123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542 |
- """
- =================================================
- Power Series (:mod:`numpy.polynomial.polynomial`)
- =================================================
- This module provides a number of objects (mostly functions) useful for
- dealing with polynomials, including a `Polynomial` class that
- encapsulates the usual arithmetic operations. (General information
- on how this module represents and works with polynomial objects is in
- the docstring for its "parent" sub-package, `numpy.polynomial`).
- Classes
- -------
- .. autosummary::
- :toctree: generated/
- Polynomial
- Constants
- ---------
- .. autosummary::
- :toctree: generated/
- polydomain
- polyzero
- polyone
- polyx
- Arithmetic
- ----------
- .. autosummary::
- :toctree: generated/
- polyadd
- polysub
- polymulx
- polymul
- polydiv
- polypow
- polyval
- polyval2d
- polyval3d
- polygrid2d
- polygrid3d
- Calculus
- --------
- .. autosummary::
- :toctree: generated/
- polyder
- polyint
- Misc Functions
- --------------
- .. autosummary::
- :toctree: generated/
- polyfromroots
- polyroots
- polyvalfromroots
- polyvander
- polyvander2d
- polyvander3d
- polycompanion
- polyfit
- polytrim
- polyline
- See Also
- --------
- `numpy.polynomial`
- """
- __all__ = [
- 'polyzero', 'polyone', 'polyx', 'polydomain', 'polyline', 'polyadd',
- 'polysub', 'polymulx', 'polymul', 'polydiv', 'polypow', 'polyval',
- 'polyvalfromroots', 'polyder', 'polyint', 'polyfromroots', 'polyvander',
- 'polyfit', 'polytrim', 'polyroots', 'Polynomial', 'polyval2d', 'polyval3d',
- 'polygrid2d', 'polygrid3d', 'polyvander2d', 'polyvander3d']
- import numpy as np
- import numpy.linalg as la
- from numpy.core.multiarray import normalize_axis_index
- from . import polyutils as pu
- from ._polybase import ABCPolyBase
- polytrim = pu.trimcoef
- #
- # These are constant arrays are of integer type so as to be compatible
- # with the widest range of other types, such as Decimal.
- #
- # Polynomial default domain.
- polydomain = np.array([-1, 1])
- # Polynomial coefficients representing zero.
- polyzero = np.array([0])
- # Polynomial coefficients representing one.
- polyone = np.array([1])
- # Polynomial coefficients representing the identity x.
- polyx = np.array([0, 1])
- #
- # Polynomial series functions
- #
- def polyline(off, scl):
- """
- Returns an array representing a linear polynomial.
- Parameters
- ----------
- off, scl : scalars
- The "y-intercept" and "slope" of the line, respectively.
- Returns
- -------
- y : ndarray
- This module's representation of the linear polynomial ``off +
- scl*x``.
- See Also
- --------
- numpy.polynomial.chebyshev.chebline
- numpy.polynomial.legendre.legline
- numpy.polynomial.laguerre.lagline
- numpy.polynomial.hermite.hermline
- numpy.polynomial.hermite_e.hermeline
- Examples
- --------
- >>> from numpy.polynomial import polynomial as P
- >>> P.polyline(1,-1)
- array([ 1, -1])
- >>> P.polyval(1, P.polyline(1,-1)) # should be 0
- 0.0
- """
- if scl != 0:
- return np.array([off, scl])
- else:
- return np.array([off])
- def polyfromroots(roots):
- """
- Generate a monic polynomial with given roots.
- Return the coefficients of the polynomial
- .. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),
- where the ``r_n`` are the roots specified in `roots`. If a zero has
- multiplicity n, then it must appear in `roots` n times. For instance,
- if 2 is a root of multiplicity three and 3 is a root of multiplicity 2,
- then `roots` looks something like [2, 2, 2, 3, 3]. The roots can appear
- in any order.
- If the returned coefficients are `c`, then
- .. math:: p(x) = c_0 + c_1 * x + ... + x^n
- The coefficient of the last term is 1 for monic polynomials in this
- form.
- Parameters
- ----------
- roots : array_like
- Sequence containing the roots.
- Returns
- -------
- out : ndarray
- 1-D array of the polynomial's coefficients If all the roots are
- real, then `out` is also real, otherwise it is complex. (see
- Examples below).
- See Also
- --------
- numpy.polynomial.chebyshev.chebfromroots
- numpy.polynomial.legendre.legfromroots
- numpy.polynomial.laguerre.lagfromroots
- numpy.polynomial.hermite.hermfromroots
- numpy.polynomial.hermite_e.hermefromroots
- Notes
- -----
- The coefficients are determined by multiplying together linear factors
- of the form ``(x - r_i)``, i.e.
- .. math:: p(x) = (x - r_0) (x - r_1) ... (x - r_n)
- where ``n == len(roots) - 1``; note that this implies that ``1`` is always
- returned for :math:`a_n`.
- Examples
- --------
- >>> from numpy.polynomial import polynomial as P
- >>> P.polyfromroots((-1,0,1)) # x(x - 1)(x + 1) = x^3 - x
- array([ 0., -1., 0., 1.])
- >>> j = complex(0,1)
- >>> P.polyfromroots((-j,j)) # complex returned, though values are real
- array([1.+0.j, 0.+0.j, 1.+0.j])
- """
- return pu._fromroots(polyline, polymul, roots)
- def polyadd(c1, c2):
- """
- Add one polynomial to another.
- Returns the sum of two polynomials `c1` + `c2`. The arguments are
- sequences of coefficients from lowest order term to highest, i.e.,
- [1,2,3] represents the polynomial ``1 + 2*x + 3*x**2``.
- Parameters
- ----------
- c1, c2 : array_like
- 1-D arrays of polynomial coefficients ordered from low to high.
- Returns
- -------
- out : ndarray
- The coefficient array representing their sum.
- See Also
- --------
- polysub, polymulx, polymul, polydiv, polypow
- Examples
- --------
- >>> from numpy.polynomial import polynomial as P
- >>> c1 = (1,2,3)
- >>> c2 = (3,2,1)
- >>> sum = P.polyadd(c1,c2); sum
- array([4., 4., 4.])
