123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082 |
- """
- ====================================================
- Chebyshev Series (:mod:`numpy.polynomial.chebyshev`)
- ====================================================
- This module provides a number of objects (mostly functions) useful for
- dealing with Chebyshev series, including a `Chebyshev` class that
- encapsulates the usual arithmetic operations. (General information
- on how this module represents and works with such polynomials is in the
- docstring for its "parent" sub-package, `numpy.polynomial`).
- Classes
- -------
- .. autosummary::
- :toctree: generated/
- Chebyshev
- Constants
- ---------
- .. autosummary::
- :toctree: generated/
- chebdomain
- chebzero
- chebone
- chebx
- Arithmetic
- ----------
- .. autosummary::
- :toctree: generated/
- chebadd
- chebsub
- chebmulx
- chebmul
- chebdiv
- chebpow
- chebval
- chebval2d
- chebval3d
- chebgrid2d
- chebgrid3d
- Calculus
- --------
- .. autosummary::
- :toctree: generated/
- chebder
- chebint
- Misc Functions
- --------------
- .. autosummary::
- :toctree: generated/
- chebfromroots
- chebroots
- chebvander
- chebvander2d
- chebvander3d
- chebgauss
- chebweight
- chebcompanion
- chebfit
- chebpts1
- chebpts2
- chebtrim
- chebline
- cheb2poly
- poly2cheb
- chebinterpolate
- See also
- --------
- `numpy.polynomial`
- Notes
- -----
- The implementations of multiplication, division, integration, and
- differentiation use the algebraic identities [1]_:
- .. math::
- T_n(x) = \\frac{z^n + z^{-n}}{2} \\\\
- z\\frac{dx}{dz} = \\frac{z - z^{-1}}{2}.
- where
- .. math:: x = \\frac{z + z^{-1}}{2}.
- These identities allow a Chebyshev series to be expressed as a finite,
- symmetric Laurent series. In this module, this sort of Laurent series
- is referred to as a "z-series."
- References
- ----------
- .. [1] A. T. Benjamin, et al., "Combinatorial Trigonometry with Chebyshev
- Polynomials," *Journal of Statistical Planning and Inference 14*, 2008
- (https://web.archive.org/web/20080221202153/https://www.math.hmc.edu/~benjamin/papers/CombTrig.pdf, pg. 4)
- """
- import numpy as np
- import numpy.linalg as la
- from numpy.core.multiarray import normalize_axis_index
- from . import polyutils as pu
- from ._polybase import ABCPolyBase
- __all__ = [
- 'chebzero', 'chebone', 'chebx', 'chebdomain', 'chebline', 'chebadd',
- 'chebsub', 'chebmulx', 'chebmul', 'chebdiv', 'chebpow', 'chebval',
- 'chebder', 'chebint', 'cheb2poly', 'poly2cheb', 'chebfromroots',
- 'chebvander', 'chebfit', 'chebtrim', 'chebroots', 'chebpts1',
- 'chebpts2', 'Chebyshev', 'chebval2d', 'chebval3d', 'chebgrid2d',
- 'chebgrid3d', 'chebvander2d', 'chebvander3d', 'chebcompanion',
- 'chebgauss', 'chebweight', 'chebinterpolate']
- chebtrim = pu.trimcoef
- #
- # A collection of functions for manipulating z-series. These are private
- # functions and do minimal error checking.
- #
- def _cseries_to_zseries(c):
- """Convert Chebyshev series to z-series.
- Convert a Chebyshev series to the equivalent z-series. The result is
- never an empty array. The dtype of the return is the same as that of
- the input. No checks are run on the arguments as this routine is for
- internal use.
- Parameters
- ----------
- c : 1-D ndarray
- Chebyshev coefficients, ordered from low to high
- Returns
- -------
- zs : 1-D ndarray
- Odd length symmetric z-series, ordered from low to high.
- """
- n = c.size
- zs = np.zeros(2*n-1, dtype=c.dtype)
- zs[n-1:] = c/2
- return zs + zs[::-1]
- def _zseries_to_cseries(zs):
- """Convert z-series to a Chebyshev series.
- Convert a z series to the equivalent Chebyshev series. The result is
- never an empty array. The dtype of the return is the same as that of
- the input. No checks are run on the arguments as this routine is for
- internal use.
- Parameters
- ----------
- zs : 1-D ndarray
- Odd length symmetric z-series, ordered from low to high.
- Returns
- -------
- c : 1-D ndarray
- Chebyshev coefficients, ordered from low to high.
- """
- n = (zs.size + 1)//2
- c = zs[n-1:].copy()
- c[1:n] *= 2
- return c
- def _zseries_mul(z1, z2):
- """Multiply two z-series.
- Multiply two z-series to produce a z-series.
- Parameters
- ----------
- z1, z2 : 1-D ndarray
- The arrays must be 1-D but this is not checked.
- Returns
- -------
- product : 1-D ndarray
- The product z-series.
- Notes
- -----
- This is simply convolution. If symmetric/anti-symmetric z-series are
- denoted by S/A then the following rules apply:
- S*S, A*A -> S
- S*A, A*S -> A
- """
- return np.convolve(z1, z2)
- def _zseries_div(z1, z2):
- """Divide the first z-series by the second.
- Divide `z1` by `z2` and return the quotient and remainder as z-series.
- Warning: this implementation only applies when both z1 and z2 have the
- same symmetry, which is sufficient for present purposes.
- Parameters
- ----------
- z1, z2 : 1-D ndarray
- The arrays must be 1-D and have the same symmetry, but this is not
- checked.
- Returns
- -------
- (quotient, remainder) : 1-D ndarrays
- Quotient and remainder as z-series.
- Notes
- -----
- This is not the same as polynomial division on account of the desired form
- of the remainder. If symmetric/anti-symmetric z-series are denoted by S/A
- then the following rules apply:
- S/S -> S,S
- A/A -> S,A
- The restriction to types of the same symmetry could be fixed but seems like
- unneeded generality. There is no natural form for the remainder in the case
- where there is no symmetry.
- """
- z1 = z1.copy()
- z2 = z2.copy()
- lc1 = len(z1)
- lc2 = len(z2)
- if lc2 == 1:
- z1 /= z2
- return z1, z1[:1]*0
- elif lc1 < lc2:
- return z1[:1]*0, z1
- else:
- dlen = lc1 - lc2
- scl = z2[0]
- z2 /= scl
- quo = np.empty(dlen + 1, dtype=z1.dtype)
- i = 0
- j = dlen
- while i < j:
- r = z1[i]
- quo[i] = z1[i]
- quo[dlen - i] = r
- tmp = r*z2
- z1[i:i+lc2] -= tmp
- z1[j:j+lc2] -= tmp
- i += 1
- j -= 1
- r = z1[i]
- quo[i] = r
- tmp = r*z2
- z1[i:i+lc2] -= tmp
- quo /= scl
- rem = z1[i+1:i-1+lc2].copy()
- return quo, rem
- def _zseries_der(zs):
- """Differentiate a z-series.
- The derivative is with respect to x, not z. This is achieved using the
- chain rule and the value of dx/dz given in the module notes.
- Parameters
- ----------
- zs : z-series
- The z-series to differentiate.
- Returns
- -------
- derivative : z-series
- The derivative
- Notes
- -----
- The zseries for x (ns) has been multiplied by two in order to avoid
- using floats that are incompatible with Decimal and likely other
- specialized scalar types. This scaling has been compensated by
- multiplying the value of zs by two also so that the two cancels in the
- division.
- """
- n = len(zs)//2
- ns = np.array([-1, 0, 1], dtype=zs.dtype)
- zs *= np.arange(-n, n+1)*2
- d, r = _zseries_div(zs, ns)
- return d
- def _zseries_int(zs):
- """Integrate a z-series.
- The integral is with respect to x, not z. This is achieved by a change
- of variable using dx/dz given in the module notes.
