123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461 |
- from __future__ import annotations
- from ._dtypes import (
- _floating_dtypes,
- _numeric_dtypes,
- float32,
- float64,
- complex64,
- complex128
- )
- from ._manipulation_functions import reshape
- from ._array_object import Array
- from ..core.numeric import normalize_axis_tuple
- from typing import TYPE_CHECKING
- if TYPE_CHECKING:
- from ._typing import Literal, Optional, Sequence, Tuple, Union, Dtype
- from typing import NamedTuple
- import numpy.linalg
- import numpy as np
- class EighResult(NamedTuple):
- eigenvalues: Array
- eigenvectors: Array
- class QRResult(NamedTuple):
- Q: Array
- R: Array
- class SlogdetResult(NamedTuple):
- sign: Array
- logabsdet: Array
- class SVDResult(NamedTuple):
- U: Array
- S: Array
- Vh: Array
- # Note: the inclusion of the upper keyword is different from
- # np.linalg.cholesky, which does not have it.
- def cholesky(x: Array, /, *, upper: bool = False) -> Array:
- """
- Array API compatible wrapper for :py:func:`np.linalg.cholesky <numpy.linalg.cholesky>`.
- See its docstring for more information.
- """
- # Note: the restriction to floating-point dtypes only is different from
- # np.linalg.cholesky.
- if x.dtype not in _floating_dtypes:
- raise TypeError('Only floating-point dtypes are allowed in cholesky')
- L = np.linalg.cholesky(x._array)
- if upper:
- return Array._new(L).mT
- return Array._new(L)
- # Note: cross is the numpy top-level namespace, not np.linalg
- def cross(x1: Array, x2: Array, /, *, axis: int = -1) -> Array:
- """
- Array API compatible wrapper for :py:func:`np.cross <numpy.cross>`.
- See its docstring for more information.
- """
- if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
- raise TypeError('Only numeric dtypes are allowed in cross')
- # Note: this is different from np.cross(), which broadcasts
- if x1.shape != x2.shape:
- raise ValueError('x1 and x2 must have the same shape')
- if x1.ndim == 0:
- raise ValueError('cross() requires arrays of dimension at least 1')
- # Note: this is different from np.cross(), which allows dimension 2
- if x1.shape[axis] != 3:
- raise ValueError('cross() dimension must equal 3')
- return Array._new(np.cross(x1._array, x2._array, axis=axis))
- def det(x: Array, /) -> Array:
- """
- Array API compatible wrapper for :py:func:`np.linalg.det <numpy.linalg.det>`.
- See its docstring for more information.
- """
- # Note: the restriction to floating-point dtypes only is different from
- # np.linalg.det.
- if x.dtype not in _floating_dtypes:
- raise TypeError('Only floating-point dtypes are allowed in det')
- return Array._new(np.linalg.det(x._array))
- # Note: diagonal is the numpy top-level namespace, not np.linalg
- def diagonal(x: Array, /, *, offset: int = 0) -> Array:
- """
- Array API compatible wrapper for :py:func:`np.diagonal <numpy.diagonal>`.
- See its docstring for more information.
- """
- # Note: diagonal always operates on the last two axes, whereas np.diagonal
- # operates on the first two axes by default
- return Array._new(np.diagonal(x._array, offset=offset, axis1=-2, axis2=-1))
- def eigh(x: Array, /) -> EighResult:
- """
- Array API compatible wrapper for :py:func:`np.linalg.eigh <numpy.linalg.eigh>`.
- See its docstring for more information.
- """
- # Note: the restriction to floating-point dtypes only is different from
- # np.linalg.eigh.
- if x.dtype not in _floating_dtypes:
- raise TypeError('Only floating-point dtypes are allowed in eigh')
- # Note: the return type here is a namedtuple, which is different from
- # np.eigh, which only returns a tuple.
- return EighResult(*map(Array._new, np.linalg.eigh(x._array)))
- def eigvalsh(x: Array, /) -> Array:
- """
- Array API compatible wrapper for :py:func:`np.linalg.eigvalsh <numpy.linalg.eigvalsh>`.
- See its docstring for more information.
- """
- # Note: the restriction to floating-point dtypes only is different from
- # np.linalg.eigvalsh.
- if x.dtype not in _floating_dtypes:
- raise TypeError('Only floating-point dtypes are allowed in eigvalsh')
- return Array._new(np.linalg.eigvalsh(x._array))
- def inv(x: Array, /) -> Array:
- """
- Array API compatible wrapper for :py:func:`np.linalg.inv <numpy.linalg.inv>`.
- See its docstring for more information.
- """
- # Note: the restriction to floating-point dtypes only is different from
- # np.linalg.inv.