- >>> P.polyval(2, sum) # 4 + 4(2) + 4(2**2)
- 28.0
- """
- return pu._add(c1, c2)
- def polysub(c1, c2):
- """
- Subtract one polynomial from another.
- Returns the difference of two polynomials `c1` - `c2`. The arguments
- are sequences of coefficients from lowest order term to highest, i.e.,
- [1,2,3] represents the polynomial ``1 + 2*x + 3*x**2``.
- Parameters
- ----------
- c1, c2 : array_like
- 1-D arrays of polynomial coefficients ordered from low to
- high.
- Returns
- -------
- out : ndarray
- Of coefficients representing their difference.
- See Also
- --------
- polyadd, polymulx, polymul, polydiv, polypow
- Examples
- --------
- >>> from numpy.polynomial import polynomial as P
- >>> c1 = (1,2,3)
- >>> c2 = (3,2,1)
- >>> P.polysub(c1,c2)
- array([-2., 0., 2.])
- >>> P.polysub(c2,c1) # -P.polysub(c1,c2)
- array([ 2., 0., -2.])
- """
- return pu._sub(c1, c2)
- def polymulx(c):
- """Multiply a polynomial by x.
- Multiply the polynomial `c` by x, where x is the independent
- variable.
- Parameters
- ----------
- c : array_like
- 1-D array of polynomial coefficients ordered from low to
- high.
- Returns
- -------
- out : ndarray
- Array representing the result of the multiplication.
- See Also
- --------
- polyadd, polysub, polymul, polydiv, polypow
- Notes
- -----
- .. versionadded:: 1.5.0
- """
- # c is a trimmed copy
- [c] = pu.as_series([c])
- # The zero series needs special treatment
- if len(c) == 1 and c[0] == 0:
- return c
- prd = np.empty(len(c) + 1, dtype=c.dtype)
- prd[0] = c[0]*0
- prd[1:] = c
- return prd
- def polymul(c1, c2):
- """
- Multiply one polynomial by another.
- Returns the product of two polynomials `c1` * `c2`. The arguments are
- sequences of coefficients, from lowest order term to highest, e.g.,
- [1,2,3] represents the polynomial ``1 + 2*x + 3*x**2.``
- Parameters
- ----------
- c1, c2 : array_like
- 1-D arrays of coefficients representing a polynomial, relative to the
- "standard" basis, and ordered from lowest order term to highest.
- Returns
- -------
- out : ndarray
- Of the coefficients of their product.
- See Also
- --------
- polyadd, polysub, polymulx, polydiv, polypow
- Examples
- --------
- >>> from numpy.polynomial import polynomial as P
- >>> c1 = (1,2,3)
- >>> c2 = (3,2,1)
- >>> P.polymul(c1,c2)
- array([ 3., 8., 14., 8., 3.])
- """
- # c1, c2 are trimmed copies
- [c1, c2] = pu.as_series([c1, c2])
- ret = np.convolve(c1, c2)
- return pu.trimseq(ret)
- def polydiv(c1, c2):
- """
- Divide one polynomial by another.
- Returns the quotient-with-remainder of two polynomials `c1` / `c2`.
- The arguments are sequences of coefficients, from lowest order term
- to highest, e.g., [1,2,3] represents ``1 + 2*x + 3*x**2``.
- Parameters
- ----------
- c1, c2 : array_like
- 1-D arrays of polynomial coefficients ordered from low to high.
- Returns
- -------
- [quo, rem] : ndarrays
- Of coefficient series representing the quotient and remainder.
- See Also
- --------
- polyadd, polysub, polymulx, polymul, polypow
- Examples
- --------
- >>> from numpy.polynomial import polynomial as P
- >>> c1 = (1,2,3)
- >>> c2 = (3,2,1)
- >>> P.polydiv(c1,c2)
- (array([3.]), array([-8., -4.]))
- >>> P.polydiv(c2,c1)
- (array([ 0.33333333]), array([ 2.66666667, 1.33333333])) # may vary
- """
- # c1, c2 are trimmed copies
- [c1, c2] = pu.as_series([c1, c2])
- if c2[-1] == 0:
- raise ZeroDivisionError()
- # note: this is more efficient than `pu._div(polymul, c1, c2)`
- lc1 = len(c1)
- lc2 = len(c2)
- if lc1 < lc2:
- return c1[:1]*0, c1
- elif lc2 == 1:
- return c1/c2[-1], c1[:1]*0
- else:
- dlen = lc1 - lc2
- scl = c2[-1]
- c2 = c2[:-1]/scl
- i = dlen
- j = lc1 - 1
- while i >= 0:
- c1[i:j] -= c2*c1[j]
- i -= 1
- j -= 1
- return c1[j+1:]/scl, pu.trimseq(c1[:j+1])
- def polypow(c, pow, maxpower=None):
- """Raise a polynomial to a power.
- Returns the polynomial `c` raised to the power `pow`. The argument
- `c` is a sequence of coefficients ordered from low to high. i.e.,
- [1,2,3] is the series ``1 + 2*x + 3*x**2.``
- Parameters
- ----------
- c : array_like
- 1-D array of array of series coefficients ordered from low to
- high degree.
- pow : integer
- Power to which the series will be raised
- maxpower : integer, optional
- Maximum power allowed. This is mainly to limit growth of the series
- to unmanageable size. Default is 16
- Returns
- -------
- coef : ndarray
- Power series of power.
- See Also
- --------
- polyadd, polysub, polymulx, polymul, polydiv
- Examples
- --------
- >>> from numpy.polynomial import polynomial as P
- >>> P.polypow([1,2,3], 2)
- array([ 1., 4., 10., 12., 9.])
- """
- # note: this is more efficient than `pu._pow(polymul, c1, c2)`, as it
- # avoids calling `as_series` repeatedly
- return pu._pow(np.convolve, c, pow, maxpower)
- def polyder(c, m=1, scl=1, axis=0):
- """
- Differentiate a polynomial.
