123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263 |
- """
- Tools for triangular grids.
- """
- import numpy as np
- from matplotlib import _api
- from matplotlib.tri import Triangulation
- class TriAnalyzer:
- """
- Define basic tools for triangular mesh analysis and improvement.
- A TriAnalyzer encapsulates a `.Triangulation` object and provides basic
- tools for mesh analysis and mesh improvement.
- Attributes
- ----------
- scale_factors
- Parameters
- ----------
- triangulation : `~matplotlib.tri.Triangulation`
- The encapsulated triangulation to analyze.
- """
- def __init__(self, triangulation):
- _api.check_isinstance(Triangulation, triangulation=triangulation)
- self._triangulation = triangulation
- @property
- def scale_factors(self):
- """
- Factors to rescale the triangulation into a unit square.
- Returns
- -------
- (float, float)
- Scaling factors (kx, ky) so that the triangulation
- ``[triangulation.x * kx, triangulation.y * ky]``
- fits exactly inside a unit square.
- """
- compressed_triangles = self._triangulation.get_masked_triangles()
- node_used = (np.bincount(np.ravel(compressed_triangles),
- minlength=self._triangulation.x.size) != 0)
- return (1 / np.ptp(self._triangulation.x[node_used]),
- 1 / np.ptp(self._triangulation.y[node_used]))
- def circle_ratios(self, rescale=True):
- """
- Return a measure of the triangulation triangles flatness.
- The ratio of the incircle radius over the circumcircle radius is a
- widely used indicator of a triangle flatness.
- It is always ``<= 0.5`` and ``== 0.5`` only for equilateral
- triangles. Circle ratios below 0.01 denote very flat triangles.
- To avoid unduly low values due to a difference of scale between the 2
- axis, the triangular mesh can first be rescaled to fit inside a unit
- square with `scale_factors` (Only if *rescale* is True, which is
- its default value).
- Parameters
- ----------
- rescale : bool, default: True
- If True, internally rescale (based on `scale_factors`), so that the
- (unmasked) triangles fit exactly inside a unit square mesh.
- Returns
- -------
- masked array
- Ratio of the incircle radius over the circumcircle radius, for
- each 'rescaled' triangle of the encapsulated triangulation.
- Values corresponding to masked triangles are masked out.
- """
- # Coords rescaling
- if rescale:
- (kx, ky) = self.scale_factors
- else:
- (kx, ky) = (1.0, 1.0)
- pts = np.vstack([self._triangulation.x*kx,
- self._triangulation.y*ky]).T
- tri_pts = pts[self._triangulation.triangles]
- # Computes the 3 side lengths
- a = tri_pts[:, 1, :] - tri_pts[:, 0, :]
- b = tri_pts[:, 2, :] - tri_pts[:, 1, :]
- c = tri_pts[:, 0, :] - tri_pts[:, 2, :]
- a = np.hypot(a[:, 0], a[:, 1])
- b = np.hypot(b[:, 0], b[:, 1])
- c = np.hypot(c[:, 0], c[:, 1])
- # circumcircle and incircle radii
- s = (a+b+c)*0.5
- prod = s*(a+b-s)*(a+c-s)*(b+c-s)
- # We have to deal with flat triangles with infinite circum_radius
- bool_flat = (prod == 0.)
- if np.any(bool_flat):
- # Pathologic flow
- ntri = tri_pts.shape[0]
- circum_radius = np.empty(ntri, dtype=np.float64)
- circum_radius[bool_flat] = np.inf
- abc = a*b*c
- circum_radius[~bool_flat] = abc[~bool_flat] / (
- 4.0*np.sqrt(prod[~bool_flat]))
- else:
- # Normal optimized flow
- circum_radius = (a*b*c) / (4.0*np.sqrt(prod))
- in_radius = (a*b*c) / (4.0*circum_radius*s)
- circle_ratio = in_radius/circum_radius
- mask = self._triangulation.mask
- if mask is None:
- return circle_ratio
- else:
- return np.ma.array(circle_ratio, mask=mask)
- def get_flat_tri_mask(self, min_circle_ratio=0.01, rescale=True):
- """
- Eliminate excessively flat border triangles from the triangulation.
- Returns a mask *new_mask* which allows to clean the encapsulated
- triangulation from its border-located flat triangles
- (according to their :meth:`circle_ratios`).
- This mask is meant to be subsequently applied to the triangulation
- using `.Triangulation.set_mask`.
- *new_mask* is an extension of the initial triangulation mask
- in the sense that an initially masked triangle will remain masked.
- The *new_mask* array is computed recursively; at each step flat
- triangles are removed only if they share a side with the current mesh
- border. Thus, no new holes in the triangulated domain will be created.