- Parameters
- ----------
- zs : z-series
- The z-series to integrate
- Returns
- -------
- integral : z-series
- The indefinite integral
- Notes
- -----
- The zseries for x (ns) has been multiplied by two in order to avoid
- using floats that are incompatible with Decimal and likely other
- specialized scalar types. This scaling has been compensated by
- dividing the resulting zs by two.
- """
- n = 1 + len(zs)//2
- ns = np.array([-1, 0, 1], dtype=zs.dtype)
- zs = _zseries_mul(zs, ns)
- div = np.arange(-n, n+1)*2
- zs[:n] /= div[:n]
- zs[n+1:] /= div[n+1:]
- zs[n] = 0
- return zs
- #
- # Chebyshev series functions
- #
- def poly2cheb(pol):
- """
- Convert a polynomial to a Chebyshev series.
- Convert an array representing the coefficients of a polynomial (relative
- to the "standard" basis) ordered from lowest degree to highest, to an
- array of the coefficients of the equivalent Chebyshev series, ordered
- from lowest to highest degree.
- Parameters
- ----------
- pol : array_like
- 1-D array containing the polynomial coefficients
- Returns
- -------
- c : ndarray
- 1-D array containing the coefficients of the equivalent Chebyshev
- series.
- See Also
- --------
- cheb2poly
- Notes
- -----
- The easy way to do conversions between polynomial basis sets
- is to use the convert method of a class instance.
- Examples
- --------
- >>> from numpy import polynomial as P
- >>> p = P.Polynomial(range(4))
- >>> p
- Polynomial([0., 1., 2., 3.], domain=[-1, 1], window=[-1, 1])
- >>> c = p.convert(kind=P.Chebyshev)
- >>> c
- Chebyshev([1. , 3.25, 1. , 0.75], domain=[-1., 1.], window=[-1., 1.])
- >>> P.chebyshev.poly2cheb(range(4))
- array([1. , 3.25, 1. , 0.75])
- """
- [pol] = pu.as_series([pol])
- deg = len(pol) - 1
- res = 0
- for i in range(deg, -1, -1):
- res = chebadd(chebmulx(res), pol[i])
- return res
- def cheb2poly(c):
- """
- Convert a Chebyshev series to a polynomial.
- Convert an array representing the coefficients of a Chebyshev series,
- ordered from lowest degree to highest, to an array of the coefficients
- of the equivalent polynomial (relative to the "standard" basis) ordered
- from lowest to highest degree.
- Parameters
- ----------
- c : array_like
- 1-D array containing the Chebyshev series coefficients, ordered
- from lowest order term to highest.
- Returns
- -------
- pol : ndarray
- 1-D array containing the coefficients of the equivalent polynomial
- (relative to the "standard" basis) ordered from lowest order term
- to highest.
- See Also
- --------
- poly2cheb
- Notes
- -----
- The easy way to do conversions between polynomial basis sets
- is to use the convert method of a class instance.
- Examples
- --------
- >>> from numpy import polynomial as P
- >>> c = P.Chebyshev(range(4))
- >>> c
- Chebyshev([0., 1., 2., 3.], domain=[-1, 1], window=[-1, 1])
- >>> p = c.convert(kind=P.Polynomial)
- >>> p
- Polynomial([-2., -8., 4., 12.], domain=[-1., 1.], window=[-1., 1.])
- >>> P.chebyshev.cheb2poly(range(4))
- array([-2., -8., 4., 12.])
- """
- from .polynomial import polyadd, polysub, polymulx
- [c] = pu.as_series([c])
- n = len(c)
- if n < 3:
- return c
- else:
- c0 = c[-2]
- c1 = c[-1]
- # i is the current degree of c1
- for i in range(n - 1, 1, -1):
- tmp = c0
- c0 = polysub(c[i - 2], c1)
- c1 = polyadd(tmp, polymulx(c1)*2)
- return polyadd(c0, polymulx(c1))
- #
- # These are constant arrays are of integer type so as to be compatible
- # with the widest range of other types, such as Decimal.
- #
- # Chebyshev default domain.
- chebdomain = np.array([-1, 1])
- # Chebyshev coefficients representing zero.
- chebzero = np.array([0])
- # Chebyshev coefficients representing one.
- chebone = np.array([1])
- # Chebyshev coefficients representing the identity x.
- chebx = np.array([0, 1])
- def chebline(off, scl):
- """
- Chebyshev series whose graph is a straight line.
- Parameters
- ----------
- off, scl : scalars
- The specified line is given by ``off + scl*x``.
- Returns
- -------
- y : ndarray
- This module's representation of the Chebyshev series for
- ``off + scl*x``.
- See Also
- --------
- numpy.polynomial.polynomial.polyline
- numpy.polynomial.legendre.legline
- numpy.polynomial.laguerre.lagline
- numpy.polynomial.hermite.hermline
- numpy.polynomial.hermite_e.hermeline
- Examples
- --------
- >>> import numpy.polynomial.chebyshev as C
- >>> C.chebline(3,2)
- array([3, 2])
- >>> C.chebval(-3, C.chebline(3,2)) # should be -3
- -3.0
- """
- if scl != 0:
- return np.array([off, scl])
- else:
- return np.array([off])
- def chebfromroots(roots):
- """
- Generate a Chebyshev series with given roots.
- The function returns the coefficients of the polynomial
- .. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),
- in Chebyshev form, where the `r_n` are the roots specified in `roots`.
- If a zero has multiplicity n, then it must appear in `roots` n times.
- For instance, if 2 is a root of multiplicity three and 3 is a root of
- multiplicity 2, then `roots` looks something like [2, 2, 2, 3, 3]. The
- roots can appear in any order.
- If the returned coefficients are `c`, then
- .. math:: p(x) = c_0 + c_1 * T_1(x) + ... + c_n * T_n(x)
- The coefficient of the last term is not generally 1 for monic
- polynomials in Chebyshev form.
- Parameters
- ----------
- roots : array_like
- Sequence containing the roots.
- Returns
- -------
- out : ndarray
- 1-D array of coefficients. If all roots are real then `out` is a
- real array, if some of the roots are complex, then `out` is complex
- even if all the coefficients in the result are real (see Examples
- below).
- See Also
- --------
- numpy.polynomial.polynomial.polyfromroots
- numpy.polynomial.legendre.legfromroots
- numpy.polynomial.laguerre.lagfromroots
- numpy.polynomial.hermite.hermfromroots
- numpy.polynomial.hermite_e.hermefromroots
- Examples
- --------
- >>> import numpy.polynomial.chebyshev as C
- >>> C.chebfromroots((-1,0,1)) # x^3 - x relative to the standard basis
- array([ 0. , -0.25, 0. , 0.25])
- >>> j = complex(0,1)
- >>> C.chebfromroots((-j,j)) # x^2 + 1 relative to the standard basis
- array([1.5+0.j, 0. +0.j, 0.5+0.j])
- """
- return pu._fromroots(chebline, chebmul, roots)
- def chebadd(c1, c2):
- """
- Add one Chebyshev series to another.
- Returns the sum of two Chebyshev series `c1` + `c2`. The arguments
- are sequences of coefficients ordered from lowest order term to
- highest, i.e., [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``.
- Parameters
- ----------
- c1, c2 : array_like
- 1-D arrays of Chebyshev series coefficients ordered from low to
- high.
- Returns
- -------
- out : ndarray
- Array representing the Chebyshev series of their sum.
- See Also
- --------
- chebsub, chebmulx, chebmul, chebdiv, chebpow
- Notes
- -----
- Unlike multiplication, division, etc., the sum of two Chebyshev series
- is a Chebyshev series (without having to "reproject" the result onto
- the basis set) so addition, just like that of "standard" polynomials,
- is simply "component-wise."
