123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448 |
- import numpy as np
- from numpy.testing import assert_allclose
- import pytest
- import matplotlib as mpl
- from matplotlib import pyplot as plt
- from matplotlib.testing.decorators import image_comparison, check_figures_equal
- @image_comparison(['polar_axes'], style='default', tol=0.012)
- def test_polar_annotations():
- # You can specify the xypoint and the xytext in different positions and
- # coordinate systems, and optionally turn on a connecting line and mark the
- # point with a marker. Annotations work on polar axes too. In the example
- # below, the xy point is in native coordinates (xycoords defaults to
- # 'data'). For a polar axes, this is in (theta, radius) space. The text
- # in this example is placed in the fractional figure coordinate system.
- # Text keyword args like horizontal and vertical alignment are respected.
- # Setup some data
- r = np.arange(0.0, 1.0, 0.001)
- theta = 2.0 * 2.0 * np.pi * r
- fig = plt.figure()
- ax = fig.add_subplot(polar=True)
- line, = ax.plot(theta, r, color='#ee8d18', lw=3)
- line, = ax.plot((0, 0), (0, 1), color="#0000ff", lw=1)
- ind = 800
- thisr, thistheta = r[ind], theta[ind]
- ax.plot([thistheta], [thisr], 'o')
- ax.annotate('a polar annotation',
- xy=(thistheta, thisr), # theta, radius
- xytext=(0.05, 0.05), # fraction, fraction
- textcoords='figure fraction',
- arrowprops=dict(facecolor='black', shrink=0.05),
- horizontalalignment='left',
- verticalalignment='baseline',
- )
- ax.tick_params(axis='x', tick1On=True, tick2On=True, direction='out')
- @image_comparison(['polar_coords'], style='default', remove_text=True,
- tol=0.012)
- def test_polar_coord_annotations():
- # You can also use polar notation on a cartesian axes. Here the native
- # coordinate system ('data') is cartesian, so you need to specify the
- # xycoords and textcoords as 'polar' if you want to use (theta, radius).
- el = mpl.patches.Ellipse((0, 0), 10, 20, facecolor='r', alpha=0.5)
- fig = plt.figure()
- ax = fig.add_subplot(aspect='equal')
- ax.add_artist(el)
- el.set_clip_box(ax.bbox)
- ax.annotate('the top',
- xy=(np.pi/2., 10.), # theta, radius
- xytext=(np.pi/3, 20.), # theta, radius
- xycoords='polar',
- textcoords='polar',
- arrowprops=dict(facecolor='black', shrink=0.05),
- horizontalalignment='left',
- verticalalignment='baseline',
- clip_on=True, # clip to the axes bounding box
- )
- ax.set_xlim(-20, 20)
- ax.set_ylim(-20, 20)
- @image_comparison(['polar_alignment.png'])
- def test_polar_alignment():
- # Test changing the vertical/horizontal alignment of a polar graph.
- angles = np.arange(0, 360, 90)
- grid_values = [0, 0.2, 0.4, 0.6, 0.8, 1]
- fig = plt.figure()
- rect = [0.1, 0.1, 0.8, 0.8]
- horizontal = fig.add_axes(rect, polar=True, label='horizontal')
- horizontal.set_thetagrids(angles)
- vertical = fig.add_axes(rect, polar=True, label='vertical')
- vertical.patch.set_visible(False)
- for i in range(2):
- fig.axes[i].set_rgrids(
- grid_values, angle=angles[i],
- horizontalalignment='left', verticalalignment='top')
- def test_polar_twice():
- fig = plt.figure()
- plt.polar([1, 2], [.1, .2])
- plt.polar([3, 4], [.3, .4])
- assert len(fig.axes) == 1, 'More than one polar axes created.'
- @check_figures_equal()
- def test_polar_wrap(fig_test, fig_ref):
- ax = fig_test.add_subplot(projection="polar")
- ax.plot(np.deg2rad([179, -179]), [0.2, 0.1])
- ax.plot(np.deg2rad([2, -2]), [0.2, 0.1])
- ax = fig_ref.add_subplot(projection="polar")
- ax.plot(np.deg2rad([179, 181]), [0.2, 0.1])
- ax.plot(np.deg2rad([2, 358]), [0.2, 0.1])
- @check_figures_equal()
- def test_polar_units_1(fig_test, fig_ref):
- import matplotlib.testing.jpl_units as units
- units.register()
- xs = [30.0, 45.0, 60.0, 90.0]
- ys = [1.0, 2.0, 3.0, 4.0]
- plt.figure(fig_test.number)
- plt.polar([x * units.deg for x in xs], ys)
- ax = fig_ref.add_subplot(projection="polar")
- ax.plot(np.deg2rad(xs), ys)
- ax.set(xlabel="deg")
- @check_figures_equal()
- def test_polar_units_2(fig_test, fig_ref):
- import matplotlib.testing.jpl_units as units
- units.register()
- xs = [30.0, 45.0, 60.0, 90.0]
- xs_deg = [x * units.deg for x in xs]
- ys = [1.0, 2.0, 3.0, 4.0]
- ys_km = [y * units.km for y in ys]
- plt.figure(fig_test.number)
- # test {theta,r}units.
