123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438 |
- """
- Tests specific to the lines module.
- """
- import itertools
- import platform
- import timeit
- from types import SimpleNamespace
- from cycler import cycler
- import numpy as np
- from numpy.testing import assert_array_equal
- import pytest
- import matplotlib
- import matplotlib as mpl
- from matplotlib import _path
- import matplotlib.lines as mlines
- from matplotlib.markers import MarkerStyle
- from matplotlib.path import Path
- import matplotlib.pyplot as plt
- import matplotlib.transforms as mtransforms
- from matplotlib.testing.decorators import image_comparison, check_figures_equal
- def test_segment_hits():
- """Test a problematic case."""
- cx, cy = 553, 902
- x, y = np.array([553., 553.]), np.array([95., 947.])
- radius = 6.94
- assert_array_equal(mlines.segment_hits(cx, cy, x, y, radius), [0])
- # Runtimes on a loaded system are inherently flaky. Not so much that a rerun
- # won't help, hopefully.
- @pytest.mark.flaky(reruns=3)
- def test_invisible_Line_rendering():
- """
- GitHub issue #1256 identified a bug in Line.draw method
- Despite visibility attribute set to False, the draw method was not
- returning early enough and some pre-rendering code was executed
- though not necessary.
- Consequence was an excessive draw time for invisible Line instances
- holding a large number of points (Npts> 10**6)
- """
- # Creates big x and y data:
- N = 10**7
- x = np.linspace(0, 1, N)
- y = np.random.normal(size=N)
- # Create a plot figure:
- fig = plt.figure()
- ax = plt.subplot()
- # Create a "big" Line instance:
- l = mlines.Line2D(x, y)
- l.set_visible(False)
- # but don't add it to the Axis instance `ax`
- # [here Interactive panning and zooming is pretty responsive]
- # Time the canvas drawing:
- t_no_line = min(timeit.repeat(fig.canvas.draw, number=1, repeat=3))
- # (gives about 25 ms)
- # Add the big invisible Line:
- ax.add_line(l)
- # [Now interactive panning and zooming is very slow]
- # Time the canvas drawing:
- t_invisible_line = min(timeit.repeat(fig.canvas.draw, number=1, repeat=3))
- # gives about 290 ms for N = 10**7 pts
- slowdown_factor = t_invisible_line / t_no_line
- slowdown_threshold = 2 # trying to avoid false positive failures
- assert slowdown_factor < slowdown_threshold
- def test_set_line_coll_dash():
- fig, ax = plt.subplots()
- np.random.seed(0)
- # Testing setting linestyles for line collections.
- # This should not produce an error.
- ax.contour(np.random.randn(20, 30), linestyles=[(0, (3, 3))])
- def test_invalid_line_data():
- with pytest.raises(RuntimeError, match='xdata must be'):
- mlines.Line2D(0, [])
- with pytest.raises(RuntimeError, match='ydata must be'):
- mlines.Line2D([], 1)
- line = mlines.Line2D([], [])
- # when deprecation cycle is completed
- # with pytest.raises(RuntimeError, match='x must be'):
- with pytest.warns(mpl.MatplotlibDeprecationWarning):
- line.set_xdata(0)
- # with pytest.raises(RuntimeError, match='y must be'):
- with pytest.warns(mpl.MatplotlibDeprecationWarning):
- line.set_ydata(0)
- @image_comparison(['line_dashes'], remove_text=True, tol=0.002)
- def test_line_dashes():
- # Tolerance introduced after reordering of floating-point operations
- # Remove when regenerating the images
- fig, ax = plt.subplots()
- ax.plot(range(10), linestyle=(0, (3, 3)), lw=5)
- def test_line_colors():
- fig, ax = plt.subplots()
- ax.plot(range(10), color='none')
- ax.plot(range(10), color='r')
- ax.plot(range(10), color='.3')
- ax.plot(range(10), color=(1, 0, 0, 1))
- ax.plot(range(10), color=(1, 0, 0))
- fig.canvas.draw()
- def test_valid_colors():
- line = mlines.Line2D([], [])
- with pytest.raises(ValueError):
- line.set_color("foobar")
- def test_linestyle_variants():
- fig, ax = plt.subplots()
- for ls in ["-", "solid", "--", "dashed",
- "-.", "dashdot", ":", "dotted",
- (0, None), (0, ()), (0, []), # gh-22930
- ]:
- ax.plot(range(10), linestyle=ls)
- fig.canvas.draw()
- def test_valid_linestyles():
- line = mlines.Line2D([], [])
- with pytest.raises(ValueError):
- line.set_linestyle('aardvark')
- @image_comparison(['drawstyle_variants.png'], remove_text=True)
- def test_drawstyle_variants():
- fig, axs = plt.subplots(6)
- dss = ["default", "steps-mid", "steps-pre", "steps-post", "steps", None]
- # We want to check that drawstyles are properly handled even for very long
- # lines (for which the subslice optimization is on); however, we need
- # to zoom in so that the difference between the drawstyles is actually
- # visible.