- Returns the polynomial coefficients `c` differentiated `m` times along
- `axis`. At each iteration the result is multiplied by `scl` (the
- scaling factor is for use in a linear change of variable). The
- argument `c` is an array of coefficients from low to high degree along
- each axis, e.g., [1,2,3] represents the polynomial ``1 + 2*x + 3*x**2``
- while [[1,2],[1,2]] represents ``1 + 1*x + 2*y + 2*x*y`` if axis=0 is
- ``x`` and axis=1 is ``y``.
- Parameters
- ----------
- c : array_like
- Array of polynomial coefficients. If c is multidimensional the
- different axis correspond to different variables with the degree
- in each axis given by the corresponding index.
- m : int, optional
- Number of derivatives taken, must be non-negative. (Default: 1)
- scl : scalar, optional
- Each differentiation is multiplied by `scl`. The end result is
- multiplication by ``scl**m``. This is for use in a linear change
- of variable. (Default: 1)
- axis : int, optional
- Axis over which the derivative is taken. (Default: 0).
- .. versionadded:: 1.7.0
- Returns
- -------
- der : ndarray
- Polynomial coefficients of the derivative.
- See Also
- --------
- polyint
- Examples
- --------
- >>> from numpy.polynomial import polynomial as P
- >>> c = (1,2,3,4) # 1 + 2x + 3x**2 + 4x**3
- >>> P.polyder(c) # (d/dx)(c) = 2 + 6x + 12x**2
- array([ 2., 6., 12.])
- >>> P.polyder(c,3) # (d**3/dx**3)(c) = 24
- array([24.])
- >>> P.polyder(c,scl=-1) # (d/d(-x))(c) = -2 - 6x - 12x**2
- array([ -2., -6., -12.])
- >>> P.polyder(c,2,-1) # (d**2/d(-x)**2)(c) = 6 + 24x
- array([ 6., 24.])
- """
- c = np.array(c, ndmin=1, copy=True)
- if c.dtype.char in '?bBhHiIlLqQpP':
- # astype fails with NA
- c = c + 0.0
- cdt = c.dtype
- cnt = pu._deprecate_as_int(m, "the order of derivation")
- iaxis = pu._deprecate_as_int(axis, "the axis")
- if cnt < 0:
- raise ValueError("The order of derivation must be non-negative")
- iaxis = normalize_axis_index(iaxis, c.ndim)
- if cnt == 0:
- return c
- c = np.moveaxis(c, iaxis, 0)
- n = len(c)
- if cnt >= n:
- c = c[:1]*0
- else:
- for i in range(cnt):
- n = n - 1
- c *= scl
- der = np.empty((n,) + c.shape[1:], dtype=cdt)
- for j in range(n, 0, -1):
- der[j - 1] = j*c[j]
- c = der
- c = np.moveaxis(c, 0, iaxis)
- return c
- def polyint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
- """
- Integrate a polynomial.
- Returns the polynomial coefficients `c` integrated `m` times from
- `lbnd` along `axis`. At each iteration the resulting series is
- **multiplied** by `scl` and an integration constant, `k`, is added.
- The scaling factor is for use in a linear change of variable. ("Buyer
- beware": note that, depending on what one is doing, one may want `scl`
- to be the reciprocal of what one might expect; for more information,
- see the Notes section below.) The argument `c` is an array of
- coefficients, from low to high degree along each axis, e.g., [1,2,3]
- represents the polynomial ``1 + 2*x + 3*x**2`` while [[1,2],[1,2]]
- represents ``1 + 1*x + 2*y + 2*x*y`` if axis=0 is ``x`` and axis=1 is
- ``y``.
- Parameters
- ----------
- c : array_like
- 1-D array of polynomial coefficients, ordered from low to high.
- m : int, optional
- Order of integration, must be positive. (Default: 1)
- k : {[], list, scalar}, optional
- Integration constant(s). The value of the first integral at zero
- is the first value in the list, the value of the second integral
- at zero is the second value, etc. If ``k == []`` (the default),
- all constants are set to zero. If ``m == 1``, a single scalar can
- be given instead of a list.
- lbnd : scalar, optional
- The lower bound of the integral. (Default: 0)
- scl : scalar, optional
- Following each integration the result is *multiplied* by `scl`
- before the integration constant is added. (Default: 1)
- axis : int, optional
- Axis over which the integral is taken. (Default: 0).
- .. versionadded:: 1.7.0
- Returns
- -------
- S : ndarray
- Coefficient array of the integral.
- Raises
- ------
- ValueError
- If ``m < 1``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or
- ``np.ndim(scl) != 0``.
- See Also
- --------
- polyder
- Notes
- -----
- Note that the result of each integration is *multiplied* by `scl`. Why
- is this important to note? Say one is making a linear change of
- variable :math:`u = ax + b` in an integral relative to `x`. Then
- :math:`dx = du/a`, so one will need to set `scl` equal to
- :math:`1/a` - perhaps not what one would have first thought.
- Examples
- --------
- >>> from numpy.polynomial import polynomial as P
- >>> c = (1,2,3)
- >>> P.polyint(c) # should return array([0, 1, 1, 1])
- array([0., 1., 1., 1.])
- >>> P.polyint(c,3) # should return array([0, 0, 0, 1/6, 1/12, 1/20])
- array([ 0. , 0. , 0. , 0.16666667, 0.08333333, # may vary
- 0.05 ])
- >>> P.polyint(c,k=3) # should return array([3, 1, 1, 1])
- array([3., 1., 1., 1.])
- >>> P.polyint(c,lbnd=-2) # should return array([6, 1, 1, 1])
- array([6., 1., 1., 1.])
- >>> P.polyint(c,scl=-2) # should return array([0, -2, -2, -2])
- array([ 0., -2., -2., -2.])
- """
- c = np.array(c, ndmin=1, copy=True)
- if c.dtype.char in '?bBhHiIlLqQpP':
- # astype doesn't preserve mask attribute.
- c = c + 0.0
- cdt = c.dtype
- if not np.iterable(k):
- k = [k]
- cnt = pu._deprecate_as_int(m, "the order of integration")
- iaxis = pu._deprecate_as_int(axis, "the axis")
- if cnt < 0:
- raise ValueError("The order of integration must be non-negative")
- if len(k) > cnt:
- raise ValueError("Too many integration constants")
- if np.ndim(lbnd) != 0:
- raise ValueError("lbnd must be a scalar.")