- plt.polar(xs_deg, ys_km, thetaunits="rad", runits="km")
- assert isinstance(plt.gca().xaxis.get_major_formatter(),
- units.UnitDblFormatter)
- ax = fig_ref.add_subplot(projection="polar")
- ax.plot(np.deg2rad(xs), ys)
- ax.xaxis.set_major_formatter(mpl.ticker.FuncFormatter("{:.12}".format))
- ax.set(xlabel="rad", ylabel="km")
- @image_comparison(['polar_rmin'], style='default')
- def test_polar_rmin():
- r = np.arange(0, 3.0, 0.01)
- theta = 2*np.pi*r
- fig = plt.figure()
- ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], polar=True)
- ax.plot(theta, r)
- ax.set_rmax(2.0)
- ax.set_rmin(0.5)
- @image_comparison(['polar_negative_rmin'], style='default')
- def test_polar_negative_rmin():
- r = np.arange(-3.0, 0.0, 0.01)
- theta = 2*np.pi*r
- fig = plt.figure()
- ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], polar=True)
- ax.plot(theta, r)
- ax.set_rmax(0.0)
- ax.set_rmin(-3.0)
- @image_comparison(['polar_rorigin'], style='default')
- def test_polar_rorigin():
- r = np.arange(0, 3.0, 0.01)
- theta = 2*np.pi*r
- fig = plt.figure()
- ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], polar=True)
- ax.plot(theta, r)
- ax.set_rmax(2.0)
- ax.set_rmin(0.5)
- ax.set_rorigin(0.0)
- @image_comparison(['polar_invertedylim.png'], style='default')
- def test_polar_invertedylim():
- fig = plt.figure()
- ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], polar=True)
- ax.set_ylim(2, 0)
- @image_comparison(['polar_invertedylim_rorigin.png'], style='default')
- def test_polar_invertedylim_rorigin():
- fig = plt.figure()
- ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], polar=True)
- ax.yaxis.set_inverted(True)
- # Set the rlims to inverted (2, 0) without calling set_rlim, to check that
- # viewlims are correctly unstaled before draw()ing.
- ax.plot([0, 0], [0, 2], c="none")
- ax.margins(0)
- ax.set_rorigin(3)
- @image_comparison(['polar_theta_position'], style='default')
- def test_polar_theta_position():
- r = np.arange(0, 3.0, 0.01)
- theta = 2*np.pi*r
- fig = plt.figure()
- ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], polar=True)
- ax.plot(theta, r)
- ax.set_theta_zero_location("NW", 30)
- ax.set_theta_direction('clockwise')
- @image_comparison(['polar_rlabel_position'], style='default')
- def test_polar_rlabel_position():
- fig = plt.figure()
- ax = fig.add_subplot(projection='polar')
- ax.set_rlabel_position(315)
- ax.tick_params(rotation='auto')
- @image_comparison(['polar_theta_wedge'], style='default')
- def test_polar_theta_limits():
- r = np.arange(0, 3.0, 0.01)
- theta = 2*np.pi*r
- theta_mins = np.arange(15.0, 361.0, 90.0)
- theta_maxs = np.arange(50.0, 361.0, 90.0)
- DIRECTIONS = ('out', 'in', 'inout')
- fig, axs = plt.subplots(len(theta_mins), len(theta_maxs),
- subplot_kw={'polar': True},
- figsize=(8, 6))
- for i, start in enumerate(theta_mins):
- for j, end in enumerate(theta_maxs):
- ax = axs[i, j]
- ax.plot(theta, r)
- if start < end:
- ax.set_thetamin(start)
- ax.set_thetamax(end)
- else:
- # Plot with clockwise orientation instead.