- if x.dtype not in _floating_dtypes:
- raise TypeError('Only floating-point dtypes are allowed in inv')
- return Array._new(np.linalg.inv(x._array))
- # Note: matmul is the numpy top-level namespace but not in np.linalg
- def matmul(x1: Array, x2: Array, /) -> Array:
- """
- Array API compatible wrapper for :py:func:`np.matmul <numpy.matmul>`.
- See its docstring for more information.
- """
- # Note: the restriction to numeric dtypes only is different from
- # np.matmul.
- if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
- raise TypeError('Only numeric dtypes are allowed in matmul')
- return Array._new(np.matmul(x1._array, x2._array))
- # Note: the name here is different from norm(). The array API norm is split
- # into matrix_norm and vector_norm().
- # The type for ord should be Optional[Union[int, float, Literal[np.inf,
- # -np.inf, 'fro', 'nuc']]], but Literal does not support floating-point
- # literals.
- def matrix_norm(x: Array, /, *, keepdims: bool = False, ord: Optional[Union[int, float, Literal['fro', 'nuc']]] = 'fro') -> Array:
- """
- Array API compatible wrapper for :py:func:`np.linalg.norm <numpy.linalg.norm>`.
- See its docstring for more information.
- """
- # Note: the restriction to floating-point dtypes only is different from
- # np.linalg.norm.
- if x.dtype not in _floating_dtypes:
- raise TypeError('Only floating-point dtypes are allowed in matrix_norm')
- return Array._new(np.linalg.norm(x._array, axis=(-2, -1), keepdims=keepdims, ord=ord))
- def matrix_power(x: Array, n: int, /) -> Array:
- """
- Array API compatible wrapper for :py:func:`np.matrix_power <numpy.matrix_power>`.
- See its docstring for more information.
- """
- # Note: the restriction to floating-point dtypes only is different from
- # np.linalg.matrix_power.
- if x.dtype not in _floating_dtypes:
- raise TypeError('Only floating-point dtypes are allowed for the first argument of matrix_power')
- # np.matrix_power already checks if n is an integer
- return Array._new(np.linalg.matrix_power(x._array, n))
- # Note: the keyword argument name rtol is different from np.linalg.matrix_rank
- def matrix_rank(x: Array, /, *, rtol: Optional[Union[float, Array]] = None) -> Array:
- """
- Array API compatible wrapper for :py:func:`np.matrix_rank <numpy.matrix_rank>`.
- See its docstring for more information.
- """
- # Note: this is different from np.linalg.matrix_rank, which supports 1
- # dimensional arrays.
- if x.ndim < 2:
- raise np.linalg.LinAlgError("1-dimensional array given. Array must be at least two-dimensional")
- S = np.linalg.svd(x._array, compute_uv=False)
- if rtol is None:
- tol = S.max(axis=-1, keepdims=True) * max(x.shape[-2:]) * np.finfo(S.dtype).eps
- else:
- if isinstance(rtol, Array):
- rtol = rtol._array
- # Note: this is different from np.linalg.matrix_rank, which does not multiply
- # the tolerance by the largest singular value.
- tol = S.max(axis=-1, keepdims=True)*np.asarray(rtol)[..., np.newaxis]
- return Array._new(np.count_nonzero(S > tol, axis=-1))
- # Note: this function is new in the array API spec. Unlike transpose, it only
- # transposes the last two axes.
- def matrix_transpose(x: Array, /) -> Array:
- if x.ndim < 2:
- raise ValueError("x must be at least 2-dimensional for matrix_transpose")
- return Array._new(np.swapaxes(x._array, -1, -2))
- # Note: outer is the numpy top-level namespace, not np.linalg
- def outer(x1: Array, x2: Array, /) -> Array:
- """
- Array API compatible wrapper for :py:func:`np.outer <numpy.outer>`.
- See its docstring for more information.
- """
- # Note: the restriction to numeric dtypes only is different from
- # np.outer.
- if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
- raise TypeError('Only numeric dtypes are allowed in outer')
- # Note: the restriction to only 1-dim arrays is different from np.outer
- if x1.ndim != 1 or x2.ndim != 1:
- raise ValueError('The input arrays to outer must be 1-dimensional')
- return Array._new(np.outer(x1._array, x2._array))
- # Note: the keyword argument name rtol is different from np.linalg.pinv
- def pinv(x: Array, /, *, rtol: Optional[Union[float, Array]] = None) -> Array:
- """
- Array API compatible wrapper for :py:func:`np.linalg.pinv <numpy.linalg.pinv>`.
- See its docstring for more information.
- """
- # Note: the restriction to floating-point dtypes only is different from
- # np.linalg.pinv.
- if x.dtype not in _floating_dtypes:
- raise TypeError('Only floating-point dtypes are allowed in pinv')
- # Note: this is different from np.linalg.pinv, which does not multiply the
- # default tolerance by max(M, N).