- if np.ndim(scl) != 0:
- raise ValueError("scl must be a scalar.")
- iaxis = normalize_axis_index(iaxis, c.ndim)
- if cnt == 0:
- return c
- k = list(k) + [0]*(cnt - len(k))
- c = np.moveaxis(c, iaxis, 0)
- for i in range(cnt):
- n = len(c)
- c *= scl
- if n == 1 and np.all(c[0] == 0):
- c[0] += k[i]
- else:
- tmp = np.empty((n + 1,) + c.shape[1:], dtype=cdt)
- tmp[0] = c[0]*0
- tmp[1] = c[0]
- for j in range(1, n):
- tmp[j + 1] = c[j]/(j + 1)
- tmp[0] += k[i] - polyval(lbnd, tmp)
- c = tmp
- c = np.moveaxis(c, 0, iaxis)
- return c
- def polyval(x, c, tensor=True):
- """
- Evaluate a polynomial at points x.
- If `c` is of length `n + 1`, this function returns the value
- .. math:: p(x) = c_0 + c_1 * x + ... + c_n * x^n
- The parameter `x` is converted to an array only if it is a tuple or a
- list, otherwise it is treated as a scalar. In either case, either `x`
- or its elements must support multiplication and addition both with
- themselves and with the elements of `c`.
- If `c` is a 1-D array, then `p(x)` will have the same shape as `x`. If
- `c` is multidimensional, then the shape of the result depends on the
- value of `tensor`. If `tensor` is true the shape will be c.shape[1:] +
- x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that
- scalars have shape (,).
- Trailing zeros in the coefficients will be used in the evaluation, so
- they should be avoided if efficiency is a concern.
- Parameters
- ----------
- x : array_like, compatible object
- If `x` is a list or tuple, it is converted to an ndarray, otherwise
- it is left unchanged and treated as a scalar. In either case, `x`
- or its elements must support addition and multiplication with
- with themselves and with the elements of `c`.
- c : array_like
- Array of coefficients ordered so that the coefficients for terms of
- degree n are contained in c[n]. If `c` is multidimensional the
- remaining indices enumerate multiple polynomials. In the two
- dimensional case the coefficients may be thought of as stored in
- the columns of `c`.
- tensor : boolean, optional
- If True, the shape of the coefficient array is extended with ones
- on the right, one for each dimension of `x`. Scalars have dimension 0
- for this action. The result is that every column of coefficients in
- `c` is evaluated for every element of `x`. If False, `x` is broadcast
- over the columns of `c` for the evaluation. This keyword is useful
- when `c` is multidimensional. The default value is True.
- .. versionadded:: 1.7.0
- Returns
- -------
- values : ndarray, compatible object
- The shape of the returned array is described above.
- See Also
- --------
- polyval2d, polygrid2d, polyval3d, polygrid3d
- Notes
- -----
- The evaluation uses Horner's method.
- Examples
- --------
- >>> from numpy.polynomial.polynomial import polyval
- >>> polyval(1, [1,2,3])
- 6.0
- >>> a = np.arange(4).reshape(2,2)
- >>> a
- array([[0, 1],
- [2, 3]])
- >>> polyval(a, [1,2,3])
- array([[ 1., 6.],
- [17., 34.]])
- >>> coef = np.arange(4).reshape(2,2) # multidimensional coefficients
- >>> coef
- array([[0, 1],
- [2, 3]])
- >>> polyval([1,2], coef, tensor=True)
- array([[2., 4.],
- [4., 7.]])
- >>> polyval([1,2], coef, tensor=False)
- array([2., 7.])
- """
- c = np.array(c, ndmin=1, copy=False)
- if c.dtype.char in '?bBhHiIlLqQpP':
- # astype fails with NA
- c = c + 0.0
- if isinstance(x, (tuple, list)):
- x = np.asarray(x)
- if isinstance(x, np.ndarray) and tensor:
- c = c.reshape(c.shape + (1,)*x.ndim)
- c0 = c[-1] + x*0
- for i in range(2, len(c) + 1):
- c0 = c[-i] + c0*x
- return c0
- def polyvalfromroots(x, r, tensor=True):
- """
- Evaluate a polynomial specified by its roots at points x.
- If `r` is of length `N`, this function returns the value
- .. math:: p(x) = \\prod_{n=1}^{N} (x - r_n)
- The parameter `x` is converted to an array only if it is a tuple or a
- list, otherwise it is treated as a scalar. In either case, either `x`
- or its elements must support multiplication and addition both with
- themselves and with the elements of `r`.
- If `r` is a 1-D array, then `p(x)` will have the same shape as `x`. If `r`
- is multidimensional, then the shape of the result depends on the value of
- `tensor`. If `tensor` is ``True`` the shape will be r.shape[1:] + x.shape;
- that is, each polynomial is evaluated at every value of `x`. If `tensor` is
- ``False``, the shape will be r.shape[1:]; that is, each polynomial is
- evaluated only for the corresponding broadcast value of `x`. Note that
- scalars have shape (,).
- .. versionadded:: 1.12
- Parameters
- ----------
- x : array_like, compatible object
- If `x` is a list or tuple, it is converted to an ndarray, otherwise
- it is left unchanged and treated as a scalar. In either case, `x`
- or its elements must support addition and multiplication with
- with themselves and with the elements of `r`.
- r : array_like
- Array of roots. If `r` is multidimensional the first index is the
- root index, while the remaining indices enumerate multiple
- polynomials. For instance, in the two dimensional case the roots
- of each polynomial may be thought of as stored in the columns of `r`.
- tensor : boolean, optional
- If True, the shape of the roots array is extended with ones on the
- right, one for each dimension of `x`. Scalars have dimension 0 for this
- action. The result is that every column of coefficients in `r` is
- evaluated for every element of `x`. If False, `x` is broadcast over the
- columns of `r` for the evaluation. This keyword is useful when `r` is
- multidimensional. The default value is True.
- Returns
- -------
- values : ndarray, compatible object
- The shape of the returned array is described above.