- ax.set_thetamin(end)
- ax.set_thetamax(start)
- ax.set_theta_direction('clockwise')
- ax.tick_params(tick1On=True, tick2On=True,
- direction=DIRECTIONS[i % len(DIRECTIONS)],
- rotation='auto')
- ax.yaxis.set_tick_params(label2On=True, rotation='auto')
- ax.xaxis.get_major_locator().base.set_params( # backcompat
- steps=[1, 2, 2.5, 5, 10])
- @check_figures_equal(extensions=["png"])
- def test_polar_rlim(fig_test, fig_ref):
- ax = fig_test.subplots(subplot_kw={'polar': True})
- ax.set_rlim(top=10)
- ax.set_rlim(bottom=.5)
- ax = fig_ref.subplots(subplot_kw={'polar': True})
- ax.set_rmax(10.)
- ax.set_rmin(.5)
- @check_figures_equal(extensions=["png"])
- def test_polar_rlim_bottom(fig_test, fig_ref):
- ax = fig_test.subplots(subplot_kw={'polar': True})
- ax.set_rlim(bottom=[.5, 10])
- ax = fig_ref.subplots(subplot_kw={'polar': True})
- ax.set_rmax(10.)
- ax.set_rmin(.5)
- def test_polar_rlim_zero():
- ax = plt.figure().add_subplot(projection='polar')
- ax.plot(np.arange(10), np.arange(10) + .01)
- assert ax.get_ylim()[0] == 0
- def test_polar_no_data():
- plt.subplot(projection="polar")
- ax = plt.gca()
- assert ax.get_rmin() == 0 and ax.get_rmax() == 1
- plt.close("all")
- # Used to behave differently (by triggering an autoscale with no data).
- plt.polar()
- ax = plt.gca()
- assert ax.get_rmin() == 0 and ax.get_rmax() == 1
- def test_polar_default_log_lims():
- plt.subplot(projection='polar')
- ax = plt.gca()
- ax.set_rscale('log')
- assert ax.get_rmin() > 0
- def test_polar_not_datalim_adjustable():
- ax = plt.figure().add_subplot(projection="polar")
- with pytest.raises(ValueError):
- ax.set_adjustable("datalim")
- def test_polar_gridlines():
- fig = plt.figure()
- ax = fig.add_subplot(polar=True)
- # make all major grid lines lighter, only x grid lines set in 2.1.0
- ax.grid(alpha=0.2)
- # hide y tick labels, no effect in 2.1.0
- plt.setp(ax.yaxis.get_ticklabels(), visible=False)
- fig.canvas.draw()
- assert ax.xaxis.majorTicks[0].gridline.get_alpha() == .2
- assert ax.yaxis.majorTicks[0].gridline.get_alpha() == .2
- def test_get_tightbbox_polar():
- fig, ax = plt.subplots(subplot_kw={'projection': 'polar'})
- fig.canvas.draw()
- bb = ax.get_tightbbox(fig.canvas.get_renderer())
- assert_allclose(
- bb.extents, [107.7778, 29.2778, 539.7847, 450.7222], rtol=1e-03)
- @check_figures_equal(extensions=["png"])
- def test_polar_interpolation_steps_constant_r(fig_test, fig_ref):
- # Check that an extra half-turn doesn't make any difference -- modulo
- # antialiasing, which we disable here.
- p1 = (fig_test.add_subplot(121, projection="polar")
- .bar([0], [1], 3*np.pi, edgecolor="none", antialiased=False))
- p2 = (fig_test.add_subplot(122, projection="polar")
- .bar([0], [1], -3*np.pi, edgecolor="none", antialiased=False))
- p3 = (fig_ref.add_subplot(121, projection="polar")
- .bar([0], [1], 2*np.pi, edgecolor="none", antialiased=False))
- p4 = (fig_ref.add_subplot(122, projection="polar")
- .bar([0], [1], -2*np.pi, edgecolor="none", antialiased=False))
- @check_figures_equal(extensions=["png"])
- def test_polar_interpolation_steps_variable_r(fig_test, fig_ref):
- l, = fig_test.add_subplot(projection="polar").plot([0, np.pi/2], [1, 2])
- l.get_path()._interpolation_steps = 100
- fig_ref.add_subplot(projection="polar").plot(
- np.linspace(0, np.pi/2, 101), np.linspace(1, 2, 101))
- def test_thetalim_valid_invalid():
- ax = plt.subplot(projection='polar')
- ax.set_thetalim(0, 2 * np.pi) # doesn't raise.