- Examples
- --------
- >>> from numpy.polynomial import chebyshev as C
- >>> c1 = (1,2,3)
- >>> c2 = (3,2,1)
- >>> C.chebadd(c1,c2)
- array([4., 4., 4.])
- """
- return pu._add(c1, c2)
- def chebsub(c1, c2):
- """
- Subtract one Chebyshev series from another.
- Returns the difference of two Chebyshev series `c1` - `c2`. The
- sequences of coefficients are from lowest order term to highest, i.e.,
- [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``.
- Parameters
- ----------
- c1, c2 : array_like
- 1-D arrays of Chebyshev series coefficients ordered from low to
- high.
- Returns
- -------
- out : ndarray
- Of Chebyshev series coefficients representing their difference.
- See Also
- --------
- chebadd, chebmulx, chebmul, chebdiv, chebpow
- Notes
- -----
- Unlike multiplication, division, etc., the difference of two Chebyshev
- series is a Chebyshev series (without having to "reproject" the result
- onto the basis set) so subtraction, just like that of "standard"
- polynomials, is simply "component-wise."
- Examples
- --------
- >>> from numpy.polynomial import chebyshev as C
- >>> c1 = (1,2,3)
- >>> c2 = (3,2,1)
- >>> C.chebsub(c1,c2)
- array([-2., 0., 2.])
- >>> C.chebsub(c2,c1) # -C.chebsub(c1,c2)
- array([ 2., 0., -2.])
- """
- return pu._sub(c1, c2)
- def chebmulx(c):
- """Multiply a Chebyshev series by x.
- Multiply the polynomial `c` by x, where x is the independent
- variable.
- Parameters
- ----------
- c : array_like
- 1-D array of Chebyshev series coefficients ordered from low to
- high.
- Returns
- -------
- out : ndarray
- Array representing the result of the multiplication.
- Notes
- -----
- .. versionadded:: 1.5.0
- Examples
- --------
- >>> from numpy.polynomial import chebyshev as C
- >>> C.chebmulx([1,2,3])
- array([1. , 2.5, 1. , 1.5])
- """
- # c is a trimmed copy
- [c] = pu.as_series([c])
- # The zero series needs special treatment
- if len(c) == 1 and c[0] == 0:
- return c
- prd = np.empty(len(c) + 1, dtype=c.dtype)
- prd[0] = c[0]*0
- prd[1] = c[0]
- if len(c) > 1:
- tmp = c[1:]/2
- prd[2:] = tmp
- prd[0:-2] += tmp
- return prd
- def chebmul(c1, c2):
- """
- Multiply one Chebyshev series by another.
- Returns the product of two Chebyshev series `c1` * `c2`. The arguments
- are sequences of coefficients, from lowest order "term" to highest,
- e.g., [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``.
- Parameters
- ----------
- c1, c2 : array_like
- 1-D arrays of Chebyshev series coefficients ordered from low to
- high.
- Returns
- -------
- out : ndarray
- Of Chebyshev series coefficients representing their product.
- See Also
- --------
- chebadd, chebsub, chebmulx, chebdiv, chebpow
- Notes
- -----
- In general, the (polynomial) product of two C-series results in terms
- that are not in the Chebyshev polynomial basis set. Thus, to express
- the product as a C-series, it is typically necessary to "reproject"
- the product onto said basis set, which typically produces
- "unintuitive live" (but correct) results; see Examples section below.
- Examples
- --------
- >>> from numpy.polynomial import chebyshev as C
- >>> c1 = (1,2,3)
- >>> c2 = (3,2,1)
- >>> C.chebmul(c1,c2) # multiplication requires "reprojection"
- array([ 6.5, 12. , 12. , 4. , 1.5])
- """
- # c1, c2 are trimmed copies
- [c1, c2] = pu.as_series([c1, c2])
- z1 = _cseries_to_zseries(c1)
- z2 = _cseries_to_zseries(c2)
- prd = _zseries_mul(z1, z2)
- ret = _zseries_to_cseries(prd)
- return pu.trimseq(ret)
- def chebdiv(c1, c2):
- """
- Divide one Chebyshev series by another.
- Returns the quotient-with-remainder of two Chebyshev series
- `c1` / `c2`. The arguments are sequences of coefficients from lowest
- order "term" to highest, e.g., [1,2,3] represents the series
- ``T_0 + 2*T_1 + 3*T_2``.
- Parameters
- ----------
- c1, c2 : array_like
- 1-D arrays of Chebyshev series coefficients ordered from low to
- high.
- Returns
- -------
- [quo, rem] : ndarrays
- Of Chebyshev series coefficients representing the quotient and
- remainder.
- See Also
- --------
- chebadd, chebsub, chebmulx, chebmul, chebpow
- Notes
- -----
- In general, the (polynomial) division of one C-series by another
- results in quotient and remainder terms that are not in the Chebyshev
- polynomial basis set. Thus, to express these results as C-series, it
- is typically necessary to "reproject" the results onto said basis
- set, which typically produces "unintuitive" (but correct) results;
- see Examples section below.
- Examples
- --------
- >>> from numpy.polynomial import chebyshev as C
- >>> c1 = (1,2,3)
- >>> c2 = (3,2,1)
- >>> C.chebdiv(c1,c2) # quotient "intuitive," remainder not
- (array([3.]), array([-8., -4.]))
- >>> c2 = (0,1,2,3)
- >>> C.chebdiv(c2,c1) # neither "intuitive"
- (array([0., 2.]), array([-2., -4.]))
- """
- # c1, c2 are trimmed copies
- [c1, c2] = pu.as_series([c1, c2])
- if c2[-1] == 0:
- raise ZeroDivisionError()
- # note: this is more efficient than `pu._div(chebmul, c1, c2)`
- lc1 = len(c1)
- lc2 = len(c2)
- if lc1 < lc2:
- return c1[:1]*0, c1
- elif lc2 == 1:
- return c1/c2[-1], c1[:1]*0
- else:
- z1 = _cseries_to_zseries(c1)
- z2 = _cseries_to_zseries(c2)
- quo, rem = _zseries_div(z1, z2)
- quo = pu.trimseq(_zseries_to_cseries(quo))
- rem = pu.trimseq(_zseries_to_cseries(rem))
- return quo, rem
- def chebpow(c, pow, maxpower=16):
- """Raise a Chebyshev series to a power.
- Returns the Chebyshev series `c` raised to the power `pow`. The
- argument `c` is a sequence of coefficients ordered from low to high.
- i.e., [1,2,3] is the series ``T_0 + 2*T_1 + 3*T_2.``
- Parameters
- ----------
- c : array_like
- 1-D array of Chebyshev series coefficients ordered from low to
- high.
- pow : integer
- Power to which the series will be raised
- maxpower : integer, optional
- Maximum power allowed. This is mainly to limit growth of the series
- to unmanageable size. Default is 16
- Returns
- -------
- coef : ndarray
- Chebyshev series of power.
- See Also
- --------
- chebadd, chebsub, chebmulx, chebmul, chebdiv
- Examples
- --------
- >>> from numpy.polynomial import chebyshev as C
- >>> C.chebpow([1, 2, 3, 4], 2)
- array([15.5, 22. , 16. , ..., 12.5, 12. , 8. ])
- """
- # note: this is more efficient than `pu._pow(chebmul, c1, c2)`, as it
- # avoids converting between z and c series repeatedly
- # c is a trimmed copy
- [c] = pu.as_series([c])
- power = int(pow)
- if power != pow or power < 0:
- raise ValueError("Power must be a non-negative integer.")
- elif maxpower is not None and power > maxpower:
- raise ValueError("Power is too large")
- elif power == 0:
- return np.array([1], dtype=c.dtype)
- elif power == 1:
- return c
- else:
- # This can be made more efficient by using powers of two
- # in the usual way.