- for ax, ds in zip(axs.flat, dss):
- ax.plot(range(2000), drawstyle=ds)
- ax.set(xlim=(0, 2), ylim=(0, 2))
- @check_figures_equal(extensions=('png',))
- def test_no_subslice_with_transform(fig_ref, fig_test):
- ax = fig_ref.add_subplot()
- x = np.arange(2000)
- ax.plot(x + 2000, x)
- ax = fig_test.add_subplot()
- t = mtransforms.Affine2D().translate(2000.0, 0.0)
- ax.plot(x, x, transform=t+ax.transData)
- def test_valid_drawstyles():
- line = mlines.Line2D([], [])
- with pytest.raises(ValueError):
- line.set_drawstyle('foobar')
- def test_set_drawstyle():
- x = np.linspace(0, 2*np.pi, 10)
- y = np.sin(x)
- fig, ax = plt.subplots()
- line, = ax.plot(x, y)
- line.set_drawstyle("steps-pre")
- assert len(line.get_path().vertices) == 2*len(x)-1
- line.set_drawstyle("default")
- assert len(line.get_path().vertices) == len(x)
- @image_comparison(
- ['line_collection_dashes'], remove_text=True, style='mpl20',
- tol=0.65 if platform.machine() in ('aarch64', 'ppc64le', 's390x') else 0)
- def test_set_line_coll_dash_image():
- fig, ax = plt.subplots()
- np.random.seed(0)
- ax.contour(np.random.randn(20, 30), linestyles=[(0, (3, 3))])
- @image_comparison(['marker_fill_styles.png'], remove_text=True)
- def test_marker_fill_styles():
- colors = itertools.cycle([[0, 0, 1], 'g', '#ff0000', 'c', 'm', 'y',
- np.array([0, 0, 0])])
- altcolor = 'lightgreen'
- y = np.array([1, 1])
- x = np.array([0, 9])
- fig, ax = plt.subplots()
- # This hard-coded list of markers correspond to an earlier iteration of
- # MarkerStyle.filled_markers; the value of that attribute has changed but
- # we kept the old value here to not regenerate the baseline image.
- # Replace with mlines.Line2D.filled_markers when the image is regenerated.
- for j, marker in enumerate("ov^<>8sp*hHDdPX"):
- for i, fs in enumerate(mlines.Line2D.fillStyles):
- color = next(colors)
- ax.plot(j * 10 + x, y + i + .5 * (j % 2),
- marker=marker,
- markersize=20,
- markerfacecoloralt=altcolor,
- fillstyle=fs,
- label=fs,
- linewidth=5,
- color=color,
- markeredgecolor=color,
- markeredgewidth=2)
- ax.set_ylim([0, 7.5])
- ax.set_xlim([-5, 155])
- def test_markerfacecolor_fillstyle():
- """Test that markerfacecolor does not override fillstyle='none'."""
