearest_contour, expected_nearest)
- nearest_contour = cs.find_nearest_contour(2, 5, pixel=False)
- expected_nearest = (3, 0, 21, 1.884384, 5.023335, 0.013911)
- assert_array_almost_equal(nearest_contour, expected_nearest)
- nearest_contour = cs.find_nearest_contour(2, 5, indices=(5, 7), pixel=False)
- expected_nearest = (5, 0, 16, 2.628202, 5.0, 0.394638)
- assert_array_almost_equal(nearest_contour, expected_nearest)
- def test_find_nearest_contour_no_filled():
- xy = np.indices((15, 15))
- img = np.exp(-np.pi * (np.sum((xy - 5)**2, 0)/5.**2))
- cs = plt.contourf(img, 10)
- with pytest.raises(ValueError, match="Method does not support filled contours"):
- cs.find_nearest_contour(1, 1, pixel=False)
- with pytest.raises(ValueError, match="Method does not support filled contours"):
- cs.find_nearest_contour(1, 10, indices=(5, 7), pixel=False)
- with pytest.raises(ValueError, match="Method does not support filled contours"):
- cs.find_nearest_contour(2, 5, indices=(2, 7), pixel=True)
- @mpl.style.context("default")
- def test_contour_autolabel_beyond_powerlimits():
- ax = plt.figure().add_subplot()
- cs = plt.contour(np.geomspace(1e-6, 1e-4, 100).reshape(10, 10),
- levels=[.25e-5, 1e-5, 4e-5])
- ax.clabel(cs)
- # Currently, the exponent is missing, but that may be fixed in the future.
- assert {text.get_text() for text in ax.texts} == {"0.25", "1.00", "4.00"}
- def test_contourf_legend_elements():
- from matplotlib.patches import Rectangle
- x = np.arange(1, 10)
- y = x.reshape(-1, 1)
- h = x * y
- cs = plt.contourf(h, levels=[10, 30, 50],
- colors=['#FFFF00', '#FF00FF', '#00FFFF'],
- extend='both')
- cs.cmap.set_over('red')
- cs.cmap.set_under('blue')
- cs.changed()
- artists, labels = cs.legend_elements()
- assert labels == ['$x \\leq -1e+250s$',
- '$10.0 < x \\leq 30.0$',
- '$30.0 < x \\leq 50.0$',
- '$x > 1e+250s$']
- expected_colors = ('blue', '#FFFF00', '#FF00FF', 'red')
- assert all(isinstance(a, Rectangle) for a in artists)
- assert all(same_color(a.get_facecolor(), c)
- for a, c in zip(artists, expected_colors))
- def test_contour_legend_elements():
- x = np.arange(1, 10)
- y = x.reshape(-1, 1)
- h = x * y
- colors = ['blue', '#00FF00', 'red']
- cs = plt.contour(h, levels=[10, 30, 50],
- colors=colors,
- extend='both')
- artists, labels = cs.legend_elements()
- assert labels == ['$x = 10.0$', '$x = 30.0$', '$x = 50.0$']
- assert all(isinstance(a, mpl.lines.Line2D) for a in artists)
- assert all(same_color(a.get_color(), c)
- for a, c in zip(artists, colors))
- @pytest.mark.parametrize(
- "algorithm, klass",
- [('mpl2005', contourpy.Mpl2005ContourGenerator),
- ('mpl2014', contourpy.Mpl2014ContourGenerator),
- ('serial', contourpy.SerialContourGenerator),
- ('threaded', contourpy.ThreadedContourGenerator),
- ('invalid', None)])
- def test_algorithm_name(algorithm, klass):
- z = np.array([[1.0, 2.0], [3.0, 4.0]])
- if klass is not None:
- cs = plt.contourf(z, algorithm=algorithm)
- assert isinstance(cs._contour_generator, klass)
- else:
- with pytest.raises(ValueError):
- plt.contourf(z, algorithm=algorithm)
- @pytest.mark.parametrize(
- "algorithm", ['mpl2005', 'mpl2014', 'serial', 'threaded'])
- def test_algorithm_supports_corner_mask(algorithm):
- z = np.array([[1.0, 2.0], [3.0, 4.0]])
- # All algorithms support corner_mask=False
- plt.contourf(z, algorithm=algorithm, corner_mask=False)
- # Only some algorithms support corner_mask=True
- if algorithm != 'mpl2005':
- plt.contourf(z, algorithm=algorithm, corner_mask=True)
- else:
- with pytest.raises(ValueError):
- plt.contourf(z, algorithm=algorithm, corner_mask=True)
- @pytest.mark.parametrize("split_collections", [False, True])
- @image_comparison(baseline_images=['contour_all_algorithms'],
- extensions=['png'], remove_text=True, tol=0.06)
- def test_all_algorithms(split_collections):
- algorithms = ['mpl2005', 'mpl2014', 'serial', 'threaded']
- rng = np.random.default_rng(2981)
- x, y = np.meshgrid(np.linspace(0.0, 1.0, 10), np.linspace(0.0, 1.0, 6))
- z = np.sin(15*x)*np.cos(10*y) + rng.normal(scale=0.5, size=(6, 10))
- mask = np.zeros_like(z, dtype=bool)
- mask[3, 7] = True
- z = np.ma.array(z, mask=mask)
- _, axs = plt.subplots(2, 2)
- for ax, algorithm in zip(axs.ravel(), algorithms):
- ax.contourf(x, y, z, algorithm=algorithm)
- ax.contour(x, y, z, algorithm=algorithm, colors='k')
- ax.set_title(algorithm)
- _maybe_split_collections(split_collections)
- def test_subfigure_clabel():
- # Smoke test for gh#23173
- delta = 0.025
- x = np.arange(-3.0, 3.0, delta)
- y = np.arange(-2.0, 2.0, delta)
- X, Y = np.meshgrid(x, y)
- Z1 = np.exp(-(X**2) - Y**2)
- Z2 = np.exp(-((X - 1) ** 2) - (Y - 1) ** 2)
- Z = (Z1 - Z2) * 2
- fig = plt.figure()
- figs = fig.subfigures(nrows=1, ncols=2)
- for f in figs:
- ax = f.subplots()
- CS = ax.contour(X, Y, Z)
- ax.clabel(CS, inline=True, fontsize=10)
- ax.set_title("Simplest default with labels")
- @pytest.mark.parametrize(
- "style", ['solid', 'dashed', 'dashdot', 'dotted'])
- def test_linestyles(style):
- delta = 0.025
- x = np.arange(-3.0, 3.0, delta)
- y = np.arange(-2.0, 2.0, delta)
- X, Y = np.meshgrid(x, y)
- Z1 = np.exp(-X**2 - Y**2)
- Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
- Z = (Z1 - Z2) * 2
- # Positive contour defaults to solid
- fig1, ax1 = plt.subplots()
- CS1 = ax1.contour(X, Y, Z, 6, colors='k')
- ax1.clabel(CS1, fontsize=9, inline=True)
- ax1.set_title('Single color - positive contours solid (default)')
- assert CS1.linestyles is None # default
- # Change linestyles using linestyles kwarg
- fig2, ax2 = plt.subplots()
- CS2 = ax2.contour(X, Y, Z, 6, colors='k', linestyles=style)
- ax2.clabel(CS2, fontsize=9, inline=True)
- ax2.set_title(f'Single color - positive contours {style}')
- assert CS2.linestyles == style
- # Ensure linestyles do not change when negative_linestyles is defined
- fig3, ax3 = plt.subplots()
- CS3 = ax3.contour(X, Y, Z, 6, colors='k', linestyles=style,
- negative_linestyles='dashdot')
- ax3.clabel(CS3, fontsize=9, inline=True)
- ax3.set_title(f'Single color - positive contours {style}')
- assert CS3.linestyles == style
- @pytest.mark.parametrize(
- "style", ['solid', 'dashed', 'dashdot', 'dotted'])
- def test_negative_linestyles(style):
- delta = 0.025
- x = np.arange(-3.0, 3.0, delta)
- y = np.arange(-2.0, 2.0, delta)
- X, Y = np.meshgrid(x, y)
- Z1 = np.exp(-X**2 - Y**2)
- Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
- Z = (Z1 - Z2) * 2
- # Negative contour defaults to dashed
- fig1, ax1 = plt.subplots()
- CS1 = ax1.contour(X, Y, Z, 6, colors='k')
- ax1.clabel(CS1, fontsize=9, inline=True)
- ax1.set_title('Single color - negative contours dashed (default)')
- assert CS1.negative_linestyles == 'dashed' # default
- # Change negative_linestyles using rcParams
- plt.rcParams['contour.negative_linestyle'] = style
- fig2, ax2 = plt.subplots()
- CS2 = ax2.contour(X, Y, Z, 6, colors='k')
- ax2.clabel(CS2, fontsize=9, inline=True)
- ax2.set_title(f'Single color - negative contours {style}'
- '(using rcParams)')
- assert CS2.negative_linestyles == style