- ax.set_thetalim(thetamin=800, thetamax=440) # doesn't raise.
- with pytest.raises(ValueError,
- match='angle range must be less than a full circle'):
- ax.set_thetalim(0, 3 * np.pi)
- with pytest.raises(ValueError,
- match='angle range must be less than a full circle'):
- ax.set_thetalim(thetamin=800, thetamax=400)
- def test_thetalim_args():
- ax = plt.subplot(projection='polar')
- ax.set_thetalim(0, 1)
- assert tuple(np.radians((ax.get_thetamin(), ax.get_thetamax()))) == (0, 1)
- ax.set_thetalim((2, 3))
- assert tuple(np.radians((ax.get_thetamin(), ax.get_thetamax()))) == (2, 3)
- def test_default_thetalocator():
- # Ideally we would check AAAABBC, but the smallest axes currently puts a
- # single tick at 150° because MaxNLocator doesn't have a way to accept 15°
- # while rejecting 150°.
- fig, axs = plt.subplot_mosaic(
- "AAAABB.", subplot_kw={"projection": "polar"})
- for ax in axs.values():
- ax.set_thetalim(0, np.pi)
- for ax in axs.values():
- ticklocs = np.degrees(ax.xaxis.get_majorticklocs()).tolist()
- assert pytest.approx(90) in ticklocs
- assert pytest.approx(100) not in ticklocs
- def test_axvspan():
- ax = plt.subplot(projection="polar")
- span = ax.axvspan(0, np.pi/4)
- assert span.get_path()._interpolation_steps > 1
- @check_figures_equal(extensions=["png"])
- def test_remove_shared_polar(fig_ref, fig_test):
- # Removing shared polar axes used to crash. Test removing them, keeping in
- # both cases just the lower left axes of a grid to avoid running into a
- # separate issue (now being fixed) of ticklabel visibility for shared axes.
- axs = fig_ref.subplots(
- 2, 2, sharex=True, subplot_kw={"projection": "polar"})
- for i in [0, 1, 3]:
- axs.flat[i].remove()
- axs = fig_test.subplots(
- 2, 2, sharey=True, subplot_kw={"projection": "polar"})
- for i in [0, 1, 3]:
- axs.flat[i].remove()
- def test_shared_polar_keeps_ticklabels():
- fig, axs = plt.subplots(
- 2, 2, subplot_kw={"projection": "polar"}, sharex=True, sharey=True)
- fig.canvas.draw()
- assert axs[0, 1].xaxis.majorTicks[0].get_visible()
- assert axs[0, 1].yaxis.majorTicks[0].get_visible()
- fig, axs = plt.subplot_mosaic(
- "ab\ncd", subplot_kw={"projection": "polar"}, sharex=True, sharey=True)
- fig.canvas.draw()
- assert axs["b"].xaxis.majorTicks[0].get_visible()
- assert axs["b"].yaxis.majorTicks[0].get_visible()
- def test_axvline_axvspan_do_not_modify_rlims():
- ax = plt.subplot(projection="polar")
- ax.axvspan(0, 1)
- ax.axvline(.5)
- ax.plot([.1, .2])
- assert ax.get_ylim() == (0, .2)
- def test_cursor_precision():
- ax = plt.subplot(projection="polar")
- # Higher radii correspond to higher theta-precisions.
- assert ax.format_coord(0, 0.005) == "θ=0.0π (0°), r=0.005"
- assert ax.format_coord(0, .1) == "θ=0.00π (0°), r=0.100"
- assert ax.format_coord(0, 1) == "θ=0.000π (0.0°), r=1.000"
- assert ax.format_coord(1, 0.005) == "θ=0.3π (57°), r=0.005"
- assert ax.format_coord(1, .1) == "θ=0.32π (57°), r=0.100"
- assert ax.format_coord(1, 1) == "θ=0.318π (57.3°), r=1.000"
- assert ax.format_coord(2, 0.005) == "θ=0.6π (115°), r=0.005"
- assert ax.format_coord(2, .1) == "θ=0.64π (115°), r=0.100"
- assert ax.format_coord(2, 1) == "θ=0.637π (114.6°), r=1.000"
- @image_comparison(['polar_log.png'], style='default')
- def test_polar_log():
- fig = plt.figure()
- ax = fig.add_subplot(polar=True)
- ax.set_rscale('log')
- ax.set_rlim(1, 1000)
- n = 100
- ax.plot(np.linspace(0, 2 * np.pi, n), np.logspace(0, 2, n))
|