- if rtol is None:
- rtol = max(x.shape[-2:]) * np.finfo(x.dtype).eps
- return Array._new(np.linalg.pinv(x._array, rcond=rtol))
- def qr(x: Array, /, *, mode: Literal['reduced', 'complete'] = 'reduced') -> QRResult:
- """
- Array API compatible wrapper for :py:func:`np.linalg.qr <numpy.linalg.qr>`.
- See its docstring for more information.
- """
- # Note: the restriction to floating-point dtypes only is different from
- # np.linalg.qr.
- if x.dtype not in _floating_dtypes:
- raise TypeError('Only floating-point dtypes are allowed in qr')
- # Note: the return type here is a namedtuple, which is different from
- # np.linalg.qr, which only returns a tuple.
- return QRResult(*map(Array._new, np.linalg.qr(x._array, mode=mode)))
- def slogdet(x: Array, /) -> SlogdetResult:
- """
- Array API compatible wrapper for :py:func:`np.linalg.slogdet <numpy.linalg.slogdet>`.
- See its docstring for more information.
- """
- # Note: the restriction to floating-point dtypes only is different from
- # np.linalg.slogdet.
- if x.dtype not in _floating_dtypes:
- raise TypeError('Only floating-point dtypes are allowed in slogdet')
- # Note: the return type here is a namedtuple, which is different from
- # np.linalg.slogdet, which only returns a tuple.
- return SlogdetResult(*map(Array._new, np.linalg.slogdet(x._array)))
- # Note: unlike np.linalg.solve, the array API solve() only accepts x2 as a
- # vector when it is exactly 1-dimensional. All other cases treat x2 as a stack
- # of matrices. The np.linalg.solve behavior of allowing stacks of both
- # matrices and vectors is ambiguous c.f.
- # https://github.com/numpy/numpy/issues/15349 and
- # https://github.com/data-apis/array-api/issues/285.
- # To workaround this, the below is the code from np.linalg.solve except
- # only calling solve1 in the exactly 1D case.
- def _solve(a, b):
- from ..linalg.linalg import (_makearray, _assert_stacked_2d,
- _assert_stacked_square, _commonType,
- isComplexType, get_linalg_error_extobj,
- _raise_linalgerror_singular)
- from ..linalg import _umath_linalg
- a, _ = _makearray(a)
- _assert_stacked_2d(a)
- _assert_stacked_square(a)
- b, wrap = _makearray(b)
- t, result_t = _commonType(a, b)
- # This part is different from np.linalg.solve
- if b.ndim == 1:
- gufunc = _umath_linalg.solve1
- else:
- gufunc = _umath_linalg.solve
- # This does nothing currently but is left in because it will be relevant
- # when complex dtype support is added to the spec in 2022.
- signature = 'DD->D' if isComplexType(t) else 'dd->d'
- extobj = get_linalg_error_extobj(_raise_linalgerror_singular)
- r = gufunc(a, b, signature=signature, extobj=extobj)
- return wrap(r.astype(result_t, copy=False))
- def solve(x1: Array, x2: Array, /) -> Array:
- """
- Array API compatible wrapper for :py:func:`np.linalg.solve <numpy.linalg.solve>`.
- See its docstring for more information.
- """
- # Note: the restriction to floating-point dtypes only is different from
- # np.linalg.solve.
- if x1.dtype not in _floating_dtypes or x2.dtype not in _floating_dtypes:
- raise TypeError('Only floating-point dtypes are allowed in solve')
- return Array._new(_solve(x1._array, x2._array))
- def svd(x: Array, /, *, full_matrices: bool = True) -> SVDResult:
- """
- Array API compatible wrapper for :py:func:`np.linalg.svd <numpy.linalg.svd>`.
- See its docstring for more information.
- """
- # Note: the restriction to floating-point dtypes only is different from
- # np.linalg.svd.
- if x.dtype not in _floating_dtypes:
- raise TypeError('Only floating-point dtypes are allowed in svd')
- # Note: the return type here is a namedtuple, which is different from
- # np.svd, which only returns a tuple.
- return SVDResult(*map(Array._new, np.linalg.svd(x._array, full_matrices=full_matrices)))
- # Note: svdvals is not in NumPy (but it is in SciPy). It is equivalent to
- # np.linalg.svd(compute_uv=False).
- def svdvals(x: Array, /) -> Union[Array, Tuple[Array, ...]]:
- if x.dtype not in _floating_dtypes:
- raise TypeError('Only floating-point dtypes are allowed in svdvals')
- return Array._new(np.linalg.svd(x._array, compute_uv=False))
- # Note: tensordot is the numpy top-level namespace but not in np.linalg
- # Note: axes must be a tuple, unlike np.tensordot where it can be an array or array-like.