- zs = _cseries_to_zseries(c)
- prd = zs
- for i in range(2, power + 1):
- prd = np.convolve(prd, zs)
- return _zseries_to_cseries(prd)
- def chebder(c, m=1, scl=1, axis=0):
- """
- Differentiate a Chebyshev series.
- Returns the Chebyshev series coefficients `c` differentiated `m` times
- along `axis`. At each iteration the result is multiplied by `scl` (the
- scaling factor is for use in a linear change of variable). The argument
- `c` is an array of coefficients from low to high degree along each
- axis, e.g., [1,2,3] represents the series ``1*T_0 + 2*T_1 + 3*T_2``
- while [[1,2],[1,2]] represents ``1*T_0(x)*T_0(y) + 1*T_1(x)*T_0(y) +
- 2*T_0(x)*T_1(y) + 2*T_1(x)*T_1(y)`` if axis=0 is ``x`` and axis=1 is
- ``y``.
- Parameters
- ----------
- c : array_like
- Array of Chebyshev series coefficients. If c is multidimensional
- the different axis correspond to different variables with the
- degree in each axis given by the corresponding index.
- m : int, optional
- Number of derivatives taken, must be non-negative. (Default: 1)
- scl : scalar, optional
- Each differentiation is multiplied by `scl`. The end result is
- multiplication by ``scl**m``. This is for use in a linear change of
- variable. (Default: 1)
- axis : int, optional
- Axis over which the derivative is taken. (Default: 0).
- .. versionadded:: 1.7.0
- Returns
- -------
- der : ndarray
- Chebyshev series of the derivative.
- See Also
- --------
- chebint
- Notes
- -----
- In general, the result of differentiating a C-series needs to be
- "reprojected" onto the C-series basis set. Thus, typically, the
- result of this function is "unintuitive," albeit correct; see Examples
- section below.
- Examples
- --------
- >>> from numpy.polynomial import chebyshev as C
- >>> c = (1,2,3,4)
- >>> C.chebder(c)
- array([14., 12., 24.])
- >>> C.chebder(c,3)
- array([96.])
- >>> C.chebder(c,scl=-1)
- array([-14., -12., -24.])
- >>> C.chebder(c,2,-1)
- array([12., 96.])
- """
- c = np.array(c, ndmin=1, copy=True)
- if c.dtype.char in '?bBhHiIlLqQpP':
- c = c.astype(np.double)
- cnt = pu._deprecate_as_int(m, "the order of derivation")
- iaxis = pu._deprecate_as_int(axis, "the axis")
- if cnt < 0:
- raise ValueError("The order of derivation must be non-negative")
- iaxis = normalize_axis_index(iaxis, c.ndim)
- if cnt == 0:
- return c
- c = np.moveaxis(c, iaxis, 0)
- n = len(c)
- if cnt >= n:
- c = c[:1]*0
- else:
- for i in range(cnt):
- n = n - 1
- c *= scl
- der = np.empty((n,) + c.shape[1:], dtype=c.dtype)
- for j in range(n, 2, -1):
- der[j - 1] = (2*j)*c[j]
- c[j - 2] += (j*c[j])/(j - 2)
- if n > 1:
- der[1] = 4*c[2]
- der[0] = c[1]
- c = der
- c = np.moveaxis(c, 0, iaxis)
- return c
- def chebint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
- """
- Integrate a Chebyshev series.
- Returns the Chebyshev series coefficients `c` integrated `m` times from
- `lbnd` along `axis`. At each iteration the resulting series is
- **multiplied** by `scl` and an integration constant, `k`, is added.
- The scaling factor is for use in a linear change of variable. ("Buyer
- beware": note that, depending on what one is doing, one may want `scl`
- to be the reciprocal of what one might expect; for more information,
- see the Notes section below.) The argument `c` is an array of
- coefficients from low to high degree along each axis, e.g., [1,2,3]
- represents the series ``T_0 + 2*T_1 + 3*T_2`` while [[1,2],[1,2]]
- represents ``1*T_0(x)*T_0(y) + 1*T_1(x)*T_0(y) + 2*T_0(x)*T_1(y) +
- 2*T_1(x)*T_1(y)`` if axis=0 is ``x`` and axis=1 is ``y``.
- Parameters
- ----------
- c : array_like
- Array of Chebyshev series coefficients. If c is multidimensional
- the different axis correspond to different variables with the
- degree in each axis given by the corresponding index.
- m : int, optional
- Order of integration, must be positive. (Default: 1)
- k : {[], list, scalar}, optional
- Integration constant(s). The value of the first integral at zero
- is the first value in the list, the value of the second integral
- at zero is the second value, etc. If ``k == []`` (the default),
- all constants are set to zero. If ``m == 1``, a single scalar can
- be given instead of a list.
- lbnd : scalar, optional
- The lower bound of the integral. (Default: 0)
- scl : scalar, optional
- Following each integration the result is *multiplied* by `scl`
- before the integration constant is added. (Default: 1)
- axis : int, optional
- Axis over which the integral is taken. (Default: 0).
- .. versionadded:: 1.7.0
- Returns
- -------
- S : ndarray
- C-series coefficients of the integral.
- Raises
- ------
- ValueError
- If ``m < 1``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or
- ``np.ndim(scl) != 0``.
- See Also
- --------
- chebder
- Notes
- -----
- Note that the result of each integration is *multiplied* by `scl`.
- Why is this important to note? Say one is making a linear change of
- variable :math:`u = ax + b` in an integral relative to `x`. Then
- :math:`dx = du/a`, so one will need to set `scl` equal to
- :math:`1/a`- perhaps not what one would have first thought.
- Also note that, in general, the result of integrating a C-series needs
- to be "reprojected" onto the C-series basis set. Thus, typically,
- the result of this function is "unintuitive," albeit correct; see
- Examples section below.
- Examples
- --------
- >>> from numpy.polynomial import chebyshev as C
- >>> c = (1,2,3)
- >>> C.chebint(c)
- array([ 0.5, -0.5, 0.5, 0.5])
- >>> C.chebint(c,3)
- array([ 0.03125 , -0.1875 , 0.04166667, -0.05208333, 0.01041667, # may vary
- 0.00625 ])
- >>> C.chebint(c, k=3)
- array([ 3.5, -0.5, 0.5, 0.5])
- >>> C.chebint(c,lbnd=-2)
- array([ 8.5, -0.5, 0.5, 0.5])
- >>> C.chebint(c,scl=-2)
- array([-1., 1., -1., -1.])
- """
- c = np.array(c, ndmin=1, copy=True)
- if c.dtype.char in '?bBhHiIlLqQpP':
- c = c.astype(np.double)
- if not np.iterable(k):
- k = [k]
- cnt = pu._deprecate_as_int(m, "the order of integration")
- iaxis = pu._deprecate_as_int(axis, "the axis")
- if cnt < 0:
- raise ValueError("The order of integration must be non-negative")
- if len(k) > cnt:
- raise ValueError("Too many integration constants")
- if np.ndim(lbnd) != 0:
- raise ValueError("lbnd must be a scalar.")
- if np.ndim(scl) != 0:
- raise ValueError("scl must be a scalar.")
- iaxis = normalize_axis_index(iaxis, c.ndim)
- if cnt == 0:
- return c
- c = np.moveaxis(c, iaxis, 0)
- k = list(k) + [0]*(cnt - len(k))
- for i in range(cnt):
- n = len(c)
- c *= scl
- if n == 1 and np.all(c[0] == 0):
- c[0] += k[i]
- else:
- tmp = np.empty((n + 1,) + c.shape[1:], dtype=c.dtype)
- tmp[0] = c[0]*0
- tmp[1] = c[0]
- if n > 1:
- tmp[2] = c[1]/4
- for j in range(2, n):
- tmp[j + 1] = c[j]/(2*(j + 1))
- tmp[j - 1] -= c[j]/(2*(j - 1))
- tmp[0] += k[i] - chebval(lbnd, tmp)
- c = tmp
- c = np.moveaxis(c, 0, iaxis)
- return c
- def chebval(x, c, tensor=True):
- """
- Evaluate a Chebyshev series at points x.