- Parameters
- ----------
- min_circle_ratio : float, default: 0.01
- Border triangles with incircle/circumcircle radii ratio r/R will
- be removed if r/R < *min_circle_ratio*.
- rescale : bool, default: True
- If True, first, internally rescale (based on `scale_factors`) so
- that the (unmasked) triangles fit exactly inside a unit square
- mesh. This rescaling accounts for the difference of scale which
- might exist between the 2 axis.
- Returns
- -------
- array of bool
- Mask to apply to encapsulated triangulation.
- All the initially masked triangles remain masked in the
- *new_mask*.
- Notes
- -----
- The rationale behind this function is that a Delaunay
- triangulation - of an unstructured set of points - sometimes contains
- almost flat triangles at its border, leading to artifacts in plots
- (especially for high-resolution contouring).
- Masked with computed *new_mask*, the encapsulated
- triangulation would contain no more unmasked border triangles
- with a circle ratio below *min_circle_ratio*, thus improving the
- mesh quality for subsequent plots or interpolation.
- """
- # Recursively computes the mask_current_borders, true if a triangle is
- # at the border of the mesh OR touching the border through a chain of
- # invalid aspect ratio masked_triangles.
- ntri = self._triangulation.triangles.shape[0]
- mask_bad_ratio = self.circle_ratios(rescale) < min_circle_ratio
- current_mask = self._triangulation.mask
- if current_mask is None:
- current_mask = np.zeros(ntri, dtype=bool)
- valid_neighbors = np.copy(self._triangulation.neighbors)
- renum_neighbors = np.arange(ntri, dtype=np.int32)
- nadd = -1
- while nadd != 0:
- # The active wavefront is the triangles from the border (unmasked
- # but with a least 1 neighbor equal to -1
- wavefront = (np.min(valid_neighbors, axis=1) == -1) & ~current_mask
- # The element from the active wavefront will be masked if their
- # circle ratio is bad.
- added_mask = wavefront & mask_bad_ratio
- current_mask = added_mask | current_mask
- nadd = np.sum(added_mask)
- # now we have to update the tables valid_neighbors
- valid_neighbors[added_mask, :] = -1
- renum_neighbors[added_mask] = -1
- valid_neighbors = np.where(valid_neighbors == -1, -1,
- renum_neighbors[valid_neighbors])
- return np.ma.filled(current_mask, True)
- def _get_compressed_triangulation(self):
- """
- Compress (if masked) the encapsulated triangulation.
- Returns minimal-length triangles array (*compressed_triangles*) and
- coordinates arrays (*compressed_x*, *compressed_y*) that can still
- describe the unmasked triangles of the encapsulated triangulation.
- Returns
- -------
- compressed_triangles : array-like
- the returned compressed triangulation triangles
- compressed_x : array-like
- the returned compressed triangulation 1st coordinate
- compressed_y : array-like
- the returned compressed triangulation 2nd coordinate
- tri_renum : int array
- renumbering table to translate the triangle numbers from the
- encapsulated triangulation into the new (compressed) renumbering.
- -1 for masked triangles (deleted from *compressed_triangles*).
- node_renum : int array
- renumbering table to translate the point numbers from the
- encapsulated triangulation into the new (compressed) renumbering.
- -1 for unused points (i.e. those deleted from *compressed_x* and
- *compressed_y*).
- """
- # Valid triangles and renumbering
- tri_mask = self._triangulation.mask
- compressed_triangles = self._triangulation.get_masked_triangles()
- ntri = self._triangulation.triangles.shape[0]
- if tri_mask is not None:
- tri_renum = self._total_to_compress_renum(~tri_mask)
- else:
- tri_renum = np.arange(ntri, dtype=np.int32)
- # Valid nodes and renumbering
- valid_node = (np.bincount(np.ravel(compressed_triangles),
- minlength=self._triangulation.x.size) != 0)
- compressed_x = self._triangulation.x[valid_node]
- compressed_y = self._triangulation.y[valid_node]
- node_renum = self._total_to_compress_renum(valid_node)
- # Now renumbering the valid triangles nodes
- compressed_triangles = node_renum[compressed_triangles]
- return (compressed_triangles, compressed_x, compressed_y, tri_renum,
- node_renum)
- @staticmethod
- def _total_to_compress_renum(valid):
- """
- Parameters
- ----------
- valid : 1D bool array
- Validity mask.
- Returns
- -------
- int array
- Array so that (`valid_array` being a compressed array
- based on a `masked_array` with mask ~*valid*):
- - For all i with valid[i] = True:
- valid_array[renum[i]] = masked_array[i]
- - For all i with valid[i] = False:
- renum[i] = -1 (invalid value)
- """
- renum = np.full(np.size(valid), -1, dtype=np.int32)
- n_valid = np.sum(valid)
- renum[valid] = np.arange(n_valid, dtype=np.int32)
- return renum
|