- def tensordot(x1: Array, x2: Array, /, *, axes: Union[int, Tuple[Sequence[int], Sequence[int]]] = 2) -> Array:
- # Note: the restriction to numeric dtypes only is different from
- # np.tensordot.
- if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
- raise TypeError('Only numeric dtypes are allowed in tensordot')
- return Array._new(np.tensordot(x1._array, x2._array, axes=axes))
- # Note: trace is the numpy top-level namespace, not np.linalg
- def trace(x: Array, /, *, offset: int = 0, dtype: Optional[Dtype] = None) -> Array:
- """
- Array API compatible wrapper for :py:func:`np.trace <numpy.trace>`.
- See its docstring for more information.
- """
- if x.dtype not in _numeric_dtypes:
- raise TypeError('Only numeric dtypes are allowed in trace')
- # Note: trace() works the same as sum() and prod() (see
- # _statistical_functions.py)
- if dtype is None:
- if x.dtype == float32:
- dtype = float64
- elif x.dtype == complex64:
- dtype = complex128
- # Note: trace always operates on the last two axes, whereas np.trace
- # operates on the first two axes by default
- return Array._new(np.asarray(np.trace(x._array, offset=offset, axis1=-2, axis2=-1, dtype=dtype)))
- # Note: vecdot is not in NumPy
- def vecdot(x1: Array, x2: Array, /, *, axis: int = -1) -> Array:
- if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
- raise TypeError('Only numeric dtypes are allowed in vecdot')
- ndim = max(x1.ndim, x2.ndim)
- x1_shape = (1,)*(ndim - x1.ndim) + tuple(x1.shape)
- x2_shape = (1,)*(ndim - x2.ndim) + tuple(x2.shape)
- if x1_shape[axis] != x2_shape[axis]:
- raise ValueError("x1 and x2 must have the same size along the given axis")
- x1_, x2_ = np.broadcast_arrays(x1._array, x2._array)
- x1_ = np.moveaxis(x1_, axis, -1)
- x2_ = np.moveaxis(x2_, axis, -1)
- res = x1_[..., None, :] @ x2_[..., None]
- return Array._new(res[..., 0, 0])
- # Note: the name here is different from norm(). The array API norm is split
- # into matrix_norm and vector_norm().
- # The type for ord should be Optional[Union[int, float, Literal[np.inf,
- # -np.inf]]] but Literal does not support floating-point literals.
- def vector_norm(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False, ord: Optional[Union[int, float]] = 2) -> Array:
- """
- Array API compatible wrapper for :py:func:`np.linalg.norm <numpy.linalg.norm>`.
- See its docstring for more information.
- """
- # Note: the restriction to floating-point dtypes only is different from
- # np.linalg.norm.
- if x.dtype not in _floating_dtypes:
- raise TypeError('Only floating-point dtypes are allowed in norm')
- # np.linalg.norm tries to do a matrix norm whenever axis is a 2-tuple or
- # when axis=None and the input is 2-D, so to force a vector norm, we make
- # it so the input is 1-D (for axis=None), or reshape so that norm is done
- # on a single dimension.
- a = x._array
- if axis is None:
- # Note: np.linalg.norm() doesn't handle 0-D arrays
- a = a.ravel()
- _axis = 0
- elif isinstance(axis, tuple):
- # Note: The axis argument supports any number of axes, whereas
- # np.linalg.norm() only supports a single axis for vector norm.
- normalized_axis = normalize_axis_tuple(axis, x.ndim)
- rest = tuple(i for i in range(a.ndim) if i not in normalized_axis)
- newshape = axis + rest
- a = np.transpose(a, newshape).reshape(
- (np.prod([a.shape[i] for i in axis], dtype=int), *[a.shape[i] for i in rest]))
- _axis = 0
- else:
- _axis = axis
- res = Array._new(np.linalg.norm(a, axis=_axis, ord=ord))
- if keepdims:
- # We can't reuse np.linalg.norm(keepdims) because of the reshape hacks
- # above to avoid matrix norm logic.
- shape = list(x.shape)
- _axis = normalize_axis_tuple(range(x.ndim) if axis is None else axis, x.ndim)
- for i in _axis:
- shape[i] = 1
- res = reshape(res, tuple(shape))
- return res
- __all__ = ['cholesky', 'cross', 'det', 'diagonal', 'eigh', 'eigvalsh', 'inv', 'matmul', 'matrix_norm', 'matrix_power', 'matrix_rank', 'matrix_transpose', 'outer', 'pinv', 'qr', 'slogdet', 'solve', 'svd', 'svdvals', 'tensordot', 'trace', 'vecdot', 'vector_norm']
|