- See Also
- --------
- polyroots, polyfromroots, polyval
- Examples
- --------
- >>> from numpy.polynomial.polynomial import polyvalfromroots
- >>> polyvalfromroots(1, [1,2,3])
- 0.0
- >>> a = np.arange(4).reshape(2,2)
- >>> a
- array([[0, 1],
- [2, 3]])
- >>> polyvalfromroots(a, [-1, 0, 1])
- array([[-0., 0.],
- [ 6., 24.]])
- >>> r = np.arange(-2, 2).reshape(2,2) # multidimensional coefficients
- >>> r # each column of r defines one polynomial
- array([[-2, -1],
- [ 0, 1]])
- >>> b = [-2, 1]
- >>> polyvalfromroots(b, r, tensor=True)
- array([[-0., 3.],
- [ 3., 0.]])
- >>> polyvalfromroots(b, r, tensor=False)
- array([-0., 0.])
- """
- r = np.array(r, ndmin=1, copy=False)
- if r.dtype.char in '?bBhHiIlLqQpP':
- r = r.astype(np.double)
- if isinstance(x, (tuple, list)):
- x = np.asarray(x)
- if isinstance(x, np.ndarray):
- if tensor:
- r = r.reshape(r.shape + (1,)*x.ndim)
- elif x.ndim >= r.ndim:
- raise ValueError("x.ndim must be < r.ndim when tensor == False")
- return np.prod(x - r, axis=0)
- def polyval2d(x, y, c):
- """
- Evaluate a 2-D polynomial at points (x, y).
- This function returns the value
- .. math:: p(x,y) = \\sum_{i,j} c_{i,j} * x^i * y^j
- The parameters `x` and `y` are converted to arrays only if they are
- tuples or a lists, otherwise they are treated as a scalars and they
- must have the same shape after conversion. In either case, either `x`
- and `y` or their elements must support multiplication and addition both
- with themselves and with the elements of `c`.
- If `c` has fewer than two dimensions, ones are implicitly appended to
- its shape to make it 2-D. The shape of the result will be c.shape[2:] +
- x.shape.
- Parameters
- ----------
- x, y : array_like, compatible objects
- The two dimensional series is evaluated at the points `(x, y)`,
- where `x` and `y` must have the same shape. If `x` or `y` is a list
- or tuple, it is first converted to an ndarray, otherwise it is left
- unchanged and, if it isn't an ndarray, it is treated as a scalar.
- c : array_like
- Array of coefficients ordered so that the coefficient of the term
- of multi-degree i,j is contained in `c[i,j]`. If `c` has
- dimension greater than two the remaining indices enumerate multiple
- sets of coefficients.
- Returns
- -------
- values : ndarray, compatible object
- The values of the two dimensional polynomial at points formed with
- pairs of corresponding values from `x` and `y`.
- See Also
- --------
- polyval, polygrid2d, polyval3d, polygrid3d
- Notes
- -----
- .. versionadded:: 1.7.0
- """
- return pu._valnd(polyval, c, x, y)
- def polygrid2d(x, y, c):
- """
- Evaluate a 2-D polynomial on the Cartesian product of x and y.
- This function returns the values:
- .. math:: p(a,b) = \\sum_{i,j} c_{i,j} * a^i * b^j
- where the points `(a, b)` consist of all pairs formed by taking
- `a` from `x` and `b` from `y`. The resulting points form a grid with
- `x` in the first dimension and `y` in the second.
- The parameters `x` and `y` are converted to arrays only if they are
- tuples or a lists, otherwise they are treated as a scalars. In either
- case, either `x` and `y` or their elements must support multiplication
- and addition both with themselves and with the elements of `c`.
- If `c` has fewer than two dimensions, ones are implicitly appended to
- its shape to make it 2-D. The shape of the result will be c.shape[2:] +
- x.shape + y.shape.
- Parameters
- ----------
- x, y : array_like, compatible objects
- The two dimensional series is evaluated at the points in the
- Cartesian product of `x` and `y`. If `x` or `y` is a list or
- tuple, it is first converted to an ndarray, otherwise it is left
- unchanged and, if it isn't an ndarray, it is treated as a scalar.
- c : array_like
- Array of coefficients ordered so that the coefficients for terms of
- degree i,j are contained in ``c[i,j]``. If `c` has dimension
- greater than two the remaining indices enumerate multiple sets of
- coefficients.
- Returns
- -------
- values : ndarray, compatible object
- The values of the two dimensional polynomial at points in the Cartesian
- product of `x` and `y`.
- See Also
- --------
- polyval, polyval2d, polyval3d, polygrid3d
- Notes
- -----
- .. versionadded:: 1.7.0
- """
- return pu._gridnd(polyval, c, x, y)
- def polyval3d(x, y, z, c):
- """
- Evaluate a 3-D polynomial at points (x, y, z).
- This function returns the values:
- .. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * x^i * y^j * z^k
- The parameters `x`, `y`, and `z` are converted to arrays only if
- they are tuples or a lists, otherwise they are treated as a scalars and
- they must have the same shape after conversion. In either case, either
- `x`, `y`, and `z` or their elements must support multiplication and
- addition both with themselves and with the elements of `c`.
- If `c` has fewer than 3 dimensions, ones are implicitly appended to its
- shape to make it 3-D. The shape of the result will be c.shape[3:] +
- x.shape.
- Parameters
- ----------
- x, y, z : array_like, compatible object
- The three dimensional series is evaluated at the points
- `(x, y, z)`, where `x`, `y`, and `z` must have the same shape. If
- any of `x`, `y`, or `z` is a list or tuple, it is first converted
- to an ndarray, otherwise it is left unchanged and if it isn't an
- ndarray it is treated as a scalar.
- c : array_like
- Array of coefficients ordered so that the coefficient of the term of
- multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension
- greater than 3 the remaining indices enumerate multiple sets of
- coefficients.
- Returns
- -------
- values : ndarray, compatible object
- The values of the multidimensional polynomial on points formed with
- triples of corresponding values from `x`, `y`, and `z`.
- See Also
- --------
- polyval, polyval2d, polygrid2d, polygrid3d
- Notes
- -----
- .. versionadded:: 1.7.0
- """
- return pu._valnd(polyval, c, x, y, z)
- def polygrid3d(x, y, z, c):
- """
- Evaluate a 3-D polynomial on the Cartesian product of x, y and z.