- If `c` is of length `n + 1`, this function returns the value:
- .. math:: p(x) = c_0 * T_0(x) + c_1 * T_1(x) + ... + c_n * T_n(x)
- The parameter `x` is converted to an array only if it is a tuple or a
- list, otherwise it is treated as a scalar. In either case, either `x`
- or its elements must support multiplication and addition both with
- themselves and with the elements of `c`.
- If `c` is a 1-D array, then `p(x)` will have the same shape as `x`. If
- `c` is multidimensional, then the shape of the result depends on the
- value of `tensor`. If `tensor` is true the shape will be c.shape[1:] +
- x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that
- scalars have shape (,).
- Trailing zeros in the coefficients will be used in the evaluation, so
- they should be avoided if efficiency is a concern.
- Parameters
- ----------
- x : array_like, compatible object
- If `x` is a list or tuple, it is converted to an ndarray, otherwise
- it is left unchanged and treated as a scalar. In either case, `x`
- or its elements must support addition and multiplication with
- themselves and with the elements of `c`.
- c : array_like
- Array of coefficients ordered so that the coefficients for terms of
- degree n are contained in c[n]. If `c` is multidimensional the
- remaining indices enumerate multiple polynomials. In the two
- dimensional case the coefficients may be thought of as stored in
- the columns of `c`.
- tensor : boolean, optional
- If True, the shape of the coefficient array is extended with ones
- on the right, one for each dimension of `x`. Scalars have dimension 0
- for this action. The result is that every column of coefficients in
- `c` is evaluated for every element of `x`. If False, `x` is broadcast
- over the columns of `c` for the evaluation. This keyword is useful
- when `c` is multidimensional. The default value is True.
- .. versionadded:: 1.7.0
- Returns
- -------
- values : ndarray, algebra_like
- The shape of the return value is described above.
- See Also
- --------
- chebval2d, chebgrid2d, chebval3d, chebgrid3d
- Notes
- -----
- The evaluation uses Clenshaw recursion, aka synthetic division.
- """
- c = np.array(c, ndmin=1, copy=True)
- if c.dtype.char in '?bBhHiIlLqQpP':
- c = c.astype(np.double)
- if isinstance(x, (tuple, list)):
- x = np.asarray(x)
- if isinstance(x, np.ndarray) and tensor:
- c = c.reshape(c.shape + (1,)*x.ndim)
- if len(c) == 1:
- c0 = c[0]
- c1 = 0
- elif len(c) == 2:
- c0 = c[0]
- c1 = c[1]
- else:
- x2 = 2*x
- c0 = c[-2]
- c1 = c[-1]
- for i in range(3, len(c) + 1):
- tmp = c0
- c0 = c[-i] - c1
- c1 = tmp + c1*x2
- return c0 + c1*x
- def chebval2d(x, y, c):
- """
- Evaluate a 2-D Chebyshev series at points (x, y).
- This function returns the values:
- .. math:: p(x,y) = \\sum_{i,j} c_{i,j} * T_i(x) * T_j(y)
- The parameters `x` and `y` are converted to arrays only if they are
- tuples or a lists, otherwise they are treated as a scalars and they
- must have the same shape after conversion. In either case, either `x`
- and `y` or their elements must support multiplication and addition both
- with themselves and with the elements of `c`.
- If `c` is a 1-D array a one is implicitly appended to its shape to make
- it 2-D. The shape of the result will be c.shape[2:] + x.shape.
- Parameters
- ----------
- x, y : array_like, compatible objects
- The two dimensional series is evaluated at the points `(x, y)`,
- where `x` and `y` must have the same shape. If `x` or `y` is a list
- or tuple, it is first converted to an ndarray, otherwise it is left
- unchanged and if it isn't an ndarray it is treated as a scalar.
- c : array_like
- Array of coefficients ordered so that the coefficient of the term
- of multi-degree i,j is contained in ``c[i,j]``. If `c` has
- dimension greater than 2 the remaining indices enumerate multiple
- sets of coefficients.
- Returns
- -------
- values : ndarray, compatible object
- The values of the two dimensional Chebyshev series at points formed
- from pairs of corresponding values from `x` and `y`.
- See Also
- --------
- chebval, chebgrid2d, chebval3d, chebgrid3d
- Notes
- -----
- .. versionadded:: 1.7.0
- """
- return pu._valnd(chebval, c, x, y)
- def chebgrid2d(x, y, c):
- """
- Evaluate a 2-D Chebyshev series on the Cartesian product of x and y.
- This function returns the values:
- .. math:: p(a,b) = \\sum_{i,j} c_{i,j} * T_i(a) * T_j(b),
- where the points `(a, b)` consist of all pairs formed by taking
- `a` from `x` and `b` from `y`. The resulting points form a grid with
- `x` in the first dimension and `y` in the second.
- The parameters `x` and `y` are converted to arrays only if they are
- tuples or a lists, otherwise they are treated as a scalars. In either
- case, either `x` and `y` or their elements must support multiplication
- and addition both with themselves and with the elements of `c`.
- If `c` has fewer than two dimensions, ones are implicitly appended to
- its shape to make it 2-D. The shape of the result will be c.shape[2:] +
- x.shape + y.shape.
- Parameters
- ----------
- x, y : array_like, compatible objects
- The two dimensional series is evaluated at the points in the
- Cartesian product of `x` and `y`. If `x` or `y` is a list or
- tuple, it is first converted to an ndarray, otherwise it is left
- unchanged and, if it isn't an ndarray, it is treated as a scalar.
- c : array_like
- Array of coefficients ordered so that the coefficient of the term of
- multi-degree i,j is contained in `c[i,j]`. If `c` has dimension
- greater than two the remaining indices enumerate multiple sets of
- coefficients.
- Returns
- -------
- values : ndarray, compatible object
- The values of the two dimensional Chebyshev series at points in the
- Cartesian product of `x` and `y`.
- See Also
- --------
- chebval, chebval2d, chebval3d, chebgrid3d
- Notes
- -----
- .. versionadded:: 1.7.0
- """
- return pu._gridnd(chebval, c, x, y)
- def chebval3d(x, y, z, c):
- """
- Evaluate a 3-D Chebyshev series at points (x, y, z).
- This function returns the values:
- .. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * T_i(x) * T_j(y) * T_k(z)
- The parameters `x`, `y`, and `z` are converted to arrays only if
- they are tuples or a lists, otherwise they are treated as a scalars and
- they must have the same shape after conversion. In either case, either
- `x`, `y`, and `z` or their elements must support multiplication and
- addition both with themselves and with the elements of `c`.
- If `c` has fewer than 3 dimensions, ones are implicitly appended to its
- shape to make it 3-D. The shape of the result will be c.shape[3:] +
- x.shape.
- Parameters
- ----------
- x, y, z : array_like, compatible object
- The three dimensional series is evaluated at the points
- `(x, y, z)`, where `x`, `y`, and `z` must have the same shape. If
- any of `x`, `y`, or `z` is a list or tuple, it is first converted
- to an ndarray, otherwise it is left unchanged and if it isn't an
- ndarray it is treated as a scalar.
- c : array_like
- Array of coefficients ordered so that the coefficient of the term of
- multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension
- greater than 3 the remaining indices enumerate multiple sets of
- coefficients.
- Returns
- -------
- values : ndarray, compatible object
- The values of the multidimensional polynomial on points formed with
- triples of corresponding values from `x`, `y`, and `z`.
- See Also
- --------
- chebval, chebval2d, chebgrid2d, chebgrid3d
- Notes
- -----
- .. versionadded:: 1.7.0
- """
- return pu._valnd(chebval, c, x, y, z)
- def chebgrid3d(x, y, z, c):
- """
- Evaluate a 3-D Chebyshev series on the Cartesian product of x, y, and z.