- # Change negative_linestyles using negative_linestyles kwarg
- fig3, ax3 = plt.subplots()
- CS3 = ax3.contour(X, Y, Z, 6, colors='k', negative_linestyles=style)
- ax3.clabel(CS3, fontsize=9, inline=True)
- ax3.set_title(f'Single color - negative contours {style}')
- assert CS3.negative_linestyles == style
- # Ensure negative_linestyles do not change when linestyles is defined
- fig4, ax4 = plt.subplots()
- CS4 = ax4.contour(X, Y, Z, 6, colors='k', linestyles='dashdot',
- negative_linestyles=style)
- ax4.clabel(CS4, fontsize=9, inline=True)
- ax4.set_title(f'Single color - negative contours {style}')
- assert CS4.negative_linestyles == style
- def test_contour_remove():
- ax = plt.figure().add_subplot()
- orig_children = ax.get_children()
- cs = ax.contour(np.arange(16).reshape((4, 4)))
- cs.clabel()
- assert ax.get_children() != orig_children
- cs.remove()
- assert ax.get_children() == orig_children
- def test_contour_no_args():
- fig, ax = plt.subplots()
- data = [[0, 1], [1, 0]]
- with pytest.raises(TypeError, match=r"contour\(\) takes from 1 to 4"):
- ax.contour(Z=data)
- def test_contour_clip_path():
- fig, ax = plt.subplots()
- data = [[0, 1], [1, 0]]
- circle = mpatches.Circle([0.5, 0.5], 0.5, transform=ax.transAxes)
- cs = ax.contour(data, clip_path=circle)
- assert cs.get_clip_path() is not None
- def test_bool_autolevel():
- x, y = np.random.rand(2, 9)
- z = (np.arange(9) % 2).reshape((3, 3)).astype(bool)
- m = [[False, False, False], [False, True, False], [False, False, False]]
- assert plt.contour(z.tolist()).levels.tolist() == [.5]
- assert plt.contour(z).levels.tolist() == [.5]
- assert plt.contour(np.ma.array(z, mask=m)).levels.tolist() == [.5]
- assert plt.contourf(z.tolist()).levels.tolist() == [0, .5, 1]
- assert plt.contourf(z).levels.tolist() == [0, .5, 1]
- assert plt.contourf(np.ma.array(z, mask=m)).levels.tolist() == [0, .5, 1]
- z = z.ravel()
- assert plt.tricontour(x, y, z.tolist()).levels.tolist() == [.5]
- assert plt.tricontour(x, y, z).levels.tolist() == [.5]
- assert plt.tricontourf(x, y, z.tolist()).levels.tolist() == [0, .5, 1]
- assert plt.tricontourf(x, y, z).levels.tolist() == [0, .5, 1]
- def test_all_nan():
- x = np.array([[np.nan, np.nan], [np.nan, np.nan]])
- assert_array_almost_equal(plt.contour(x).levels,
- [-1e-13, -7.5e-14, -5e-14, -2.4e-14, 0.0,
- 2.4e-14, 5e-14, 7.5e-14, 1e-13])
- def test_allsegs_allkinds():
- x, y = np.meshgrid(np.arange(0, 10, 2), np.arange(0, 10, 2))
- z = np.sin(x) * np.cos(y)
- cs = plt.contour(x, y, z, levels=[0, 0.5])
- # Expect two levels, the first with 5 segments and the second with 4.
- for result in [cs.allsegs, cs.allkinds]:
- assert len(result) == 2
- assert len(result[0]) == 5
- assert len(result[1]) == 4
- def test_deprecated_apis():
- cs = plt.contour(np.arange(16).reshape((4, 4)))
- with pytest.warns(mpl.MatplotlibDeprecationWarning, match="collections"):
- colls = cs.collections
- with pytest.warns(mpl.MatplotlibDeprecationWarning, match="tcolors"):
- assert_array_equal(cs.tcolors, [c.get_edgecolor() for c in colls])
- with pytest.warns(mpl.MatplotlibDeprecationWarning, match="tlinewidths"):
- assert cs.tlinewidths == [c.get_linewidth() for c in colls]
- with pytest.warns(mpl.MatplotlibDeprecationWarning, match="antialiased"):
- assert cs.antialiased
- with pytest.warns(mpl.MatplotlibDeprecationWarning, match="antialiased"):
- cs.antialiased = False
- with pytest.warns(mpl.MatplotlibDeprecationWarning, match="antialiased"):
- assert not cs.antialiased
|