- This function returns the values:
- .. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * a^i * b^j * c^k
- where the points `(a, b, c)` consist of all triples formed by taking
- `a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form
- a grid with `x` in the first dimension, `y` in the second, and `z` in
- the third.
- The parameters `x`, `y`, and `z` are converted to arrays only if they
- are tuples or a lists, otherwise they are treated as a scalars. In
- either case, either `x`, `y`, and `z` or their elements must support
- multiplication and addition both with themselves and with the elements
- of `c`.
- If `c` has fewer than three dimensions, ones are implicitly appended to
- its shape to make it 3-D. The shape of the result will be c.shape[3:] +
- x.shape + y.shape + z.shape.
- Parameters
- ----------
- x, y, z : array_like, compatible objects
- The three dimensional series is evaluated at the points in the
- Cartesian product of `x`, `y`, and `z`. If `x`,`y`, or `z` is a
- list or tuple, it is first converted to an ndarray, otherwise it is
- left unchanged and, if it isn't an ndarray, it is treated as a
- scalar.
- c : array_like
- Array of coefficients ordered so that the coefficients for terms of
- degree i,j are contained in ``c[i,j]``. If `c` has dimension
- greater than two the remaining indices enumerate multiple sets of
- coefficients.
- Returns
- -------
- values : ndarray, compatible object
- The values of the two dimensional polynomial at points in the Cartesian
- product of `x` and `y`.
- See Also
- --------
- polyval, polyval2d, polygrid2d, polyval3d
- Notes
- -----
- .. versionadded:: 1.7.0
- """
- return pu._gridnd(polyval, c, x, y, z)
- def polyvander(x, deg):
- """Vandermonde matrix of given degree.
- Returns the Vandermonde matrix of degree `deg` and sample points
- `x`. The Vandermonde matrix is defined by
- .. math:: V[..., i] = x^i,
- where `0 <= i <= deg`. The leading indices of `V` index the elements of
- `x` and the last index is the power of `x`.
- If `c` is a 1-D array of coefficients of length `n + 1` and `V` is the
- matrix ``V = polyvander(x, n)``, then ``np.dot(V, c)`` and
- ``polyval(x, c)`` are the same up to roundoff. This equivalence is
- useful both for least squares fitting and for the evaluation of a large
- number of polynomials of the same degree and sample points.
- Parameters
- ----------
- x : array_like
- Array of points. The dtype is converted to float64 or complex128
- depending on whether any of the elements are complex. If `x` is
- scalar it is converted to a 1-D array.
- deg : int
- Degree of the resulting matrix.
- Returns
- -------
- vander : ndarray.
- The Vandermonde matrix. The shape of the returned matrix is
- ``x.shape + (deg + 1,)``, where the last index is the power of `x`.
- The dtype will be the same as the converted `x`.
- See Also
- --------
- polyvander2d, polyvander3d
- """
- ideg = pu._deprecate_as_int(deg, "deg")
- if ideg < 0:
- raise ValueError("deg must be non-negative")
- x = np.array(x, copy=False, ndmin=1) + 0.0
- dims = (ideg + 1,) + x.shape
- dtyp = x.dtype
- v = np.empty(dims, dtype=dtyp)
- v[0] = x*0 + 1
- if ideg > 0:
- v[1] = x
- for i in range(2, ideg + 1):
- v[i] = v[i-1]*x
- return np.moveaxis(v, 0, -1)
- def polyvander2d(x, y, deg):
- """Pseudo-Vandermonde matrix of given degrees.
- Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
- points `(x, y)`. The pseudo-Vandermonde matrix is defined by
- .. math:: V[..., (deg[1] + 1)*i + j] = x^i * y^j,
- where `0 <= i <= deg[0]` and `0 <= j <= deg[1]`. The leading indices of
- `V` index the points `(x, y)` and the last index encodes the powers of
- `x` and `y`.
- If ``V = polyvander2d(x, y, [xdeg, ydeg])``, then the columns of `V`
- correspond to the elements of a 2-D coefficient array `c` of shape
- (xdeg + 1, ydeg + 1) in the order
- .. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...
- and ``np.dot(V, c.flat)`` and ``polyval2d(x, y, c)`` will be the same
- up to roundoff. This equivalence is useful both for least squares
- fitting and for the evaluation of a large number of 2-D polynomials
- of the same degrees and sample points.
- Parameters
- ----------
- x, y : array_like
- Arrays of point coordinates, all of the same shape. The dtypes
- will be converted to either float64 or complex128 depending on
- whether any of the elements are complex. Scalars are converted to
- 1-D arrays.
- deg : list of ints
- List of maximum degrees of the form [x_deg, y_deg].
- Returns
- -------
- vander2d : ndarray
- The shape of the returned matrix is ``x.shape + (order,)``, where
- :math:`order = (deg[0]+1)*(deg([1]+1)`. The dtype will be the same
- as the converted `x` and `y`.
- See Also
- --------
- polyvander, polyvander3d, polyval2d, polyval3d
- """
- return pu._vander_nd_flat((polyvander, polyvander), (x, y), deg)
- def polyvander3d(x, y, z, deg):
- """Pseudo-Vandermonde matrix of given degrees.
- Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
- points `(x, y, z)`. If `l, m, n` are the given degrees in `x, y, z`,
- then The pseudo-Vandermonde matrix is defined by
- .. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = x^i * y^j * z^k,
- where `0 <= i <= l`, `0 <= j <= m`, and `0 <= j <= n`. The leading
- indices of `V` index the points `(x, y, z)` and the last index encodes
- the powers of `x`, `y`, and `z`.
- If ``V = polyvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns
- of `V` correspond to the elements of a 3-D coefficient array `c` of
- shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order
- .. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...
- and ``np.dot(V, c.flat)`` and ``polyval3d(x, y, z, c)`` will be the
- same up to roundoff. This equivalence is useful both for least squares
- fitting and for the evaluation of a large number of 3-D polynomials
- of the same degrees and sample points.
- Parameters
- ----------
- x, y, z : array_like
- Arrays of point coordinates, all of the same shape. The dtypes will
- be converted to either float64 or complex128 depending on whether
- any of the elements are complex. Scalars are converted to 1-D
- arrays.