- This function returns the values:
- .. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * T_i(a) * T_j(b) * T_k(c)
- where the points `(a, b, c)` consist of all triples formed by taking
- `a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form
- a grid with `x` in the first dimension, `y` in the second, and `z` in
- the third.
- The parameters `x`, `y`, and `z` are converted to arrays only if they
- are tuples or a lists, otherwise they are treated as a scalars. In
- either case, either `x`, `y`, and `z` or their elements must support
- multiplication and addition both with themselves and with the elements
- of `c`.
- If `c` has fewer than three dimensions, ones are implicitly appended to
- its shape to make it 3-D. The shape of the result will be c.shape[3:] +
- x.shape + y.shape + z.shape.
- Parameters
- ----------
- x, y, z : array_like, compatible objects
- The three dimensional series is evaluated at the points in the
- Cartesian product of `x`, `y`, and `z`. If `x`,`y`, or `z` is a
- list or tuple, it is first converted to an ndarray, otherwise it is
- left unchanged and, if it isn't an ndarray, it is treated as a
- scalar.
- c : array_like
- Array of coefficients ordered so that the coefficients for terms of
- degree i,j are contained in ``c[i,j]``. If `c` has dimension
- greater than two the remaining indices enumerate multiple sets of
- coefficients.
- Returns
- -------
- values : ndarray, compatible object
- The values of the two dimensional polynomial at points in the Cartesian
- product of `x` and `y`.
- See Also
- --------
- chebval, chebval2d, chebgrid2d, chebval3d
- Notes
- -----
- .. versionadded:: 1.7.0
- """
- return pu._gridnd(chebval, c, x, y, z)
- def chebvander(x, deg):
- """Pseudo-Vandermonde matrix of given degree.
- Returns the pseudo-Vandermonde matrix of degree `deg` and sample points
- `x`. The pseudo-Vandermonde matrix is defined by
- .. math:: V[..., i] = T_i(x),
- where `0 <= i <= deg`. The leading indices of `V` index the elements of
- `x` and the last index is the degree of the Chebyshev polynomial.
- If `c` is a 1-D array of coefficients of length `n + 1` and `V` is the
- matrix ``V = chebvander(x, n)``, then ``np.dot(V, c)`` and
- ``chebval(x, c)`` are the same up to roundoff. This equivalence is
- useful both for least squares fitting and for the evaluation of a large
- number of Chebyshev series of the same degree and sample points.
- Parameters
- ----------
- x : array_like
- Array of points. The dtype is converted to float64 or complex128
- depending on whether any of the elements are complex. If `x` is
- scalar it is converted to a 1-D array.
- deg : int
- Degree of the resulting matrix.
- Returns
- -------
- vander : ndarray
- The pseudo Vandermonde matrix. The shape of the returned matrix is
- ``x.shape + (deg + 1,)``, where The last index is the degree of the
- corresponding Chebyshev polynomial. The dtype will be the same as
- the converted `x`.
- """
- ideg = pu._deprecate_as_int(deg, "deg")
- if ideg < 0:
- raise ValueError("deg must be non-negative")
- x = np.array(x, copy=False, ndmin=1) + 0.0
- dims = (ideg + 1,) + x.shape
- dtyp = x.dtype
- v = np.empty(dims, dtype=dtyp)
- # Use forward recursion to generate the entries.
- v[0] = x*0 + 1
- if ideg > 0:
- x2 = 2*x
- v[1] = x
- for i in range(2, ideg + 1):
- v[i] = v[i-1]*x2 - v[i-2]
- return np.moveaxis(v, 0, -1)
- def chebvander2d(x, y, deg):
- """Pseudo-Vandermonde matrix of given degrees.
- Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
- points `(x, y)`. The pseudo-Vandermonde matrix is defined by
- .. math:: V[..., (deg[1] + 1)*i + j] = T_i(x) * T_j(y),
- where `0 <= i <= deg[0]` and `0 <= j <= deg[1]`. The leading indices of
- `V` index the points `(x, y)` and the last index encodes the degrees of
- the Chebyshev polynomials.
- If ``V = chebvander2d(x, y, [xdeg, ydeg])``, then the columns of `V`
- correspond to the elements of a 2-D coefficient array `c` of shape
- (xdeg + 1, ydeg + 1) in the order
- .. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...
- and ``np.dot(V, c.flat)`` and ``chebval2d(x, y, c)`` will be the same
- up to roundoff. This equivalence is useful both for least squares
- fitting and for the evaluation of a large number of 2-D Chebyshev
- series of the same degrees and sample points.
- Parameters
- ----------
- x, y : array_like
- Arrays of point coordinates, all of the same shape. The dtypes
- will be converted to either float64 or complex128 depending on
- whether any of the elements are complex. Scalars are converted to
- 1-D arrays.
- deg : list of ints
- List of maximum degrees of the form [x_deg, y_deg].
- Returns
- -------
- vander2d : ndarray
- The shape of the returned matrix is ``x.shape + (order,)``, where
- :math:`order = (deg[0]+1)*(deg[1]+1)`. The dtype will be the same
- as the converted `x` and `y`.
- See Also
- --------
- chebvander, chebvander3d, chebval2d, chebval3d
- Notes
- -----
- .. versionadded:: 1.7.0
- """
- return pu._vander_nd_flat((chebvander, chebvander), (x, y), deg)
- def chebvander3d(x, y, z, deg):
- """Pseudo-Vandermonde matrix of given degrees.
- Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
- points `(x, y, z)`. If `l, m, n` are the given degrees in `x, y, z`,
- then The pseudo-Vandermonde matrix is defined by
- .. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = T_i(x)*T_j(y)*T_k(z),
- where `0 <= i <= l`, `0 <= j <= m`, and `0 <= j <= n`. The leading
- indices of `V` index the points `(x, y, z)` and the last index encodes
- the degrees of the Chebyshev polynomials.
- If ``V = chebvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns
- of `V` correspond to the elements of a 3-D coefficient array `c` of
- shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order
- .. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...
- and ``np.dot(V, c.flat)`` and ``chebval3d(x, y, z, c)`` will be the
- same up to roundoff. This equivalence is useful both for least squares
- fitting and for the evaluation of a large number of 3-D Chebyshev
- series of the same degrees and sample points.
- Parameters
- ----------
- x, y, z : array_like
- Arrays of point coordinates, all of the same shape. The dtypes will
- be converted to either float64 or complex128 depending on whether
- any of the elements are complex. Scalars are converted to 1-D
- arrays.
- deg : list of ints
- List of maximum degrees of the form [x_deg, y_deg, z_deg].
- Returns
- -------
- vander3d : ndarray
- The shape of the returned matrix is ``x.shape + (order,)``, where
- :math:`order = (deg[0]+1)*(deg[1]+1)*(deg[2]+1)`. The dtype will
- be the same as the converted `x`, `y`, and `z`.
- See Also
- --------
- chebvander, chebvander3d, chebval2d, chebval3d
- Notes
- -----
- .. versionadded:: 1.7.0
- """
- return pu._vander_nd_flat((chebvander, chebvander, chebvander), (x, y, z), deg)
- def chebfit(x, y, deg, rcond=None, full=False, w=None):
- """
- Least squares fit of Chebyshev series to data.
- Return the coefficients of a Chebyshev series of degree `deg` that is the
- least squares fit to the data values `y` given at points `x`. If `y` is
- 1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple
- fits are done, one for each column of `y`, and the resulting
- coefficients are stored in the corresponding columns of a 2-D return.
- The fitted polynomial(s) are in the form
- .. math:: p(x) = c_0 + c_1 * T_1(x) + ... + c_n * T_n(x),
- where `n` is `deg`.
- Parameters
- ----------
- x : array_like, shape (M,)
- x-coordinates of the M sample points ``(x[i], y[i])``.