- l, = plt.plot([1, 3, 2], marker=MarkerStyle('o', fillstyle='none'),
- markerfacecolor='red')
- assert l.get_fillstyle() == 'none'
- assert l.get_markerfacecolor() == 'none'
- @image_comparison(['scaled_lines'], style='default')
- def test_lw_scaling():
- th = np.linspace(0, 32)
- fig, ax = plt.subplots()
- lins_styles = ['dashed', 'dotted', 'dashdot']
- cy = cycler(matplotlib.rcParams['axes.prop_cycle'])
- for j, (ls, sty) in enumerate(zip(lins_styles, cy)):
- for lw in np.linspace(.5, 10, 10):
- ax.plot(th, j*np.ones(50) + .1 * lw, linestyle=ls, lw=lw, **sty)
- def test_is_sorted_and_has_non_nan():
- assert _path.is_sorted_and_has_non_nan(np.array([1, 2, 3]))
- assert _path.is_sorted_and_has_non_nan(np.array([1, np.nan, 3]))
- assert not _path.is_sorted_and_has_non_nan([3, 5] + [np.nan] * 100 + [0, 2])
- n = 2 * mlines.Line2D._subslice_optim_min_size
- plt.plot([np.nan] * n, range(n))
- @check_figures_equal()
- def test_step_markers(fig_test, fig_ref):
- fig_test.subplots().step([0, 1], "-o")
- fig_ref.subplots().plot([0, 0, 1], [0, 1, 1], "-o", markevery=[0, 2])
- @pytest.mark.parametrize("parent", ["figure", "axes"])
- @check_figures_equal(extensions=('png',))
- def test_markevery(fig_test, fig_ref, parent):
- np.random.seed(42)
- x = np.linspace(0, 1, 14)
- y = np.random.rand(len(x))
- cases_test = [None, 4, (2, 5), [1, 5, 11],
- [0, -1], slice(5, 10, 2),
- np.arange(len(x))[y > 0.5],
- 0.3, (0.3, 0.4)]
- cases_ref = ["11111111111111", "10001000100010", "00100001000010",
- "01000100000100", "10000000000001", "00000101010000",
- "01110001110110", "11011011011110", "01010011011101"]
- if parent == "figure":
- # float markevery ("relative to axes size") is not supported.
- cases_test = cases_test[:-2]
- cases_ref = cases_ref[:-2]
- def add_test(x, y, *, markevery):
- fig_test.add_artist(
- mlines.Line2D(x, y, marker="o", markevery=markevery))
- def add_ref(x, y, *, markevery):
- fig_ref.add_artist(
- mlines.Line2D(x, y, marker="o", markevery=markevery))
- elif parent == "axes":
- axs_test = iter(fig_test.subplots(3, 3).flat)
- axs_ref = iter(fig_ref.subplots(3, 3).flat)
- def add_test(x, y, *, markevery):
- next(axs_test).plot(x, y, "-gD", markevery=markevery)
- def add_ref(x, y, *, markevery):
- next(axs_ref).plot(x, y, "-gD", markevery=markevery)
- for case in cases_test:
- add_test(x, y, markevery=case)
- for case in cases_ref:
- me = np.array(list(case)).astype(int).astype(bool)
- add_ref(x, y, markevery=me)
- def test_markevery_figure_line_unsupported_relsize():
- fig = plt.figure()
- fig.add_artist(mlines.Line2D([0, 1], [0, 1], marker="o", markevery=.5))
- with pytest.raises(ValueError):
- fig.canvas.draw()
- def test_marker_as_markerstyle():
- fig, ax = plt.subplots()
- line, = ax.plot([2, 4, 3], marker=MarkerStyle("D"))
- fig.canvas.draw()
- assert line.get_marker() == "D"
- # continue with smoke tests:
- line.set_marker("s")
- fig.canvas.draw()
- line.set_marker(MarkerStyle("o"))
- fig.canvas.draw()
- # test Path roundtrip
- triangle1 = Path._create_closed([[-1, -1], [1, -1], [0, 2]])
- line2, = ax.plot([1, 3, 2], marker=MarkerStyle(triangle1), ms=22)
- line3, = ax.plot([0, 2, 1], marker=triangle1, ms=22)
- assert_array_equal(line2.get_marker().vertices, triangle1.vertices)
- assert_array_equal(line3.get_marker().vertices, triangle1.vertices)
- @image_comparison(['striped_line.png'], remove_text=True, style='mpl20')
- def test_striped_lines():
- rng = np.random.default_rng(19680801)
- _, ax = plt.subplots()
- ax.plot(rng.uniform(size=12), color='orange', gapcolor='blue',
- linestyle='--', lw=5, label=' ')
- ax.plot(rng.uniform(size=12), color='red', gapcolor='black',
- linestyle=(0, (2, 5, 4, 2)), lw=5, label=' ', alpha=0.5)
- ax.legend(handlelength=5)
- @check_figures_equal()
- def test_odd_dashes(fig_test, fig_ref):
- fig_test.add_subplot().plot([1, 2], dashes=[1, 2, 3])
- fig_ref.add_subplot().plot([1, 2], dashes=[1, 2, 3, 1, 2, 3])
- def test_picking():
- fig, ax = plt.subplots()
- mouse_event = SimpleNamespace(x=fig.bbox.width // 2,
- y=fig.bbox.height // 2 + 15)
- # Default pickradius is 5, so event should not pick this line.