- deg : list of ints
- List of maximum degrees of the form [x_deg, y_deg, z_deg].
- Returns
- -------
- vander3d : ndarray
- The shape of the returned matrix is ``x.shape + (order,)``, where
- :math:`order = (deg[0]+1)*(deg([1]+1)*(deg[2]+1)`. The dtype will
- be the same as the converted `x`, `y`, and `z`.
- See Also
- --------
- polyvander, polyvander3d, polyval2d, polyval3d
- Notes
- -----
- .. versionadded:: 1.7.0
- """
- return pu._vander_nd_flat((polyvander, polyvander, polyvander), (x, y, z), deg)
- def polyfit(x, y, deg, rcond=None, full=False, w=None):
- """
- Least-squares fit of a polynomial to data.
- Return the coefficients of a polynomial of degree `deg` that is the
- least squares fit to the data values `y` given at points `x`. If `y` is
- 1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple
- fits are done, one for each column of `y`, and the resulting
- coefficients are stored in the corresponding columns of a 2-D return.
- The fitted polynomial(s) are in the form
- .. math:: p(x) = c_0 + c_1 * x + ... + c_n * x^n,
- where `n` is `deg`.
- Parameters
- ----------
- x : array_like, shape (`M`,)
- x-coordinates of the `M` sample (data) points ``(x[i], y[i])``.
- y : array_like, shape (`M`,) or (`M`, `K`)
- y-coordinates of the sample points. Several sets of sample points
- sharing the same x-coordinates can be (independently) fit with one
- call to `polyfit` by passing in for `y` a 2-D array that contains
- one data set per column.
- deg : int or 1-D array_like
- Degree(s) of the fitting polynomials. If `deg` is a single integer
- all terms up to and including the `deg`'th term are included in the
- fit. For NumPy versions >= 1.11.0 a list of integers specifying the
- degrees of the terms to include may be used instead.
- rcond : float, optional
- Relative condition number of the fit. Singular values smaller
- than `rcond`, relative to the largest singular value, will be
- ignored. The default value is ``len(x)*eps``, where `eps` is the
- relative precision of the platform's float type, about 2e-16 in
- most cases.
- full : bool, optional
- Switch determining the nature of the return value. When ``False``
- (the default) just the coefficients are returned; when ``True``,
- diagnostic information from the singular value decomposition (used
- to solve the fit's matrix equation) is also returned.
- w : array_like, shape (`M`,), optional
- Weights. If not None, the weight ``w[i]`` applies to the unsquared
- residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
- chosen so that the errors of the products ``w[i]*y[i]`` all have the
- same variance. When using inverse-variance weighting, use
- ``w[i] = 1/sigma(y[i])``. The default value is None.
- .. versionadded:: 1.5.0
- Returns
- -------
- coef : ndarray, shape (`deg` + 1,) or (`deg` + 1, `K`)
- Polynomial coefficients ordered from low to high. If `y` was 2-D,
- the coefficients in column `k` of `coef` represent the polynomial
- fit to the data in `y`'s `k`-th column.
- [residuals, rank, singular_values, rcond] : list
- These values are only returned if ``full == True``
- - residuals -- sum of squared residuals of the least squares fit
- - rank -- the numerical rank of the scaled Vandermonde matrix
- - singular_values -- singular values of the scaled Vandermonde matrix
- - rcond -- value of `rcond`.
- For more details, see `numpy.linalg.lstsq`.
- Raises
- ------
- RankWarning
- Raised if the matrix in the least-squares fit is rank deficient.
- The warning is only raised if ``full == False``. The warnings can
- be turned off by:
- >>> import warnings
- >>> warnings.simplefilter('ignore', np.RankWarning)
- See Also
- --------
- numpy.polynomial.chebyshev.chebfit
- numpy.polynomial.legendre.legfit
- numpy.polynomial.laguerre.lagfit
- numpy.polynomial.hermite.hermfit
- numpy.polynomial.hermite_e.hermefit
- polyval : Evaluates a polynomial.
- polyvander : Vandermonde matrix for powers.
- numpy.linalg.lstsq : Computes a least-squares fit from the matrix.
- scipy.interpolate.UnivariateSpline : Computes spline fits.
- Notes
- -----
- The solution is the coefficients of the polynomial `p` that minimizes
- the sum of the weighted squared errors
- .. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2,
- where the :math:`w_j` are the weights. This problem is solved by
- setting up the (typically) over-determined matrix equation:
- .. math:: V(x) * c = w * y,
- where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the
- coefficients to be solved for, `w` are the weights, and `y` are the
- observed values. This equation is then solved using the singular value
- decomposition of `V`.
- If some of the singular values of `V` are so small that they are
- neglected (and `full` == ``False``), a `RankWarning` will be raised.
- This means that the coefficient values may be poorly determined.
- Fitting to a lower order polynomial will usually get rid of the warning
- (but may not be what you want, of course; if you have independent
- reason(s) for choosing the degree which isn't working, you may have to:
- a) reconsider those reasons, and/or b) reconsider the quality of your
- data). The `rcond` parameter can also be set to a value smaller than
- its default, but the resulting fit may be spurious and have large
- contributions from roundoff error.
- Polynomial fits using double precision tend to "fail" at about
- (polynomial) degree 20. Fits using Chebyshev or Legendre series are
- generally better conditioned, but much can still depend on the
- distribution of the sample points and the smoothness of the data. If
- the quality of the fit is inadequate, splines may be a good
- alternative.