- y : array_like, shape (M,) or (M, K)
- y-coordinates of the sample points. Several data sets of sample
- points sharing the same x-coordinates can be fitted at once by
- passing in a 2D-array that contains one dataset per column.
- deg : int or 1-D array_like
- Degree(s) of the fitting polynomials. If `deg` is a single integer,
- all terms up to and including the `deg`'th term are included in the
- fit. For NumPy versions >= 1.11.0 a list of integers specifying the
- degrees of the terms to include may be used instead.
- rcond : float, optional
- Relative condition number of the fit. Singular values smaller than
- this relative to the largest singular value will be ignored. The
- default value is len(x)*eps, where eps is the relative precision of
- the float type, about 2e-16 in most cases.
- full : bool, optional
- Switch determining nature of return value. When it is False (the
- default) just the coefficients are returned, when True diagnostic
- information from the singular value decomposition is also returned.
- w : array_like, shape (`M`,), optional
- Weights. If not None, the weight ``w[i]`` applies to the unsquared
- residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
- chosen so that the errors of the products ``w[i]*y[i]`` all have the
- same variance. When using inverse-variance weighting, use
- ``w[i] = 1/sigma(y[i])``. The default value is None.
- .. versionadded:: 1.5.0
- Returns
- -------
- coef : ndarray, shape (M,) or (M, K)
- Chebyshev coefficients ordered from low to high. If `y` was 2-D,
- the coefficients for the data in column k of `y` are in column
- `k`.
- [residuals, rank, singular_values, rcond] : list
- These values are only returned if ``full == True``
- - residuals -- sum of squared residuals of the least squares fit
- - rank -- the numerical rank of the scaled Vandermonde matrix
- - singular_values -- singular values of the scaled Vandermonde matrix
- - rcond -- value of `rcond`.
- For more details, see `numpy.linalg.lstsq`.
- Warns
- -----
- RankWarning
- The rank of the coefficient matrix in the least-squares fit is
- deficient. The warning is only raised if ``full == False``. The
- warnings can be turned off by
- >>> import warnings
- >>> warnings.simplefilter('ignore', np.RankWarning)
- See Also
- --------
- numpy.polynomial.polynomial.polyfit
- numpy.polynomial.legendre.legfit
- numpy.polynomial.laguerre.lagfit
- numpy.polynomial.hermite.hermfit
- numpy.polynomial.hermite_e.hermefit
- chebval : Evaluates a Chebyshev series.
- chebvander : Vandermonde matrix of Chebyshev series.
- chebweight : Chebyshev weight function.
- numpy.linalg.lstsq : Computes a least-squares fit from the matrix.
- scipy.interpolate.UnivariateSpline : Computes spline fits.
- Notes
- -----
- The solution is the coefficients of the Chebyshev series `p` that
- minimizes the sum of the weighted squared errors
- .. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2,
- where :math:`w_j` are the weights. This problem is solved by setting up
- as the (typically) overdetermined matrix equation
- .. math:: V(x) * c = w * y,
- where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the
- coefficients to be solved for, `w` are the weights, and `y` are the
- observed values. This equation is then solved using the singular value
- decomposition of `V`.
- If some of the singular values of `V` are so small that they are
- neglected, then a `RankWarning` will be issued. This means that the
- coefficient values may be poorly determined. Using a lower order fit
- will usually get rid of the warning. The `rcond` parameter can also be
- set to a value smaller than its default, but the resulting fit may be
- spurious and have large contributions from roundoff error.
- Fits using Chebyshev series are usually better conditioned than fits
- using power series, but much can depend on the distribution of the
- sample points and the smoothness of the data. If the quality of the fit
- is inadequate splines may be a good alternative.
- References
- ----------
- .. [1] Wikipedia, "Curve fitting",
- https://en.wikipedia.org/wiki/Curve_fitting
- Examples
- --------
- """
- return pu._fit(chebvander, x, y, deg, rcond, full, w)
- def chebcompanion(c):
- """Return the scaled companion matrix of c.
- The basis polynomials are scaled so that the companion matrix is
- symmetric when `c` is a Chebyshev basis polynomial. This provides
- better eigenvalue estimates than the unscaled case and for basis
- polynomials the eigenvalues are guaranteed to be real if
- `numpy.linalg.eigvalsh` is used to obtain them.
- Parameters
- ----------
- c : array_like
- 1-D array of Chebyshev series coefficients ordered from low to high
- degree.
- Returns
- -------
- mat : ndarray
- Scaled companion matrix of dimensions (deg, deg).
- Notes
- -----
- .. versionadded:: 1.7.0
- """
- # c is a trimmed copy
- [c] = pu.as_series([c])
- if len(c) < 2:
- raise ValueError('Series must have maximum degree of at least 1.')
- if len(c) == 2:
- return np.array([[-c[0]/c[1]]])
- n = len(c) - 1
- mat = np.zeros((n, n), dtype=c.dtype)
- scl = np.array([1.] + [np.sqrt(.5)]*(n-1))
- top = mat.reshape(-1)[1::n+1]
- bot = mat.reshape(-1)[n::n+1]
- top[0] = np.sqrt(.5)
- top[1:] = 1/2
- bot[...] = top
- mat[:, -1] -= (c[:-1]/c[-1])*(scl/scl[-1])*.5
- return mat
- def chebroots(c):
- """
- Compute the roots of a Chebyshev series.
- Return the roots (a.k.a. "zeros") of the polynomial
- .. math:: p(x) = \\sum_i c[i] * T_i(x).
- Parameters
- ----------
- c : 1-D array_like
- 1-D array of coefficients.
- Returns
- -------
- out : ndarray
- Array of the roots of the series. If all the roots are real,
- then `out` is also real, otherwise it is complex.
- See Also
- --------
- numpy.polynomial.polynomial.polyroots
- numpy.polynomial.legendre.legroots
- numpy.polynomial.laguerre.lagroots
- numpy.polynomial.hermite.hermroots
- numpy.polynomial.hermite_e.hermeroots
- Notes
- -----
- The root estimates are obtained as the eigenvalues of the companion
- matrix, Roots far from the origin of the complex plane may have large
- errors due to the numerical instability of the series for such
- values. Roots with multiplicity greater than 1 will also show larger
- errors as the value of the series near such points is relatively
- insensitive to errors in the roots. Isolated roots near the origin can
- be improved by a few iterations of Newton's method.
- The Chebyshev series basis polynomials aren't powers of `x` so the
- results of this function may seem unintuitive.
- Examples
- --------
- >>> import numpy.polynomial.chebyshev as cheb
- >>> cheb.chebroots((-1, 1,-1, 1)) # T3 - T2 + T1 - T0 has real roots
- array([ -5.00000000e-01, 2.60860684e-17, 1.00000000e+00]) # may vary
- """
- # c is a trimmed copy
- [c] = pu.as_series([c])
- if len(c) < 2:
- return np.array([], dtype=c.dtype)
- if len(c) == 2:
- return np.array([-c[0]/c[1]])
- # rotated companion matrix reduces error
- m = chebcompanion(c)[::-1,::-1]
- r = la.eigvals(m)
- r.sort()
- return r
- def chebinterpolate(func, deg, args=()):
- """Interpolate a function at the Chebyshev points of the first kind.
- Returns the Chebyshev series that interpolates `func` at the Chebyshev
- points of the first kind in the interval [-1, 1]. The interpolating
- series tends to a minmax approximation to `func` with increasing `deg`
- if the function is continuous in the interval.
- .. versionadded:: 1.14.0
- Parameters
- ----------
- func : function
- The function to be approximated. It must be a function of a single
- variable of the form ``f(x, a, b, c...)``, where ``a, b, c...`` are
- extra arguments passed in the `args` parameter.
- deg : int
- Degree of the interpolating polynomial
- args : tuple, optional
- Extra arguments to be used in the function call. Default is no extra
- arguments.