- l0, = ax.plot([0, 1], [0, 1], picker=True)
- found, indices = l0.contains(mouse_event)
- assert not found
- # But with a larger pickradius, this should be picked.
- l1, = ax.plot([0, 1], [0, 1], picker=True, pickradius=20)
- found, indices = l1.contains(mouse_event)
- assert found
- assert_array_equal(indices['ind'], [0])
- # And if we modify the pickradius after creation, it should work as well.
- l2, = ax.plot([0, 1], [0, 1], picker=True)
- found, indices = l2.contains(mouse_event)
- assert not found
- l2.set_pickradius(20)
- found, indices = l2.contains(mouse_event)
- assert found
- assert_array_equal(indices['ind'], [0])
- @check_figures_equal()
- def test_input_copy(fig_test, fig_ref):
- t = np.arange(0, 6, 2)
- l, = fig_test.add_subplot().plot(t, t, ".-")
- t[:] = range(3)
- # Trigger cache invalidation
- l.set_drawstyle("steps")
- fig_ref.add_subplot().plot([0, 2, 4], [0, 2, 4], ".-", drawstyle="steps")
- @check_figures_equal(extensions=["png"])
- def test_markevery_prop_cycle(fig_test, fig_ref):
- """Test that we can set markevery prop_cycle."""
- cases = [None, 8, (30, 8), [16, 24, 30], [0, -1],
- slice(100, 200, 3), 0.1, 0.3, 1.5,
- (0.0, 0.1), (0.45, 0.1)]
- cmap = mpl.colormaps['jet']
- colors = cmap(np.linspace(0.2, 0.8, len(cases)))
- x = np.linspace(-1, 1)
- y = 5 * x**2
- axs = fig_ref.add_subplot()
- for i, markevery in enumerate(cases):
- axs.plot(y - i, 'o-', markevery=markevery, color=colors[i])
- matplotlib.rcParams['axes.prop_cycle'] = cycler(markevery=cases,
- color=colors)
- ax = fig_test.add_subplot()
- for i, _ in enumerate(cases):
- ax.plot(y - i, 'o-')
- def test_axline_setters():
- fig, ax = plt.subplots()
- line1 = ax.axline((.1, .1), slope=0.6)
- line2 = ax.axline((.1, .1), (.8, .4))
- # Testing xy1, xy2 and slope setters.
- # This should not produce an error.
- line1.set_xy1(.2, .3)
- line1.set_slope(2.4)
- line2.set_xy1(.3, .2)
- line2.set_xy2(.6, .8)
- # Testing xy1, xy2 and slope getters.
- # Should return the modified values.
- assert line1.get_xy1() == (.2, .3)
- assert line1.get_slope() == 2.4
- assert line2.get_xy1() == (.3, .2)
- assert line2.get_xy2() == (.6, .8)
- # Testing setting xy2 and slope together.
- # These test should raise a ValueError
- with pytest.raises(ValueError,
- match="Cannot set an 'xy2' value while 'slope' is set"):
- line1.set_xy2(.2, .3)
- with pytest.raises(ValueError,
- match="Cannot set a 'slope' value while 'xy2' is set"):
- line2.set_slope(3)
|