- Examples
- --------
- >>> np.random.seed(123)
- >>> from numpy.polynomial import polynomial as P
- >>> x = np.linspace(-1,1,51) # x "data": [-1, -0.96, ..., 0.96, 1]
- >>> y = x**3 - x + np.random.randn(len(x)) # x^3 - x + Gaussian noise
- >>> c, stats = P.polyfit(x,y,3,full=True)
- >>> np.random.seed(123)
- >>> c # c[0], c[2] should be approx. 0, c[1] approx. -1, c[3] approx. 1
- array([ 0.01909725, -1.30598256, -0.00577963, 1.02644286]) # may vary
- >>> stats # note the large SSR, explaining the rather poor results
- [array([ 38.06116253]), 4, array([ 1.38446749, 1.32119158, 0.50443316, # may vary
- 0.28853036]), 1.1324274851176597e-014]
- Same thing without the added noise
- >>> y = x**3 - x
- >>> c, stats = P.polyfit(x,y,3,full=True)
- >>> c # c[0], c[2] should be "very close to 0", c[1] ~= -1, c[3] ~= 1
- array([-6.36925336e-18, -1.00000000e+00, -4.08053781e-16, 1.00000000e+00])
- >>> stats # note the minuscule SSR
- [array([ 7.46346754e-31]), 4, array([ 1.38446749, 1.32119158, # may vary
- 0.50443316, 0.28853036]), 1.1324274851176597e-014]
- """
- return pu._fit(polyvander, x, y, deg, rcond, full, w)
- def polycompanion(c):
- """
- Return the companion matrix of c.
- The companion matrix for power series cannot be made symmetric by
- scaling the basis, so this function differs from those for the
- orthogonal polynomials.
- Parameters
- ----------
- c : array_like
- 1-D array of polynomial coefficients ordered from low to high
- degree.
- Returns
- -------
- mat : ndarray
- Companion matrix of dimensions (deg, deg).
- Notes
- -----
- .. versionadded:: 1.7.0
- """
- # c is a trimmed copy
- [c] = pu.as_series([c])
- if len(c) < 2:
- raise ValueError('Series must have maximum degree of at least 1.')
- if len(c) == 2:
- return np.array([[-c[0]/c[1]]])
- n = len(c) - 1
- mat = np.zeros((n, n), dtype=c.dtype)
- bot = mat.reshape(-1)[n::n+1]
- bot[...] = 1
- mat[:, -1] -= c[:-1]/c[-1]
- return mat
- def polyroots(c):
- """
- Compute the roots of a polynomial.
- Return the roots (a.k.a. "zeros") of the polynomial
- .. math:: p(x) = \\sum_i c[i] * x^i.
- Parameters
- ----------
- c : 1-D array_like
- 1-D array of polynomial coefficients.
- Returns
- -------
- out : ndarray
- Array of the roots of the polynomial. If all the roots are real,
- then `out` is also real, otherwise it is complex.
- See Also
- --------
- numpy.polynomial.chebyshev.chebroots
- numpy.polynomial.legendre.legroots
- numpy.polynomial.laguerre.lagroots
- numpy.polynomial.hermite.hermroots
- numpy.polynomial.hermite_e.hermeroots
- Notes
- -----
- The root estimates are obtained as the eigenvalues of the companion
- matrix, Roots far from the origin of the complex plane may have large
- errors due to the numerical instability of the power series for such
- values. Roots with multiplicity greater than 1 will also show larger
- errors as the value of the series near such points is relatively
- insensitive to errors in the roots. Isolated roots near the origin can
- be improved by a few iterations of Newton's method.
- Examples
- --------
- >>> import numpy.polynomial.polynomial as poly
- >>> poly.polyroots(poly.polyfromroots((-1,0,1)))
- array([-1., 0., 1.])
- >>> poly.polyroots(poly.polyfromroots((-1,0,1))).dtype
- dtype('float64')
- >>> j = complex(0,1)
- >>> poly.polyroots(poly.polyfromroots((-j,0,j)))
- array([ 0.00000000e+00+0.j, 0.00000000e+00+1.j, 2.77555756e-17-1.j]) # may vary
- """
- # c is a trimmed copy
- [c] = pu.as_series([c])
- if len(c) < 2:
- return np.array([], dtype=c.dtype)
- if len(c) == 2:
- return np.array([-c[0]/c[1]])
- # rotated companion matrix reduces error
- m = polycompanion(c)[::-1,::-1]
- r = la.eigvals(m)
- r.sort()
- return r
- #
- # polynomial class
- #
- class Polynomial(ABCPolyBase):
- """A power series class.
- The Polynomial class provides the standard Python numerical methods
- '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the
- attributes and methods listed in the `ABCPolyBase` documentation.
- Parameters
- ----------
- coef : array_like
- Polynomial coefficients in order of increasing degree, i.e.,
- ``(1, 2, 3)`` give ``1 + 2*x + 3*x**2``.
- domain : (2,) array_like, optional
- Domain to use. The interval ``[domain[0], domain[1]]`` is mapped
- to the interval ``[window[0], window[1]]`` by shifting and scaling.
- The default value is [-1, 1].
- window : (2,) array_like, optional
- Window, see `domain` for its use. The default value is [-1, 1].
- .. versionadded:: 1.6.0
- symbol : str, optional
- Symbol used to represent the independent variable in string
- representations of the polynomial expression, e.g. for printing.
- The symbol must be a valid Python identifier. Default value is 'x'.
- .. versionadded:: 1.24
- """
- # Virtual Functions
- _add = staticmethod(polyadd)
- _sub = staticmethod(polysub)
- _mul = staticmethod(polymul)
- _div = staticmethod(polydiv)
- _pow = staticmethod(polypow)
- _val = staticmethod(polyval)
- _int = staticmethod(polyint)
- _der = staticmethod(polyder)
- _fit = staticmethod(polyfit)
- _line = staticmethod(polyline)
- _roots = staticmethod(polyroots)
- _fromroots = staticmethod(polyfromroots)
- # Virtual properties
- domain = np.array(polydomain)
- window = np.array(polydomain)
- basis_name = None
- @classmethod
- def _str_term_unicode(cls, i, arg_str):
- if i == '1':
- return f"·{arg_str}"
- else:
- return f"·{arg_str}{i.translate(cls._superscript_mapping)}"
- @staticmethod
- def _str_term_ascii(i, arg_str):
- if i == '1':
- return f" {arg_str}"
- else:
- return f" {arg_str}**{i}"
- @staticmethod
- def _repr_latex_term(i, arg_str, needs_parens):
- if needs_parens:
- arg_str = rf"\left({arg_str}\right)"
- if i == 0:
- return '1'
- elif i == 1:
- return arg_str
- else:
- return f"{arg_str}^{{{i}}}"
|