- Returns
- -------
- coef : ndarray, shape (deg + 1,)
- Chebyshev coefficients of the interpolating series ordered from low to
- high.
- Examples
- --------
- >>> import numpy.polynomial.chebyshev as C
- >>> C.chebfromfunction(lambda x: np.tanh(x) + 0.5, 8)
- array([ 5.00000000e-01, 8.11675684e-01, -9.86864911e-17,
- -5.42457905e-02, -2.71387850e-16, 4.51658839e-03,
- 2.46716228e-17, -3.79694221e-04, -3.26899002e-16])
- Notes
- -----
- The Chebyshev polynomials used in the interpolation are orthogonal when
- sampled at the Chebyshev points of the first kind. If it is desired to
- constrain some of the coefficients they can simply be set to the desired
- value after the interpolation, no new interpolation or fit is needed. This
- is especially useful if it is known apriori that some of coefficients are
- zero. For instance, if the function is even then the coefficients of the
- terms of odd degree in the result can be set to zero.
- """
- deg = np.asarray(deg)
- # check arguments.
- if deg.ndim > 0 or deg.dtype.kind not in 'iu' or deg.size == 0:
- raise TypeError("deg must be an int")
- if deg < 0:
- raise ValueError("expected deg >= 0")
- order = deg + 1
- xcheb = chebpts1(order)
- yfunc = func(xcheb, *args)
- m = chebvander(xcheb, deg)
- c = np.dot(m.T, yfunc)
- c[0] /= order
- c[1:] /= 0.5*order
- return c
- def chebgauss(deg):
- """
- Gauss-Chebyshev quadrature.
- Computes the sample points and weights for Gauss-Chebyshev quadrature.
- These sample points and weights will correctly integrate polynomials of
- degree :math:`2*deg - 1` or less over the interval :math:`[-1, 1]` with
- the weight function :math:`f(x) = 1/\\sqrt{1 - x^2}`.
- Parameters
- ----------
- deg : int
- Number of sample points and weights. It must be >= 1.
- Returns
- -------
- x : ndarray
- 1-D ndarray containing the sample points.
- y : ndarray
- 1-D ndarray containing the weights.
- Notes
- -----
- .. versionadded:: 1.7.0
- The results have only been tested up to degree 100, higher degrees may
- be problematic. For Gauss-Chebyshev there are closed form solutions for
- the sample points and weights. If n = `deg`, then
- .. math:: x_i = \\cos(\\pi (2 i - 1) / (2 n))
- .. math:: w_i = \\pi / n
- """
- ideg = pu._deprecate_as_int(deg, "deg")
- if ideg <= 0:
- raise ValueError("deg must be a positive integer")
- x = np.cos(np.pi * np.arange(1, 2*ideg, 2) / (2.0*ideg))
- w = np.ones(ideg)*(np.pi/ideg)
- return x, w
- def chebweight(x):
- """
- The weight function of the Chebyshev polynomials.
- The weight function is :math:`1/\\sqrt{1 - x^2}` and the interval of
- integration is :math:`[-1, 1]`. The Chebyshev polynomials are
- orthogonal, but not normalized, with respect to this weight function.
- Parameters
- ----------
- x : array_like
- Values at which the weight function will be computed.
- Returns
- -------
- w : ndarray
- The weight function at `x`.
- Notes
- -----
- .. versionadded:: 1.7.0
- """
- w = 1./(np.sqrt(1. + x) * np.sqrt(1. - x))
- return w
- def chebpts1(npts):
- """
- Chebyshev points of the first kind.
- The Chebyshev points of the first kind are the points ``cos(x)``,
- where ``x = [pi*(k + .5)/npts for k in range(npts)]``.
- Parameters
- ----------
- npts : int
- Number of sample points desired.
- Returns
- -------
- pts : ndarray
- The Chebyshev points of the first kind.
- See Also
- --------
- chebpts2
- Notes
- -----
- .. versionadded:: 1.5.0
- """
- _npts = int(npts)
- if _npts != npts:
- raise ValueError("npts must be integer")
- if _npts < 1:
- raise ValueError("npts must be >= 1")
- x = 0.5 * np.pi / _npts * np.arange(-_npts+1, _npts+1, 2)
- return np.sin(x)
- def chebpts2(npts):
- """
- Chebyshev points of the second kind.
- The Chebyshev points of the second kind are the points ``cos(x)``,
- where ``x = [pi*k/(npts - 1) for k in range(npts)]`` sorted in ascending
- order.
- Parameters
- ----------
- npts : int
- Number of sample points desired.
- Returns
- -------
- pts : ndarray
- The Chebyshev points of the second kind.
- Notes
- -----
- .. versionadded:: 1.5.0
- """
- _npts = int(npts)
- if _npts != npts:
- raise ValueError("npts must be integer")
- if _npts < 2:
- raise ValueError("npts must be >= 2")
- x = np.linspace(-np.pi, 0, _npts)
- return np.cos(x)
- #
- # Chebyshev series class
- #
- class Chebyshev(ABCPolyBase):
- """A Chebyshev series class.
- The Chebyshev class provides the standard Python numerical methods
- '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the
- methods listed below.
- Parameters
- ----------
- coef : array_like
- Chebyshev coefficients in order of increasing degree, i.e.,
- ``(1, 2, 3)`` gives ``1*T_0(x) + 2*T_1(x) + 3*T_2(x)``.
- domain : (2,) array_like, optional
- Domain to use. The interval ``[domain[0], domain[1]]`` is mapped
- to the interval ``[window[0], window[1]]`` by shifting and scaling.
- The default value is [-1, 1].
- window : (2,) array_like, optional
- Window, see `domain` for its use. The default value is [-1, 1].
- .. versionadded:: 1.6.0
- symbol : str, optional
- Symbol used to represent the independent variable in string
- representations of the polynomial expression, e.g. for printing.
- The symbol must be a valid Python identifier. Default value is 'x'.
- .. versionadded:: 1.24
- """
- # Virtual Functions
- _add = staticmethod(chebadd)
- _sub = staticmethod(chebsub)
- _mul = staticmethod(chebmul)
- _div = staticmethod(chebdiv)
- _pow = staticmethod(chebpow)
- _val = staticmethod(chebval)
- _int = staticmethod(chebint)
- _der = staticmethod(chebder)
- _fit = staticmethod(chebfit)
- _line = staticmethod(chebline)
- _roots = staticmethod(chebroots)
- _fromroots = staticmethod(chebfromroots)
- @classmethod
- def interpolate(cls, func, deg, domain=None, args=()):
- """Interpolate a function at the Chebyshev points of the first kind.
- Returns the series that interpolates `func` at the Chebyshev points of
- the first kind scaled and shifted to the `domain`. The resulting series
- tends to a minmax approximation of `func` when the function is
- continuous in the domain.
- .. versionadded:: 1.14.0
- Parameters
- ----------
- func : function
- The function to be interpolated. It must be a function of a single
- variable of the form ``f(x, a, b, c...)``, where ``a, b, c...`` are
- extra arguments passed in the `args` parameter.
- deg : int
- Degree of the interpolating polynomial.
- domain : {None, [beg, end]}, optional
- Domain over which `func` is interpolated. The default is None, in
- which case the domain is [-1, 1].
- args : tuple, optional
- Extra arguments to be used in the function call. Default is no
- extra arguments.
- Returns
- -------
- polynomial : Chebyshev instance
- Interpolating Chebyshev instance.
- Notes
- -----
- See `numpy.polynomial.chebfromfunction` for more details.
- """
- if domain is None:
- domain = cls.domain
- xfunc = lambda x: func(pu.mapdomain(x, cls.window, domain), *args)
- coef = chebinterpolate(xfunc, deg)
- return cls(coef, domain=domain)
- # Virtual properties
- domain = np.array(chebdomain)
- window = np.array(chebdomain)
- basis_name = 'T'
|