123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297 |
- from collections.abc import Iterable
- from typing import (
- Literal as L,
- overload,
- TypeVar,
- Any,
- SupportsIndex,
- SupportsInt,
- NamedTuple,
- Generic,
- )
- from numpy import (
- generic,
- floating,
- complexfloating,
- int32,
- float64,
- complex128,
- )
- from numpy.linalg import LinAlgError as LinAlgError
- from numpy._typing import (
- NDArray,
- ArrayLike,
- _ArrayLikeInt_co,
- _ArrayLikeFloat_co,
- _ArrayLikeComplex_co,
- _ArrayLikeTD64_co,
- _ArrayLikeObject_co,
- )
- _T = TypeVar("_T")
- _ArrayType = TypeVar("_ArrayType", bound=NDArray[Any])
- _SCT = TypeVar("_SCT", bound=generic, covariant=True)
- _SCT2 = TypeVar("_SCT2", bound=generic, covariant=True)
- _2Tuple = tuple[_T, _T]
- _ModeKind = L["reduced", "complete", "r", "raw"]
- __all__: list[str]
- class EigResult(NamedTuple):
- eigenvalues: NDArray[Any]
- eigenvectors: NDArray[Any]
- class EighResult(NamedTuple):
- eigenvalues: NDArray[Any]
- eigenvectors: NDArray[Any]
- class QRResult(NamedTuple):
- Q: NDArray[Any]
- R: NDArray[Any]
- class SlogdetResult(NamedTuple):
- # TODO: `sign` and `logabsdet` are scalars for input 2D arrays and
- # a `(x.ndim - 2)`` dimensionl arrays otherwise
- sign: Any
- logabsdet: Any
- class SVDResult(NamedTuple):
- U: NDArray[Any]
- S: NDArray[Any]
- Vh: NDArray[Any]
- @overload
- def tensorsolve(
- a: _ArrayLikeInt_co,
- b: _ArrayLikeInt_co,
- axes: None | Iterable[int] =...,
- ) -> NDArray[float64]: ...
- @overload
- def tensorsolve(
- a: _ArrayLikeFloat_co,
- b: _ArrayLikeFloat_co,
- axes: None | Iterable[int] =...,
- ) -> NDArray[floating[Any]]: ...
- @overload
- def tensorsolve(
- a: _ArrayLikeComplex_co,
- b: _ArrayLikeComplex_co,
- axes: None | Iterable[int] =...,
- ) -> NDArray[complexfloating[Any, Any]]: ...
- @overload
- def solve(
- a: _ArrayLikeInt_co,
- b: _ArrayLikeInt_co,
- ) -> NDArray[float64]: ...
- @overload
- def solve(
- a: _ArrayLikeFloat_co,
- b: _ArrayLikeFloat_co,
- ) -> NDArray[floating[Any]]: ...
- @overload
- def solve(
- a: _ArrayLikeComplex_co,
- b: _ArrayLikeComplex_co,
- ) -> NDArray[complexfloating[Any, Any]]: ...
- @overload
- def tensorinv(
- a: _ArrayLikeInt_co,
- ind: int = ...,
- ) -> NDArray[float64]: ...
- @overload
- def tensorinv(
- a: _ArrayLikeFloat_co,
- ind: int = ...,
- ) -> NDArray[floating[Any]]: ...
- @overload
- def tensorinv(
- a: _ArrayLikeComplex_co,
- ind: int = ...,
- ) -> NDArray[complexfloating[Any, Any]]: ...
- @overload
- def inv(a: _ArrayLikeInt_co) -> NDArray[float64]: ...
- @overload
- def inv(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ...
- @overload
- def inv(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
- # TODO: The supported input and output dtypes are dependent on the value of `n`.
- # For example: `n < 0` always casts integer types to float64
- def matrix_power(
- a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
- n: SupportsIndex,
- ) -> NDArray[Any]: ...
- @overload
- def cholesky(a: _ArrayLikeInt_co) -> NDArray[float64]: ...
- @overload
- def cholesky(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ...
- @overload
- def cholesky(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
- @overload
- def qr(a: _ArrayLikeInt_co, mode: _ModeKind = ...) -> QRResult: ...
- @overload
- def qr(a: _ArrayLikeFloat_co, mode: _ModeKind = ...) -> QRResult: ...
- @overload
- def qr(a: _ArrayLikeComplex_co, mode: _ModeKind = ...) -> QRResult: ...
- @overload
- def eigvals(a: _ArrayLikeInt_co) -> NDArray[float64] | NDArray[complex128]: ...
- @overload
- def eigvals(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]] | NDArray[complexfloating[Any, Any]]: ...
- @overload
- def eigvals(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
- @overload
- def eigvalsh(a: _ArrayLikeInt_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[float64]: ...
- @overload
- def eigvalsh(a: _ArrayLikeComplex_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[floating[Any]]: ...
- @overload
- def eig(a: _ArrayLikeInt_co) -> EigResult: ...
- @overload
- def eig(a: _ArrayLikeFloat_co) -> EigResult: ...
- @overload
- def eig(a: _ArrayLikeComplex_co) -> EigResult: ...
- @overload
- def eigh(
- a: _ArrayLikeInt_co,
- UPLO: L["L", "U", "l", "u"] = ...,
- ) -> EighResult: ...
- @overload
- def eigh(
- a: _ArrayLikeFloat_co,
- UPLO: L["L", "U", "l", "u"] = ...,
- ) -> EighResult: ...
- @overload
- def eigh(
- a: _ArrayLikeComplex_co,
- UPLO: L["L", "U", "l", "u"] = ...,
- ) -> EighResult: ...
- @overload
- def svd(
- a: _ArrayLikeInt_co,
- full_matrices: bool = ...,
- compute_uv: L[True] = ...,
- hermitian: bool = ...,
- ) -> SVDResult: ...
- @overload
- def svd(
- a: _ArrayLikeFloat_co,
- full_matrices: bool = ...,
- compute_uv: L[True] = ...,
- hermitian: bool = ...,
- ) -> SVDResult: ...
- @overload
- def svd(
- a: _ArrayLikeComplex_co,
- full_matrices: bool = ...,
- compute_uv: L[True] = ...,
- hermitian: bool = ...,
- ) -> SVDResult: ...
- @overload
- def svd(
- a: _ArrayLikeInt_co,
- full_matrices: bool = ...,
- compute_uv: L[False] = ...,
- hermitian: bool = ...,
- ) -> NDArray[float64]: ...
- @overload
- def svd(
- a: _ArrayLikeComplex_co,
- full_matrices: bool = ...,
- compute_uv: L[False] = ...,
- hermitian: bool = ...,
- ) -> NDArray[floating[Any]]: ...
- # TODO: Returns a scalar for 2D arrays and
- # a `(x.ndim - 2)`` dimensionl array otherwise
- def cond(x: _ArrayLikeComplex_co, p: None | float | L["fro", "nuc"] = ...) -> Any: ...
- # TODO: Returns `int` for <2D arrays and `intp` otherwise
- def matrix_rank(
- A: _ArrayLikeComplex_co,
- tol: None | _ArrayLikeFloat_co = ...,
- hermitian: bool = ...,
- ) -> Any: ...
- @overload
- def pinv(
- a: _ArrayLikeInt_co,
- rcond: _ArrayLikeFloat_co = ...,
- hermitian: bool = ...,
- ) -> NDArray[float64]: ...
- @overload
- def pinv(
- a: _ArrayLikeFloat_co,
- rcond: _ArrayLikeFloat_co = ...,
- hermitian: bool = ...,
- ) -> NDArray[floating[Any]]: ...
- @overload
- def pinv(
- a: _ArrayLikeComplex_co,
- rcond: _ArrayLikeFloat_co = ...,
- hermitian: bool = ...,
- ) -> NDArray[complexfloating[Any, Any]]: ...
- # TODO: Returns a 2-tuple of scalars for 2D arrays and
- # a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise
- def slogdet(a: _ArrayLikeComplex_co) -> SlogdetResult: ...
- # TODO: Returns a 2-tuple of scalars for 2D arrays and
- # a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise
- def det(a: _ArrayLikeComplex_co) -> Any: ...
- @overload
- def lstsq(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co, rcond: None | float = ...) -> tuple[
- NDArray[float64],
- NDArray[float64],
- int32,
- NDArray[float64],
- ]: ...
- @overload
- def lstsq(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, rcond: None | float = ...) -> tuple[
- NDArray[floating[Any]],
- NDArray[floating[Any]],
- int32,
- NDArray[floating[Any]],
- ]: ...
- @overload
- def lstsq(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co, rcond: None | float = ...) -> tuple[
- NDArray[complexfloating[Any, Any]],
- NDArray[floating[Any]],
- int32,
- NDArray[floating[Any]],
- ]: ...
- @overload
- def norm(
- x: ArrayLike,
- ord: None | float | L["fro", "nuc"] = ...,
- axis: None = ...,
- keepdims: bool = ...,
- ) -> floating[Any]: ...
- @overload
- def norm(
- x: ArrayLike,
- ord: None | float | L["fro", "nuc"] = ...,
- axis: SupportsInt | SupportsIndex | tuple[int, ...] = ...,
- keepdims: bool = ...,
- ) -> Any: ...
- # TODO: Returns a scalar or array
- def multi_dot(
- arrays: Iterable[_ArrayLikeComplex_co | _ArrayLikeObject_co | _ArrayLikeTD64_co],
- *,
- out: None | NDArray[Any] = ...,
- ) -> Any: ...
|